1
|
Chen Z, Song Y, Yan Y, Chen W, Ren T, Ma A, Li S, Jia Y. Characterization of an epilactose-producing cellobiose 2-epimerase from Clostridium sp. TW13 and reutilization of waste milk. Food Chem 2025; 480:143948. [PMID: 40138832 DOI: 10.1016/j.foodchem.2025.143948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/17/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
A novel cellobiose 2-epimerase gene (CsCEase1) from Clostridium sp. TW13 was successfully overexpressed. CsCEase1, with a molecular weight of 45.0 kDa, exhibited a specific activity of 254.75 U/mg and showed optimal activity at 40 °C and pH 7.5. Using CsCEase1, 44.30 % of lactose was converted into epilactose, yielding a production level of 26.58 g/L. An efficient purification method was developed, incorporating crystallization and β-galactosidase treatment to remove the unconverted lactose, while Saccharomyces cerevisiae was used to consume the produced glucose. Final purification with activated carbon resulted in epilactose with 98 % purity and a recovery rate of 66.47 %. Furthermore, CsCEase1 was incubated with whey power and expired milk, achieving epilactose conversion rates of 29.65 % and 32.69 %, respectively. These findings highlight the potential of CsCEase1 for the cost-effective and environmentally sustainable production of epilactose from dairy waste.
Collapse
Affiliation(s)
- Zhou Chen
- Beijing Technology and Business University, Beijing 100048, China
| | - Yanyin Song
- Beijing Technology and Business University, Beijing 100048, China
| | - Yuhan Yan
- Beijing Technology and Business University, Beijing 100048, China
| | - Wei Chen
- Beijing Technology and Business University, Beijing 100048, China
| | - Tong Ren
- Beijing Technology and Business University, Beijing 100048, China
| | - Aijin Ma
- Beijing Technology and Business University, Beijing 100048, China
| | - Siting Li
- Beijing Technology and Business University, Beijing 100048, China
| | - Yingmin Jia
- Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Pang B, Yang J, Song M, Zhang W, Qian S, Xu M, Chen X, Huang Y, Gu R, Wang K. Advances and prospects on production of lactulose and epilactose by cellobiose 2-epimerases: A review. Int J Biol Macromol 2025; 305:141283. [PMID: 39984086 DOI: 10.1016/j.ijbiomac.2025.141283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/30/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
Lactulose and epilactose are nondigestible disaccharides with a wide range of applications in clinical medicine, nutrition, and the food industry due to their health-benefiting properties. Their chemical synthesis typically involves stringent catalytic conditions and intricate reaction procedures, resulting in elevated production costs and challenges in product separation. Cellobiose 2-epimerases (CEs) facilitate the isomerization and epimerization of lactose to produce lactulose and epilactose directly, without the need for co-substrates. This enzymatic process offers advantages such as mild reaction conditions, straightforward operation, high conversion efficiency, and reduced by-product formation. Recently, numerous CE genes have been identified and characterized, with their enzymatic properties undergoing extensive analysis. This review consolidates information on the properties of CEs from various sources and examines their catalytic mechanisms based on crystal structure data. Additionally, the current research progress in the enzymatic synthesis of lactulose and epilactose is comprehensively reviewed. The future direction of CE research is discussed, highlighting the potential for large-scale production of lactulose and epilactose through environmentally sustainable enzymatic methods.
Collapse
Affiliation(s)
- Bo Pang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jiahao Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Manxi Song
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Wenxin Zhang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Shiqi Qian
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Mingfang Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Xia Chen
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yujun Huang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Ruixia Gu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Kai Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China; Key Lab of Dairy Biotechnology and Safety Control, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| |
Collapse
|
3
|
Xiong S, Huang Z, Ding J, Ni D, Mu W. Improvement of cellobiose 2-epimerase expression in Bacillus subtilis for efficient bioconversion of lactose to epilactose. Int J Biol Macromol 2024; 280:136063. [PMID: 39341311 DOI: 10.1016/j.ijbiomac.2024.136063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Epilactose, a lactose derivative known for its prebiotic properties and potential health benefits, has garnered significant interest. Cellulose 2-epimerase (CEase) is responsible for catalyzing the conversion of lactose to epilactose. In this study, the enhancement of food-grade CEase expression in Bacillus subtilis WB600 was systematically investigated. Among seven selected epilactose-producing CEases, Rhodothermus marinus CEase (RmCE) exhibited the highest epimerization activity when expressed in B. subtilis. Translational and transcriptional regulations were employed to enhance CEase expression by screening effective N-terminal coding sequences (NCSs) and promoters. The final strain demonstrated efficient production of CEase, with epimerization activity reaching 273.6 ± 6.5 U/mL and 1255 ± 26.4 U/mL in shake-flask and fed-batch cultivation, respectively. Utilizing only 0.25 % (V/V) of the fed-batch cultivation broth for lactose biotransformation, epilactose was efficiently produced from 300 g/L of lactose within 4 h, achieving a yield of 29.5 %. These findings provide significant support for the potential industrialization of enzymatic epilactose production.
Collapse
Affiliation(s)
- Suchun Xiong
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junmei Ding
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China.
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
4
|
Thanavanich C, Phuangsaijai N, Thiraphatchotiphum C, Theanjumpol P, Kittiwachana S. Instant quantification of sugars in milk tablets using near-infrared spectroscopy and chemometric tools. Sci Rep 2022; 12:18802. [PMID: 36335160 PMCID: PMC9637167 DOI: 10.1038/s41598-022-23537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Milk tablets are a popular dairy product in many Asian countries. This research aimed to develop an instant and rapid method for determining sucrose and lactose contents in milk tablets using near-infrared (NIR) spectroscopy. For the quantitative analysis, a training set composed of laboratory-scale milk samples was generated based on a central composite design (CCD) and used to establish partial least squares (PLS) regression for the predictions of sucrose and lactose contents resulting in R2 values of 0.9749 and 0.9987 with the corresponding root mean square error of calibration (RMSEC) values of 1.69 and 0.35. However, the physical difference between the laboratory-scale powder and the final product milk tablet samples resulted in spectral deviations that dramatically affected the predictive performance of the PLS models. Therefore, calibration transfer methods called direct standardization (DS) and piecewise direct standardization (PDS) were used to adjust the NIR spectra from the real milk tablet samples before the quantitative prediction. Using high-performance liquid chromatography (HPLC) as a reference method, the developed NIR-chemometric model could be used to instantly predict the sugar contents in real milk tablets by producing root mean square error of prediction (RMSEP) values for sucrose and lactose of 5.04 and 4.22 with Q2 values of 0.7973 and 0.9411, respectively, after the PDS transformation.
Collapse
Affiliation(s)
- Chanat Thanavanich
- grid.7132.70000 0000 9039 7662Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nutthatida Phuangsaijai
- grid.7132.70000 0000 9039 7662Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chanidapha Thiraphatchotiphum
- grid.7132.70000 0000 9039 7662Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Parichat Theanjumpol
- grid.7132.70000 0000 9039 7662Postharvest Technology Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand ,Postharvest Technology Innovation Center, Ministry of Higher Education, Science, Research and Innovation, Bangkok, 10400 Thailand
| | - Sila Kittiwachana
- grid.7132.70000 0000 9039 7662Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| |
Collapse
|
5
|
|
6
|
Furosine as marker of quality in dried durum wheat pasta: Impact of heat treatment on food quality and security – A review. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Volk V, Graw N, Stressler T, Fischer L. An indirect ELISA system for the detection of heat-stable Pseudomonas endopeptidases (AprX) in milk. J Dairy Sci 2021; 104:5185-5196. [PMID: 33663848 DOI: 10.3168/jds.2020-19790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/30/2020] [Indexed: 11/19/2022]
Abstract
Heat-stable endopeptidases in raw milk, especially the alkaline metallopeptidase AprX secreted by Pseudomonas spp., are a well-known challenge for the dairy industry. They can withstand UHT treatment and may cause quality defects over the shelf life of milk products. Therefore, we established an indirect ELISA for the detection of Pseudomonas AprX in milk. We developed a 2-step sample treatment for milk contaminated with AprX to avoid the interference of milk proteins with the detection system. First, casein micelles were destabilized by the detraction of Ca2+ using trisodium citrate; then, AprX was concentrated 10-fold using hydrophobic interaction chromatography. The recovery of AprX in spiked milk samples after the 2-step treatment was 43 ± 0.1%. Specific antibodies for purified AprX from Pseudomonas lactis were produced to establish the ELISA. Western blot experiments showed that the binding affinity of these antibodies depended on the sequence homology of the AprX from P. lactis and several other Pseudomonas spp. The indirect ELISA, which was completed in 6 to 7 h, had a limit of detection of 21.0 ng mL-1 and a limit of quantification of 25.7 ng mL-1. Milk proteins or milk endogenous peptidases were not detected by the antibodies. The ELISA had high precision, with a CV between 0.2 and 0.8% measured on the same day (intraday) and 5.6 and 6.8% measured on 5 separate days (interday). Milk samples were spiked with different AprX activity levels [7.5-150 nkat Na-caseinate/o-phthalaldehyde (OPA) mL-1] and evaluated by ELISA. The recovery of the ELISA was 92.3 ± 1.6 to 105 ± 4.7%. The lowest AprX activity quantifiable in the spiked milk samples was 500 pkat Na-caseinate/OPA mL-1. The proof of concept to detect heat-stable Pseudomonas AprX in milk by ELISA was established.
Collapse
Affiliation(s)
- Veronika Volk
- Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 25, 70599 Stuttgart, Germany
| | - Nicole Graw
- Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 25, 70599 Stuttgart, Germany
| | - Timo Stressler
- Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 25, 70599 Stuttgart, Germany
| | - Lutz Fischer
- Department of Biotechnology and Enzyme Science, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 25, 70599 Stuttgart, Germany.
| |
Collapse
|
8
|
Pazourek J. Rapid HPLC method for monitoring of lactulose production with a high yield. Carbohydr Res 2019; 484:107773. [PMID: 31404813 DOI: 10.1016/j.carres.2019.107773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/25/2019] [Accepted: 08/05/2019] [Indexed: 01/19/2023]
Abstract
An HPLC method suitable for rapid monitoring of lactulose production by isomerization from lactose was developed. The separation of lactose and lactulose under hydrophilic interaction liquid chromatography (HILIC) mode was achieved with resolution 1.5 within 5 min. Since isocratic elution was used, there is no extra time necessary for the column equilibration. Application of the method was illustrated on monitoring lactulose isomerization with catalysis of sodium hydroxide in the presence of sodium tetraborate at 70 °C (pH = 11). The conversion yield obtained for lactulose was 86%, and corresponding purity 76%. For the first time, a polyhydroxy stationary phase for separation of lactose and lactulose is reported.
Collapse
Affiliation(s)
- Jiří Pazourek
- Department of Chemical Drugs, University of Veterinary and Pharmaceutical Sciences, Palackého 1946/1, CZ-612 42, Brno, Czech Republic.
| |
Collapse
|
9
|
Lactulose determination in UHT milk by CZE-UV with indirect detection. Food Chem 2018; 258:337-342. [DOI: 10.1016/j.foodchem.2018.03.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 12/06/2017] [Accepted: 03/17/2018] [Indexed: 01/08/2023]
|
10
|
Marrubini G, Appelblad P, Maietta M, Papetti A. Hydrophilic interaction chromatography in food matrices analysis: An updated review. Food Chem 2018; 257:53-66. [PMID: 29622230 DOI: 10.1016/j.foodchem.2018.03.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 01/27/2023]
Abstract
This review focuses on the most recent papers (from 2011 to submission date in 2017) dealing with the analysis of different organic components in foods (i.e. nucleobases, nucleosides, nucleotides, uric acid, and creatinine, amino acids and related compounds, choline-related compounds and phospholipids, carbohydrates, artificial sweeteners and polyphenolic compounds), using hydrophilic interaction liquid chromatography (HILIC) combined with different detection techniques. For each compound class, the investigated food matrices are grouped per: foods of animal origin, vegetables, fruits and related products, baby food, and other matrices such as drinks and mushrooms/fungi. Furthermore, the main advantages of HILIC chromatography respect to the other commonly used techniques are discussed.
Collapse
Affiliation(s)
- Giorgio Marrubini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | | | - Mariarosa Maietta
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Adele Papetti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
11
|
Colorimetric sensor array–smartphone–remote server coupling system for rapid detection of saccharides in beverages. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1306-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Pokrzywnicka M, Koncki R. Disaccharides Determination: A Review of Analytical Methods. Crit Rev Anal Chem 2017; 48:186-213. [DOI: 10.1080/10408347.2017.1391683] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Robert Koncki
- Department of Chemistry, University of Warsaw, Warsaw, Poland
| |
Collapse
|
13
|
Schievano E, Tonoli M, Rastrelli F. NMR Quantification of Carbohydrates in Complex Mixtures. A Challenge on Honey. Anal Chem 2017; 89:13405-13414. [DOI: 10.1021/acs.analchem.7b03656] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Elisabetta Schievano
- Dipartimento di Scienze Chimiche, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Marco Tonoli
- Dipartimento di Scienze Chimiche, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Federico Rastrelli
- Dipartimento di Scienze Chimiche, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
14
|
Kuschel B, Riemer F, Pfost D, Conrad J, Losch C, Claaßen W, Beifuß U, Weiss J, Mu W, Jiang B, Stressler T, Fischer L. Large-scale purification of epilactose using a semi-preparative HPLC system. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2752-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|