1
|
Norouzi H, Dastan D, Abdullah FO, Al-Qaaneh AM. Recent advances in methods of extraction, pre-concentration, purification, identification, and quantification of kaempferol. J Chromatogr A 2024; 1735:465297. [PMID: 39243588 DOI: 10.1016/j.chroma.2024.465297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
As a naturally widely-occurring dietary, cosmetic, and therapeutic flavonoid, kaempferol has gained much consideration for its nutritional and pharmaceutical properties in recent years. Although there have been performed a high number of studies associated with different aspects of kaempferol's analytical investigations, the lack of a comprehensive summary of the various methods and other plant sources that have been reported for this compound is being felt, especially for many biological applications. This study, aimed to provide a detailed compilation consisting of sources (plant species) and analytical information that was precisely related to the natural flavonoid (kaempferol). There is a trend in analytical research that supports the application of modern eco-friendly instruments and methods. In conclusion, ultrasound-assisted extraction (UAE) is the most general advanced method used widely today for the extraction of kaempferol. During recent years, there is an increasing tendency towards the identification of kaempferol by different methods.
Collapse
Affiliation(s)
- Hooman Norouzi
- Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Dara Dastan
- Department of Pharmacognosy, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Fuad O Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq; Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq.
| | - Ayman M Al-Qaaneh
- Department of Allied Health Sciences, Al-Balqa Applied University (BAU), Al-Salt 19117 Jordan
| |
Collapse
|
2
|
Ma M, Lu X, Wang L, Guo Y, Ding H, Wang S, Liang X. A stable core-shell metal-organic framework@covalent organic framework composite as solid-phase extraction adsorbent for selective enrichment and determination of flavonoids. J Chromatogr A 2023; 1707:464324. [PMID: 37634259 DOI: 10.1016/j.chroma.2023.464324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Hydrophobization and stability is crucial for the practical application of most metal-organic frameworks (MOFs) in extraction technique. In this study, a stable core-shell MOF@COF composite (NH2-MIL-101(Fe)@TAPB-FPBA-COF) was successfully prepared by Schiff base reaction and applied to solid-phase extraction (SPE) of hydrophobic flavonoids. Notably, the TAPB-FPBA-COF shell acts as a hydrophobic "shield", which not only improves the hydrophobicity and stability of hydrophilic NH2-MIL-101(Fe), but also makes the extraction efficiency of flavonoids from MOF@COF composite significantly higher than that of pure NH2-MIL-101(Fe) and TAPB-FPBA-COF. In addition, a sensitive analytical method with excellent linearities (0.1-500 ng mL-1, R2 ≥ 0.9967), low limits of detection (0.02-0.04 ng mL-1 for water; 0.04-0.07 ng mL-1 for grape juice; 0.06-0.08 ng mL-1 for honey), good repeatability (intra-day/inter-day precision are 1.86-5.37%/1.82-7.79%, respectively) and only 5 mg of adsorbent per cartridge was established by optimizing the SPE process combined with high performance liquid chromatography with ultraviolet-visible detector (HPLC-UV). Meanwhile, selectivity study and comparative experiments with the commercial C18 adsorbent showed that the MOF@COF adsorbent exhibited satisfactory extraction efficiency for flavonoids due to multiple interactions such as hydrogen bonding, hydrophobic, and π-π interactions. Finally, the good recoveries in grape juice (84.5-102.5%) and honey (87.5-104.6%) samples further validated the applicability of the proposed method in complex samples.
Collapse
Affiliation(s)
- Mingcai Ma
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofeng Lu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Licheng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yong Guo
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hui Ding
- Key Laboratory of Pesticide and Veterinary Drug Monitoring for State Market Regulation, Lanzhou Institute for Food and Drug Control, Lanzhou 730050, China
| | - Shuai Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Xiaojing Liang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
3
|
One-step fabrication of hydrophobic metal-organic framework@covalent organic framework hybrid as sorbent for high-performance solid-phase extraction of flavonoids. J Chromatogr A 2023; 1691:463814. [PMID: 36702034 DOI: 10.1016/j.chroma.2023.463814] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
Metal-organic framework (MOF) and covalent organic framework (COF) exhibit excellent extraction performance in sample pretreatment, but their wider application is hindered by some inherent drawbacks. Herein, we successfully synthesized a novel MOF@COF hybrid material with large specific surface area, good chemical stability and reusability, which is suitable as a solid phase extraction (SPE) sorbent for the efficient extraction of flavonoids. Importantly, due to the synergistic effect, the obtained MOF@COF hybrid material showing a higher extraction efficiency than individual MOF and COF. This is mainly due to the obtained MOF@COF hybrid material combines the high specific surface area of MOF and multiple interactions (hydrophobic interaction, hydrogen bonding and π-π stacking interaction) with flavonoids conferred by the COF structure. Then, a sensitive analytical method for flavonoids with ideal linear range (1-500 ng mL-1), low detection limit (0.15-0.41 ng mL-1) and good repeatability (2.64-6.20%) was developed under optimized conditions. In addition, the MOF@COF hybrid sorbent has better selectivity for hydrophobic targets containing multiple hydrogen bond acceptors/donors. Finally, the established method was applied to the determination of flavonoids in different food samples, and satisfactory recoveries (81.4-102.1%) were obtained, which initially confirmed its applicability.
Collapse
|
4
|
Sanches VL, Cunha TA, Viganó J, de Souza Mesquita LM, Faccioli LH, Breitkreitz MC, Rostagno MA. Comprehensive analysis of phenolics compounds in citrus fruits peels by UPLC-PDA and UPLC-Q/TOF MS using a fused-core column. Food Chem X 2022; 14:100262. [PMID: 35243328 PMCID: PMC8867044 DOI: 10.1016/j.fochx.2022.100262] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022] Open
Abstract
In this work, a method based on ultra-high-performance liquid chromatography with a photodiode array detector (UPLC-PDA) was developed to comprehensively analyze phenolic compounds in peels of lime (Citrus × latifolia), lemon (Citrus limon), and rangpur lime (Citrus × limonia). The reverse-phase separation was achieved with a C18 fused-core column packed with the smallest particles commercially available (1.3 um). The method was successfully coupled with high-resolution mass spectrometry (HRMS), allowing the detection of 24 phenolic compounds and five limonoids in several other citrus peels species: key lime, orange and sweet orange, tangerine, and tangerine ponkan, proving the suitability for comprehensive analysis in citrus peel matrices. Additionally, the developed method was validated according to the Food and drug administration (FDA) and National Institute of Metrology Quality and Technology (INMETRO) criteria, demonstrating specificity, linearity, accuracy, and precision according to these guidelines. System suitability parameters such as resolution, tailoring, plate count were also verified.
Collapse
Affiliation(s)
- Vitor L. Sanches
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria, 1300, 12383-250 Limeira, SP, Brazil
| | - Tanize A. Cunha
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil
| | - Juliane Viganó
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria, 1300, 12383-250 Limeira, SP, Brazil
| | - Leonardo M. de Souza Mesquita
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria, 1300, 12383-250 Limeira, SP, Brazil
| | - Lúcia Helena Faccioli
- Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP 14040-903, Brazil
| | - Marcia Cristina Breitkreitz
- Laboratory of Pharmaceutial Research and Chemometrics (LabFarQui), Institute of Chemistry, University of Campinas (UNICAMP), Rua Josué de Castro s/n, 13083-970, Campinas, São Paulo, Brazil
| | - Maurício A. Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Rua Pedro Zaccaria, 1300, 12383-250 Limeira, SP, Brazil
| |
Collapse
|
5
|
Sun M, Han S, Feng J, Li C, Ji X, Feng J, Sun H. Recent Advances of Triazine-Based Materials for Adsorbent Based Extraction Techniques. Top Curr Chem (Cham) 2021; 379:24. [PMID: 33945059 DOI: 10.1007/s41061-021-00336-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
This review mainly focused on the synthesis and properties of triazine-based materials as well as the state-of-the-art development of these materials in adsorption-based extraction techniques in the past 5 years, such as solid-phase extraction, magnetic solid-phase extraction, solid-phase microextraction and stir bar sorptive extraction, and the detection of various pollutants, including metal ions, drugs, estrogens, nitroaromatics, pesticides, phenols, polycyclic aromatic hydrocarbons and parabens. In the triazine-functionalized composites, triazine-based polymers and covalent triazine frameworks have been developed as the adsorbents with potential for environmental pollutants, mainly relying on the large surface area and the affinity of triazinyl groups with the targets. Triazine-based adsorbents have satisfactory sensitivity and selectivity towards different types of analytes, attributed from various mechanisms including π-π, electrostatics, hydrogen bonds, and hydrophobic and hydrophilic effects. The prospects of the materials for adsorption-based extraction were also presented, which can offer an outlook for the further development and applications.
Collapse
Affiliation(s)
- Min Sun
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Sen Han
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Chunying Li
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xiangping Ji
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Jiaqing Feng
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Haili Sun
- Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| |
Collapse
|
6
|
Abstract
Plants, through the photosynthesis process, produce the substances necessary for all the life cycles of nature, which are called "primary metabolites." Moreover, there are some plants that synthesize, in addition to these, other substances with more specific functions, which are known as "secondary metabolites." It is inside this group that flavonoids are located, whose main function is to protect organisms from damage caused by different oxidizing agents. Luteolin (3,4,5,7-tetrahydroxy-flavone) belongs to the sub-class of flavonoids known as flavones and is one of 10,000 flavonoids currently known, being one of the most bio-active flavonoids. Its various beneficial properties for health, together with the increasing reduction in the use of synthetic antioxidants, make the study of luteolin a very active field. Within this, the quantification of this molecule has become a subject of very special interest given that it is transversal to all fields. In this review article, we aim to give the reader a broad and deep vision of this topic, focusing on the events reported in the last 5 years and covering all possible techniques related to analytical determinations. We will discuss in terms of advantages and disadvantages between techniques, selectivity, sensitivity, costs, time consumption, and reagents as well as in the complexity of operations.
Collapse
Affiliation(s)
- Alvaro Y Tesio
- Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy (CIDMEJu), Centro de Desarrollo Tecnológico General Savio, Palpalá, Jujuy, Argentina
| | - Sebastian N Robledo
- Departamento de Tecnología Química, Grupo GEANA, Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
| |
Collapse
|
7
|
Bian Y, Zhang Y, Zhou Y, Li GH, Feng XS. Progress in the Pretreatment and Analysis of Flavonoids: An Update since 2013. SEPARATION & PURIFICATION REVIEWS 2020. [DOI: 10.1080/15422119.2020.1801469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yu Bian
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo-Hui Li
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
8
|
Chen Q, Wang D, Tan C, Hu Y, Sundararajan B, Zhou Z. Profiling of Flavonoid and Antioxidant Activity of Fruit Tissues from 27 Chinese Local Citrus Cultivars. PLANTS (BASEL, SWITZERLAND) 2020; 9:E196. [PMID: 32033423 PMCID: PMC7076682 DOI: 10.3390/plants9020196] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
Flavonoid profile and antioxidant activity of citrus peels, pulps, and juices from 27 local citrus cultivars in China were investigated. Flavonoid composition and content were determined using UPLC-PDA. Total phenolic content (TPC) and total flavonoid content (TFC) were measured using a Folin-Ciocalteau reagent and Al(NO3)-NaNO2 complexometry, respectively. The antioxidant capacities of the extracts were evaluated by DPPH, ABTS and FRAP method, respectively. Citrus peel not only exhibited better antioxidant potential, but also presented more composition diversity and contained higher concentrations of flavonoids than pulp and juice. Different citrus species were characterized by their individual predominant flavonoids, contributing largely to the antioxidant activity, such as mandarin was characterized by hesperidin, nobiletin and tangeretin, while pummelo and papeda were characterized by naringin. The peel of Guihuadinanfeng (Citrus reticulata) had the highest TPC of 23.46 mg equivalent gallic acid/g DW (dry weight) and TFC of 21.37 mg equivalent rutin/g DW. Shiyueju (C. reticulata) peel showed the highest antioxidant capacity based on the antioxidant potency composite (APC) analysis. Overall, mandarin (C. reticulata) fruits peel contained more TPC and TFC, exhibiting higher antioxidant capacities than other species, and were good natural sources of flavonoids and antioxidants.
Collapse
Affiliation(s)
- Qiyang Chen
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Q.C.); (D.W.); (C.T.); (Y.H.); (B.S.)
| | - Dan Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Q.C.); (D.W.); (C.T.); (Y.H.); (B.S.)
| | - Chun Tan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Q.C.); (D.W.); (C.T.); (Y.H.); (B.S.)
| | - Yan Hu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Q.C.); (D.W.); (C.T.); (Y.H.); (B.S.)
| | - Balasubramani Sundararajan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Q.C.); (D.W.); (C.T.); (Y.H.); (B.S.)
| | - Zhiqin Zhou
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China; (Q.C.); (D.W.); (C.T.); (Y.H.); (B.S.)
- The Southwest Institute of Fruits Nutrition, Liang jiang New District, Chongqing 401121, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
9
|
Fabrication of N,N-dimethyldodecylamine functionalized magnetic adsorbent for efficient enrichment of flavonoids. Talanta 2019; 194:771-777. [DOI: 10.1016/j.talanta.2018.10.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 12/16/2022]
|
10
|
Poly(calixarene ionic liquid) modified Fe3O4 nanoparticles as new sorbent for extraction of flavonoids in fruit juice and green tea. Microchem J 2018. [DOI: 10.1016/j.microc.2018.07.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Lin B, Li S, Fang L, Zhu M, Xiong C. Synthesis and Characterization of Amino-Terminated Chloration Modified Peanut Shell and Its Application to Preconcentrate and Detect the Concentration of Sunset Yellow in Drink and Jelly Samples. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1175-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Hu K, Qiao Y, Deng Z, Wu M, Liu W. SPE-UHPLC-FLD Method for the Simultaneous Determination of Five Anthraquinones in Human Urine Using Mixed-Mode Bis(tetraoxacalix[2]arene[2]triazine) Modified Silica as Sorbent. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:1963908. [PMID: 29093981 PMCID: PMC5637848 DOI: 10.1155/2017/1963908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/13/2017] [Accepted: 08/20/2017] [Indexed: 05/06/2023]
Abstract
The five anthraquinones compounds (including aloe-emodin, emodin, physcion, chrysophanol, and rhein) are regarded as the main effective ingredients in rhubarb (Dahuang in Chinese, one of the commonly used Chinese herbal medicines). In this work, a simple and effective solid phase extraction (SPE) method based on bis(tetraoxacalix[2]arene[2]triazine) modified silica gel as adsorbent was developed. Coupled with UHPLC-FLD, the developed method was successfully applied for the measuring of main anthraquinones in human urine after oral administration of the extracts of rhubarb. To obtain the highest recoveries of the five anthraquinones in the SPE process, the main parameters which may affect extraction efficiency were optimized. The optimized sorbent amount, sample loading pH, sample loading rate, washing solution, and eluent condition were obtained. The developed method showed good linearity in 0.012-1.800 μg mL-1 for the five anthraquinones with correlation coefficients more than 0.9993. The investigated LOD values ranged from 3.9 to 5.7 ng mL-1, while the LOQs were between 12.0 and 18.2 ng mL-1. The recoveries of the method were also investigated, which were in the range of 94.8-106.6%. The application of the mixed-mode SPE materials in the proposed method was feasible and simple, and suitable for the enrichment of anthraquinones in urine samples.
Collapse
Affiliation(s)
- Kai Hu
- Henan University of Chinese Medicine, Zhengzhou 450008, China
| | - Yonghui Qiao
- Henan University of Chinese Medicine, Zhengzhou 450008, China
| | - Zhifen Deng
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, China
| | - Mingxia Wu
- Henan University of Chinese Medicine, Zhengzhou 450008, China
| | - Wei Liu
- Henan University of Chinese Medicine, Zhengzhou 450008, China
| |
Collapse
|