1
|
Yamamoto R, Ishikawa K, Miyoshi Y, Furuta K, Miyoshi SI, Kaito C. Overexpression of diglucosyldiacylglycerol synthase leads to daptomycin resistance in Bacillus subtilis. J Bacteriol 2024; 206:e0030724. [PMID: 39235960 PMCID: PMC11500525 DOI: 10.1128/jb.00307-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
The lipopeptide antibiotic daptomycin exhibits bactericidal activity against Gram-positive bacteria by forming a complex with phosphatidylglycerol (PG) and lipid II in the cell membrane, causing membrane perforation. With the emergence of daptomycin-resistant bacteria, understanding the mechanisms of bacterial resistance to daptomycin has gained great importance. In this study, we aimed to identify the genetic factors contributing to daptomycin resistance in Bacillus subtilis, a model Gram-positive bacterium. Our findings demonstrated that overexpression of ugtP, which encodes diglucosyldiacylglycerol synthase, induces daptomycin resistance in B. subtilis. Specifically, overexpression of ugtP resulted in increased levels of diglucosyldiacylglycerol (Glc2DAG) and decreased levels of acidic phospholipids cardiolipin and PG, as well as the basic phospholipid lysylphosphatidylglycerol. However, ugtP overexpression did not alter the cell surface charge and the susceptibility to the cationic antimicrobial peptide nisin or the cationic surfactant hexadecyltrimethylammonium bromide. Furthermore, by serial passaging in the presence of daptomycin, we obtained daptomycin-resistant mutants carrying ugtP mutations. These mutants showed increased levels of Glc2DAG and a >4-fold increase in the minimum inhibitory concentration of daptomycin. These results suggest that increased Glc2DAG levels, driven by ugtP overexpression, modify the phospholipid composition and confer daptomycin resistance in B. subtilis without altering the cell surface charge of the bacteria.IMPORTANCEDaptomycin is one of the last-resort drugs for the treatment of methicillin-resistant Staphylococcus aureus infections, and the emergence of daptomycin-resistant bacteria has become a major concern. Understanding the mechanism of daptomycin resistance is important for establishing clinical countermeasures against daptomycin-resistant bacteria. In the present study, we found that overexpression of ugtP, which encodes diglucosyldiacylglycerol synthase, induces daptomycin resistance in B. subtilis, a model Gram-positive bacteria. The overexpression of UgtP increased diglucosyldiacylglycerol levels, resulting in altered phospholipid composition and daptomycin resistance. These findings are important for establishing clinical strategies against daptomycin-resistant bacteria, including their detection and management.
Collapse
Affiliation(s)
- Ryogo Yamamoto
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuya Ishikawa
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yusuke Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuyuki Furuta
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Research Center for Intestinal Health Science, Okayama University, Okayama, Japan
| | - Chikara Kaito
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
2
|
Diao X, Sun W, Jia R, Wang Y, Liu D, Guan H. Preparation and characterization of diacylglycerol via ultrasound-assisted enzyme-catalyzed transesterification of lard with glycerol monolaurate. ULTRASONICS SONOCHEMISTRY 2023; 95:106354. [PMID: 36898248 PMCID: PMC10020118 DOI: 10.1016/j.ultsonch.2023.106354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The study aimed to evaluate the effect of ultrasonic pretreatment on the transesterification of lard with glycerol monolaurate (GML) using Lipozyme TL IM to synthesize diacylglycerol (DAG), and the physicochemical properties of lard, GML, ultrasonic-treated diacylglycerol (named U-DAG), purified ultrasonic-treated diacylglycerol obtained by molecular distillation (named P-U-DAG), and without ultrasonic-treated diacylglycerol (named N-U-DAG) were analyzed. The optimized ultrasonic pretreatment conditions were: lard to GML mole ratio 3:1, enzyme dosage 6 %, ultrasonic temperature 80 °C, time 9 min, power 315 W. After ultrasonic pretreatment, the mixtures reacted for 4 h in a water bath at 60 °C, the content of DAG reached 40.59 %. No significant variations were observed between U-DAG and N-U-DAG in fatty acids compositions and iodine value, while P-U-DAG had lower unsaturated fatty acids than U-DAG. Differential scanning calorimetry analysis showed that the melting and crystallization properties of DAGs prepared by ultrasonic pretreatment significantly differed from lard. FTIR spectra noted transesterification reaction from lard and GML with and without ultrasonic pretreatment would not change the structure of lard. However, thermogravimetric analysis proved that N-U-DAG, U-DAG, and P-U-DAG had lower oxidation stability than lard. The higher the content of DAG, the faster the oxidation speed.
Collapse
Affiliation(s)
- Xiaoqin Diao
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Weiting Sun
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Ruixin Jia
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Ying Wang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Haining Guan
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
3
|
Surface-enhanced Raman spectroscopy tandem with derivatized thin-layer chromatography for ultra-sensitive on-site detection of histamine from fish. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Establishment of the thin-layer chromatography-surface-enhanced Raman spectroscopy and chemometrics method for simultaneous identification of eleven illegal drugs in anti-rheumatic health food. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
5
|
Krut UA, Myasoedova NM, Shaidorova GM, Radchenko AI, Kuzubova EV. Testing for the ability to modify antibiotics of Panus tigrinus 8/18 Lentinus strigosus 1566 laccase. BRAZ J BIOL 2022; 84:e257071. [PMID: 35239791 DOI: 10.1590/1519-6984.257071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/16/2021] [Indexed: 11/21/2022] Open
Abstract
In advanced biotechnology, the utilization of enzymes to achieve new or modified compounds with antibacterial, fungicidal, and anti-cancer specifications is crucial. Mushroom lactases are a hopeful biocatalyst for the synthesis and modification of different compounds. They are an accessible and inexpensive enzyme for the preparation of reaction objects and have recently received attention. Laccase purification was performed from basidiomycete Lentinus strigosus (LS) in several stages: Stage 1. On ion-exchange chromatography on TEAE Servacell 23 (400 ml), two distinctly separated laccase activity peaks were observed, eluted from the carrier at 0.21 and 0.27 M NaCl. In order to reduce the loss of enzymes, all fractions with laccase activity were collected, concentrated, and desalted using an ultrafiltration cell (Amicon, United States) with a UM-10 membrane. Stage 2. The resulting preparation with laccase activity was applied to a Q-Sepharose column (60 ml). Two well-separated peaks with laccase activity were obtained during the elution: laccase I (0.12 M NaCl) and laccase II (0.2 M NaCl). Stage 3. In the course of further purification of both enzymes, carried out on anion-exchange carrier Resource Q (6 ml), a broken gradient was used: 0 - 10%, 10 - 20%, and 20 - 100% with 1M NaCl. Stage 4. Both laccase I and laccase II, obtained after Resource Q, were desalted, concentrated to 1 ml each, and applied to a Superdex 75 gel filtration column. As a result, two laccases were obtained in a homogeneous form.
Collapse
Affiliation(s)
- U A Krut
- Belgorod State University, Belgorod, Russia
| | - N M Myasoedova
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino, Russia
| | | | | | | |
Collapse
|
6
|
Rosales-Solano H, Galievsky V, Murtada K, Radovanovic PV, Pawliszyn J. Profiling of Unsaturated Lipids by Raman Spectroscopy Directly on Solid-Phase Microextraction Probes. Anal Chem 2021; 94:606-611. [PMID: 34935349 DOI: 10.1021/acs.analchem.1c04054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lipids play a critical role in cellular signaling, energy storage, and the construction of cellular membranes. In this paper, we propose a novel on-site approach for detecting and differentiating enriched unsaturated lipids based on the direct coupling of SPME probes with Raman spectroscopy. To this end, different SPME particles, namely, hydrophilic-lipophilic balanced (HLB), mixed-mode (C8-SCX), and C18, were embedded in polyacrylonitrile (PAN) and tested for their efficacy as biocompatible coatings. The C18/PAN coating showed less background interference compared to the other sorbent materials during the analysis of unsaturated lipids. In addition, different SPME parameters that influence extraction efficiency, such as extraction temperature, extraction time, and washing solvent, were also investigated. Our results indicate a clear dependence between the Raman band intensity related to the number of double bonds in fatty acids mixture and the number of double bonds in a fatty acid. Our findings further show that Raman spectroscopy is especially useful for the analysis of lipid unsaturation, which is calculated as the ratio of n(C═C)/n(CH2) using the intensities of the Raman bands at 1655/1445 cm-1. Furthermore, the developed protocol reveals great SPME activity and high detection ability for several unsaturated lipids in different complex matrixes, such as cod liver oil. Finally, the applicability of this technology was demonstrated via the characterization of cod liver oil and other vegetable oils. Thus, the proposed SPME-Raman spectroscopy approach has a great future potential in food, environmental, clinical, and biological applications.
Collapse
Affiliation(s)
| | - Victor Galievsky
- Department of Chemistry, University of Waterloo, N2L 3G1 Waterloo, Ontario, Canada
| | - Khaled Murtada
- Department of Chemistry, University of Waterloo, N2L 3G1 Waterloo, Ontario, Canada
| | - Pavle V Radovanovic
- Department of Chemistry, University of Waterloo, N2L 3G1 Waterloo, Ontario, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, N2L 3G1 Waterloo, Ontario, Canada
| |
Collapse
|
7
|
Wen Y, Zhou S, Wang L, Li Q, Gao Y, Yu X. New Method for the Determination of the Induction Period of Walnut Oil by Fourier Transform Infrared Spectroscopy. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Chen Y, Chen Q, Wei X. Separable surface enhanced Raman spectroscopy sensor platformed by HPTLC for facile screening of malachite green in fish. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Singh RS, Singh T, Singh D, Kennedy JF. HPTLC-densitometry quantification of fructooligosaccharides from inulin hydrolysate. Int J Biol Macromol 2021; 177:221-228. [PMID: 33609578 DOI: 10.1016/j.ijbiomac.2021.02.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
The objective of present research was to develop an easy, precise and accurate HPTLC densitometry method for quantification of fructooligosaccharides (FOSs) from inulin hydrolysate. The chromatographic separation of FOSs was performed on pre-coated silica gel (60, F254) TLC plates using a mobile phase (butanol:ethanol:water, 60:24:16), and densitometry evaluation of FOSs was performed at A500. Both kestose and nystose were successfully resolved with Rf value of 0.43 and 0.34, respectively. The accuracy, reliability and reproducibility of developed method was assessed by percent relative standard deviation of kestose and nystose for instrument precision (1.43% and 1.50%), repeatability (1.48% and 1.56%), intra-day precision (1.60% and 1.63%), inter-day precision (1.62% and 1.66%), limit of detection (4.58 ng/spot and 4.58 ng/spot), limit of quantification (13.87 ng/spot and 13.89 ng/spot) and recovery (98.81% and 98.69%). Moreover, overlapping spectra of test sample with standard confirms the specificity of developed method, which was validated as per ICH guidelines.
Collapse
Affiliation(s)
- R S Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India.
| | - Taranjeet Singh
- Carbohydrate and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala 147 002, Punjab, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147 002, India
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, 5 The Croft, Buntsford Drive, Stoke Heath, Bromsgrove, Worcs B60 4JE, UK
| |
Collapse
|
10
|
HPTLC-Densitometry Screening and Mass Identification of Fluorescent Whitening Agents Contamination in Cereal Flour. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-020-01935-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Uncu O, Ozen B. Importance of some minor compounds in olive oil authenticity and quality. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Chen Y, Huang C, Jin Z, Xu X, Cai Y, Bai Y. HPTLC-bioautography/SERS screening nifedipine adulteration in food supplement based on Ginkgo biloba. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104647] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
A new HPTLC platformed luminescent biosensor system for facile screening of captan residue in fruits. Food Chem 2020; 309:125691. [PMID: 31679853 DOI: 10.1016/j.foodchem.2019.125691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 11/22/2022]
Abstract
This study presented a HPTLC platformed luminescent biosensor system for screening captan residue. First, the potential bio-effects of layers materials on the detectability of a luminescent bacteria Photobacterium phosphoreum (ATCC 11040) as the sensor cell were assessed. From comparison, it was noteworthy that the combination of sensor cells with normal silica gel layer exclusively gave outstanding detectability (<10 ng/zone). On this basis, HPTLC mediated separation and biosensing was further optimized. Then, the obtained graphic results were digitally quantified via software processing, offering satisfactory selectivity, linearity (R2 = 0.9901 within 10-80 ng/zone) and sensitivity (0.5 mg/kg against MRLs ≥ 6 mg/kg). Additionally, the performance of the established method was validated with different fruits (recover rates 75-96%, RSD < 11.8%). Meanwhile, it was demonstrated that detectability of this hybrid system would be tuneable by altering the combination of bacteria strains and layer materials, which was meaningful to strengthen the usability of microbial biosensors.
Collapse
|
14
|
HPTLC-Densitometry Determination of Riboflavin Fortified in Rice Noodle: Confirmed by SERS-Fingerprint. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01694-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
New Method for the Discrimination of Adulterated Flaxseed Oil Using Dielectric Spectroscopy. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01620-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
16
|
Hu K, Huyan Z, Geng Q, Yu X. Rapid Determination of Acid Value of Edible Oils via FTIR Spectroscopy Using Infrared Quartz Cuvette. J Oleo Sci 2019; 68:121-129. [PMID: 30651412 DOI: 10.5650/jos.ess18156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A Fourier transform infrared (FTIR) spectroscopy with infrared quartz cuvette (IQC) as spectral accessory method was developed to determine acid value (AV) of edible oils. The absorption peak at 5680 cm-1/5487 cm-1 ascribed to the C-H stretching band was a substitute for the peak of an internal standard. Partial least square (PLS) regression was used for AV calibration, and samples were validated by titrated method. Results showed dilution calibration was feasible for randomly dilution among 6-13:1 (CCl4: oils, v/v). PLS calibration was optimal by a spectral wavenumber (3603 cm-1-3250 cm-1) as the first derivative treatment. Correlation coefficient and root mean square error of calibration were 0.9967 and 0.135, respectively. Calibrated validation, blind sample validation and precision analysis presented a good correlation between IQC-FTIR and titrated methods. Based on the dilution calibration, randomly diluted oil samples can be employed by IQC-FTIR.
Collapse
Affiliation(s)
- Keqing Hu
- College of Food Science and Engineering, Northwest A&F University
| | - Zongyao Huyan
- College of Food Science and Engineering, Northwest A&F University
| | - Qiaona Geng
- College of Food Science and Engineering, Northwest A&F University
| | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University
| |
Collapse
|
17
|
Wang P, Chen Y, Xu X, Hellmann B, Huang C, Bai Y, Jin Z. HPTLC Screening of Folic Acid in Food: In Situ Derivatization with Ozone-Induced Fluorescence. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1374-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Screening of Phenolic Antioxidants in Edible Oils by HPTLC-DPPH Assay and MS Confirmation. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1295-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|