1
|
Gamal A, Soliman M, Al-Anany MS, Eissa F. Optimization and validation of high throughput methods for the determination of 132 organic contaminants in green and roasted coffee using GC-QqQ-MS/MS and LC-QqQ-MS/MS. Food Chem 2024; 449:139223. [PMID: 38604032 DOI: 10.1016/j.foodchem.2024.139223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
Recently some major safety concerns have been raised on organic contaminants in widely consumed plants such as coffee. Hence, this study aimed to develop specifically optimized methods for determining organic contaminants, such as pesticides and polychlorinated biphenyls (PCBs), in coffee using GC-MS/MS and LC-MS/MS. QuEChERS method was used as a base extraction method, and 27 experiments were studied using design of experiments with categorical variables (extraction buffers, cleanup sorbents, and coffee roasting degree) to find the optimum method for each matrix type. The optimum method for green coffee was acetate buffer and chitosan for clean-up, while no-buffer extraction and the PSA + C18 method were ideal for light and dark-roasted coffee. The optimized methods were validated in accordance with SANTE/11312/2021. Furthermore, ten real samples (4 green, and 6 roasted) from the markets were analysed; ortho-phenylphenol was found in all the roasted coffee samples, and carbendazim was found in one green coffee sample.
Collapse
Affiliation(s)
- Abdulrhman Gamal
- Agricultural Research Center, Central Laboratory of residue Analysis of Pesticides and Heavy Metals in Foods (QCAP), Ministry of Agriculture and Land Reclamation, Giza 12311, Egypt
| | - Mostafa Soliman
- Agricultural Research Center, Central Laboratory of residue Analysis of Pesticides and Heavy Metals in Foods (QCAP), Ministry of Agriculture and Land Reclamation, Giza 12311, Egypt.
| | - Mohamed S Al-Anany
- Environment and Bio-agriculture Department, Faculty of Agriculture, Al-Azhar University, 11884, Nasr city, Cairo, Egypt
| | - Fawzy Eissa
- Environment and Bio-agriculture Department, Faculty of Agriculture, Al-Azhar University, 11884, Nasr city, Cairo, Egypt
| |
Collapse
|
2
|
Hai X, Shi F, Zhu Y, Ma L, Wang L, Yin J, Li X, Yang Z, Yuan M, Xiong H, Gao Y. Development of magnetic dispersive micro-solid phase extraction of four phenolic compounds from food samples based on magnetic chitosan nanoparticles and a deep eutectic supramolecular solvent. Food Chem 2023; 410:135338. [PMID: 36621335 DOI: 10.1016/j.foodchem.2022.135338] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/07/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
A magnetic dispersive micro-solid phase extraction technique (CS@Fe3O4-MD-μSPE-DESP) based on magnetic chitosan nanoparticles and a deep eutectic supramolecular solvent was developed and applied to determinations of four phenolic compounds in food samples. To prevent environmental pollution and the introduction of toxic substances, deep eutectic supramolecular solvents (DESPs), which exhibited greater desorption capacities than conventional organic solvents and deep eutectic solvents, were used as novel green eluents for the first time. Some important parameters were screened by the Plackett-Burman method and then further optimized with response surface methodology (RSM). Under the optimal conditions, the proposed method showed excellent methodological indices with linearity over the range 0.1-200.0 µg·mL-1, R2 > 0.9988, extraction recoveries above 94.8 %, and precision (RSD%) below 2.9 %. The established method finishes the process of adsorption and desorption in approximately 3 min and enhances the efficiency for determination of phenolic compounds.
Collapse
Affiliation(s)
- Xiaoping Hai
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Feng Shi
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Yun Zhu
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Lei Ma
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Lina Wang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Jinfang Yin
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Xiaofen Li
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Zhi Yang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Mingwei Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, PR China
| | - Huabin Xiong
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China.
| | - Yuntao Gao
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, PR China.
| |
Collapse
|
3
|
Lama-Muñoz A, Contreras MDM. Extraction Systems and Analytical Techniques for Food Phenolic Compounds: A Review. Foods 2022; 11:3671. [PMID: 36429261 PMCID: PMC9689915 DOI: 10.3390/foods11223671] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/06/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
Phenolic compounds are highly valuable food components due to their potential utilisation as natural bioactive and antioxidant molecules for the food, cosmetic, chemical, and pharmaceutical industries. For this purpose, the development and optimisation of efficient extraction methods is crucial to obtain phenolic-rich extracts and, for some applications, free of interfering compounds. It should be accompanied with robust analytical tools that enable the standardisation of phenolic-rich extracts for industrial applications. New methodologies based on both novel extraction and/or analysis are also implemented to characterise and elucidate novel chemical structures and to face safety, pharmacology, and toxicity issues related to phenolic compounds at the molecular level. Moreover, in combination with multivariate analysis, the extraction and analysis of phenolic compounds offer tools for plant chemotyping, food traceability and marker selection in omics studies. Therefore, this study reviews extraction techniques applied to recover phenolic compounds from foods and agri-food by-products, including liquid-liquid extraction, solid-liquid extraction assisted by intensification technologies, solid-phase extraction, and combined methods. It also provides an overview of the characterisation techniques, including UV-Vis, infra-red, nuclear magnetic resonance, mass spectrometry and others used in minor applications such as Raman spectroscopy and ion mobility spectrometry, coupled or not to chromatography. Overall, a wide range of methodologies are now available, which can be applied individually and combined to provide complementary results in the roadmap around the study of phenolic compounds.
Collapse
Affiliation(s)
- Antonio Lama-Muñoz
- Departamento de Cristalografía, Mineralogía y Química Agrícola, Universidad de Sevilla, C/Profesor García González, 1, 41012 Sevilla, Spain
| | - María del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, s/n, 23071 Jaén, Spain
| |
Collapse
|
4
|
Liu Y, Zhang Y, Zhou Y, Feng XS. Anthocyanins in Different Food Matrices: Recent Updates on Extraction, Purification and Analysis Techniques. Crit Rev Anal Chem 2022; 54:1430-1461. [PMID: 36045567 DOI: 10.1080/10408347.2022.2116556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Anthocyanins (ANCs), a kind of natural pigments, are widely present in food substrates. Evidence has shown that ANCs can promote health in terms of anti-oxidation, anti-tumor, and anti-inflammation. However, the oxidative stability of ANCs limits accurate quantitation and analysis. Therefore, faster, more accurate, and highly sensitive extraction and determination methods are necessary for understanding the role of ANCs in medicine and food. This review presents an updated overview of pretreatment and detection techniques for ANCs in various food substrates since 2015. Liquid-liquid extraction and various green solvent extraction methods, such as accelerated solvents extraction, deep eutectic solvents extraction, ionic liquids extraction, and supercritical fluid extraction, are commonly used pretreatment methods for extraction and purification of ANCs. Liquid chromatography coupled with different detectors (tandem mass spectrometry and UV detectors) and spectrophotometry methods are some of the determination methods for ANC. This study has updated, compared, and discussed different pretreatment and analysis methods. Moreover, the advanced methods and development prospects in this field are comprehensively summarized, which can provide references for further utilization of ANCs.
Collapse
Affiliation(s)
- Ye Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
5
|
Yang L, Hsu S, Meng Y, Chen S. Quantification of anthocyanins in blueberries (
Vaccinium
spp.) by modified
QuEChERS
and liquid chromatography‐mass spectrometry. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lun‐Chi Yang
- Department of Chemistry National Taiwan Normal University Taipei Taiwan
| | - Shih‐Hsin Hsu
- Affiliated Senior High School of National Taiwan Normal University (HSNU) Taipei Taiwan
| | - Yun‐Yu Meng
- Affiliated Senior High School of National Taiwan Normal University (HSNU) Taipei Taiwan
| | - Sung‐Fang Chen
- Department of Chemistry National Taiwan Normal University Taipei Taiwan
| |
Collapse
|
6
|
Sánchez-Piñero J, Moreda-Piñeiro J, Moscoso-Pérez C, FernándezGonzález V, Prada-Rodríguez D, López-Mahía P. Development and validation of a multi-pollutant method for the analysis of polycyclic aromatic hydrocarbons, synthetic musk compounds and plasticizers in atmospheric particulate matter (PM2.5). TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
7
|
Benvenutti L, Zielinski AAF, Ferreira SRS. Jaboticaba (Myrtaceae cauliflora) fruit and its by-products: Alternative sources for new foods and functional components. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Abstract
Phenolic compounds are plants’ bioactive metabolites that have been studied for their ability to confer extensive benefits to human health. As currently there is an increased interest in natural compounds identification and characterization, new analytical methods based on advanced technologies have been developed. This paper summarizes current advances in the state of the art for polyphenols identification and quantification. Analytical techniques ranging from high-pressure liquid chromatography to hyphenated spectrometric methods are discussed. The topic of high-resolution mass spectrometry, from targeted quantification to untargeted comprehensive chemical profiling, is particularly addressed. Structure elucidation is one of the important steps for natural products research. Mass spectral data handling approaches, including acquisition mode selection, accurate mass measurements, elemental composition, mass spectral library search algorithms and structure confirmation through mass fragmentation pathways, are discussed.
Collapse
|
9
|
Qi P, Zhou QQ, Lin ZH, Liu J, Cai WY, Mao XW, Jiang JJ. Qualitative screening and quantitative determination of multiclass water-soluble synthetic dyes in foodstuffs by liquid chromatography coupled to quadrupole Orbitrap mass spectrometry. Food Chem 2021; 360:129948. [PMID: 33975070 DOI: 10.1016/j.foodchem.2021.129948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/31/2021] [Accepted: 04/21/2021] [Indexed: 12/14/2022]
Abstract
A LC-Q-Orbitrap HRMS analytical method for both qualitative screening and quantitative determination of 90 synthetic dyes including ten groups of isomers in foods has been established. An in-house synthetic dyes database and characteristic ions were also developed. Based on Q-Orbitrap HRMS, mass spectrum and fragmentation patterns of synthetic dyes were studied, which indicated that double charged ions were usually the main precursor ions. Matrix effects were successfully eliminated by the C18 d-SPE clean-up coupled with dilute and shoot approach with methanol-water (1:4, v/v) in 100-fold. For most of the compounds, mean recoveries were satisfactory between 70% and 120% with RSD < 20% at three spiked level in the range of 0.025-1.0 mg/kg. The screening detection limits ranged from 0.025 - 1.0 mg/kg. Method validation showed that the established method was efficient, rapid and high-throughput, which has been successfully applied to the monitoring of these water-soluble synthetic dyes in foods.
Collapse
Affiliation(s)
- Ping Qi
- Guang Zhou Institute for Food Inspection, Guangzhou 511410, China
| | - Qiong-Qing Zhou
- Guang Zhou Institute for Food Inspection, Guangzhou 511410, China
| | - Zi-Hao Lin
- Guang Zhou Institute for Food Inspection, Guangzhou 511410, China
| | - Jia Liu
- Guang Zhou Institute for Food Inspection, Guangzhou 511410, China
| | - Wei-Yi Cai
- Guang Zhou Institute for Food Inspection, Guangzhou 511410, China
| | - Xin-Wu Mao
- Guang Zhou Institute for Food Inspection, Guangzhou 511410, China.
| | - Ji-Jun Jiang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
10
|
Schulz M, Seraglio SKT, Brugnerotto P, Gonzaga LV, Costa ACO, Fett R. Composition and potential health effects of dark-colored underutilized Brazilian fruits – A review. Food Res Int 2020; 137:109744. [DOI: 10.1016/j.foodres.2020.109744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/07/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
|
11
|
Lacerda Massa NM, Dantas Duarte Menezes FN, de Albuquerque TMR, de Oliveira SPA, Lima MDS, Magnani M, de Souza EL. Effects of digested jabuticaba (Myrciaria jaboticaba (Vell.) Berg) by-product on growth and metabolism of Lactobacillus and Bifidobacterium indicate prebiotic properties. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Carrasco-Sandoval J, Rebolledo P, Peterssen-Fonseca D, Fischer S, Wilckens R, Aranda M, Henríquez-Aedo K. A fast and selective method to determine phenolic compounds in quinoa (Chenopodium quinoa Will) seeds applying ultrasound-assisted extraction and high-performance liquid chromatography. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01313-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Qian Z, Wu Z, Li C, Tan G, Hu H, Li W. A green liquid chromatography method for rapid determination of ergosterol in edible fungi based on matrix solid-phase dispersion extraction and a core-shell column. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3337-3343. [PMID: 32930220 DOI: 10.1039/d0ay00714e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing a green analytical method for the analysis of components in food samples is an important research aspect of liquid chromatography (LC). The traditional LC method usually consumes a lot of toxic solvent for sample extraction and LC separation. In the current study, a green analytical method for the rapid determination of ergosterol in edible fungi was established. The sample was extracted and purified by matrix solid-phase dispersion (MSPD) with a green solution (ethanol and water). The LC separation was performed using a Poroshell 120 SB-C18 (4.6 × 30 mm, 2.7 μm) column with a green mobile phase (94% ethanol) at a flow rate of 1.0 mL min-1. The detection wavelength was set at 283 nm. The calibration curve of ergosterol showed good linearity (R = 0.9999) within the test range (4.21-25.27 μg mL-1). The RSD of precision was less than 2.0% and the recovery was 100.4% (RSD = 3.23%). The developed method was successfully applied to quantitative analysis of ergosterol in six edible fungi and the contents of ergosterol were in the range of 1.68-4.02 mg g-1. Only 11.5 mL ethanol water solution was used in the sample extraction and LC separation in the newly developed method, and no toxic organic solvents were used. The total analysis time was less than 15.5 min, about 12-14 min for sample extraction and 1.5 min for LC analysis. This method was environmentally friendly and time-saving, which is helpful to improve the quality evaluation of edible fungi.
Collapse
Affiliation(s)
- Zhengming Qian
- Key Laboratory of State Administration of Traditional Chinese Medicine, Sunshine Lake Pharma Co., Ltd., Dongguan, Guangdong 523850, China.
- School of Rehabilitation, Xiangnan University, Chenzhou, China
| | - Zi Wu
- Key Laboratory of State Administration of Traditional Chinese Medicine, Sunshine Lake Pharma Co., Ltd., Dongguan, Guangdong 523850, China.
| | - Chunhong Li
- Key Laboratory of State Administration of Traditional Chinese Medicine, Sunshine Lake Pharma Co., Ltd., Dongguan, Guangdong 523850, China.
| | - Guoying Tan
- Key Laboratory of State Administration of Traditional Chinese Medicine, Sunshine Lake Pharma Co., Ltd., Dongguan, Guangdong 523850, China.
| | - Hankun Hu
- Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Wenjia Li
- Key Laboratory of State Administration of Traditional Chinese Medicine, Sunshine Lake Pharma Co., Ltd., Dongguan, Guangdong 523850, China.
| |
Collapse
|