1
|
Chen Y, Liu X, Li J, Liu X. Development of a Sensitive Enzyme Immunoassay Using Phage-Displayed Antigen-Binding Fragments for Zearalenone Detection in Cereal Samples. Foods 2025; 14:746. [PMID: 40077448 PMCID: PMC11898766 DOI: 10.3390/foods14050746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Zearalenone (ZEN), a non-steroidal estrogenic mycotoxin, contaminates animal feed and grain crops, thereby entering the food chain and posing a significant threat to human health. Consequently, there is an urgent need for a sensitive and rapid method for detecting trace levels of ZEN. In this study, we developed a phage-displayed antigen-binding fragment (Fab-phage) and established a Fab-phage-based enzyme-linked immunosorbent assay (Fab-pELISA) for ZEN detection. Under optimal conditions, this method exhibits a half-maximal inhibitory concentration of 0.36 ng/mL, with a linear range from 0.07 to 3.89 ng/mL and a detection limit of 0.03 ng/mL. The method demonstrates high selectivity towards ZEN and good recovery rates of 97.35-122.66% with relative standard deviations not exceeding 3.5%. Furthermore, the detection results obtained using Fab-pELISA on real cereal samples are consistent with those from high-performance liquid chromatography, meeting practical application requirements. Therefore, the Fab-phage serves as a valuable biochemical reagent, and the established Fab-pELISA represents a promising analytical strategy for detecting ZEN and other trace toxic contaminants in cereals.
Collapse
Affiliation(s)
| | | | | | - Xing Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China (X.L.); (J.L.)
| |
Collapse
|
2
|
Guo W, Zhang X, Deng B, Chen H, Wu S, Wu Y, Wang Y, Ning G. Dual-signal ratiometric electrochemical aptasensor for Zearalenone detection based on magnetic-assisted enrichment and hybridization chain reaction. Food Chem 2025; 465:141963. [PMID: 39531970 DOI: 10.1016/j.foodchem.2024.141963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
In this work, a dual-signal ratiometric electrochemical aptasensor based on the hybrid chain reaction (HCR) and streptavidin-modified magnetic beads (SA-MBs) was developed to rapidly detect zearalenone (ZEN). The HCR, as a powerful signal amplification technique to imporve the signal of sonser. When the target is present, they specifically bind with ZEN-Apt and release ZEN-cDNA to trigger HCR. Simultaneously, more double-stranded DNA causes the signal of Thi to be blocked. As a result, the two signals tend to change in the opposite direction as the ZEN concentration changes. Additionally, the peak current ratio of IThi/IFc showed a positive correlation with the ZEN concentration. Under optimal conditions, the constructed biosensor showed an excellent linear detection range (1.0 × 10-10 mol/L to 1.0 × 10-6 mol/L), a low detection limit (4.4 × 10-11 mol/L) and high specificity for ZEN. In addition, the detection method retains the characteristics of low cost and rapid detection of electrochemical detection, while improving the detection limit and detection accuracy via SA-MBs and internal reference signal. This provides a new idea for the practical detection of ZEN.
Collapse
Affiliation(s)
- Wentao Guo
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xuxin Zhang
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Bin Deng
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hao Chen
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shun Wu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yaohui Wu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yonghong Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha 410004, China; Yuelushan Laboratory, Changsha 410004, China.
| | - Ge Ning
- International Education Institute, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
3
|
Li X, Wang MY, Wang Y, Yang WZ, Yang CX. Fabrication of amino- and hydroxyl dual-functionalized magnetic microporous organic network for extraction of zearalenone from traditional Chinese medicine prior to the HPLC determination. J Chromatogr A 2024; 1724:464915. [PMID: 38663319 DOI: 10.1016/j.chroma.2024.464915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Efficient enrichment of trace zearalenone (ZEN) from the complex traditional Chinese medicine (TCM) samples is quite difficult, but of great significance for TCM quality control. Herein, we reported a novel magnetic solid phase extraction (MSPE) strategy for ZEN enrichment using the amino- and hydroxyl dual-functionalized magnetic microporous organic network (Fe3O4@MON-NH2-OH) as an advanced adsorbent combined with the high-performance liquid chromatography (HPLC) determination. Efficient extraction of ZEN was achieved via the possible hydrogen bonding, hydrophobic, and π-π interactions between Fe3O4@MON-NH2-OH and ZEN. The adsorption capacity of Fe3O4@MON-NH2-OH for ZEN was 215.0 mg g-1 at the room temperature, which was much higher than most of the reported adsorbents. Under the optimal condition, the developed Fe3O4@MON-NH2-OH-MSPE-HPLC method exhibited wide linear range (5-2500 μg L-1), low limits of detection (1.4-35 μg L-1), less adsorbent consumption (5 mg), and large enhancement factor (95) for ZEN. The proposed method was successfully applied to detect trace ZEN from 10 kinds of real TCM samples. Conclusively, this work demonstrates the Fe3O4@MON-NH2-OH can effectively extract trace ZEN from the complex TCM matrices, which may open up a new way for the application of MONs in the enrichment and extraction of trace contaminants or active constituents from the complex TCM samples.
Collapse
Affiliation(s)
- Xue Li
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Meng-Yao Wang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Yu Wang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China
| | - Wen-Zhi Yang
- Haihe Laboratory of Modern Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China; National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin 301617, China.
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
4
|
Liao Z, Guo W, Ning G, Wu Y, Wang Y, Ning G. A sensitive electrochemical aptasensor for zearalenone detection based on target-triggered branched hybridization chain reaction and exonuclease I-assisted recycling. Anal Bioanal Chem 2023; 415:4911-4921. [PMID: 37326832 DOI: 10.1007/s00216-023-04797-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Traditional methods for detecting antibiotic and mycotoxin residues rely on large-scale instruments, which are expensive and require complex sample pretreatment processes and professional operators. Although aptamer-based electrochemical sensors have the advantages of simplicity, speed, low cost, and high sensitivity, most aptamer-based sensors lack a signal amplification strategy due to their direct use of aptamers as probes, resulting in insufficient sensitivity. To solve the sensitivity problem in the electrochemical detection process, a novel electrochemical sensing strategy was established for ultrasensitive zearalenone (ZEN) detection on the basis of exonuclease I (Exo I) and branched hybridization chain reaction (bHCR) to amplify the signal. The amplification strategy showed excellent analytical performance towards ZEN with a low detection limit at 3.1×10-12 mol/L and a wide linear range from 10-11 to 10-6 mol/L. Importantly, the assay was utilized in the corn powder samples with satisfactory results, holding promising applications in food safety detection and environmental monitoring.
Collapse
Affiliation(s)
- Zhibing Liao
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Wentao Guo
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Guiai Ning
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yaohui Wu
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yonghong Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology & International Cooperation, Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, 410004, China.
- Yuelushan Laboratory, Changsha, 410004, China.
| | - Ge Ning
- International Education Institute, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
5
|
Cheng Y, Guo L, Wu A, Xu X, Liu L, Xu C, Kuang H, Xu L. Immunochromatographic test strip for quantitative and rapid detection of tolfenpyrad in food samples. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123837. [PMID: 37524012 DOI: 10.1016/j.jchromb.2023.123837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/06/2023] [Accepted: 07/16/2023] [Indexed: 08/02/2023]
Abstract
In the study, a hapten was designed to preserve the molecular structure of tolfenpyrad while introducing a carboxyl group and was coupled with a carrier protein to synthesize an immunogen and coating antigen. A monoclonal antibody was fabricated against tolfenpyrad and its performance was assessed by indirect competitive enzyme-linked immunosorbent assay. Finally, we developed a colloidal gold nanoparticle immunochromatographic test strip (CGN-ICTS) for the detection of tolfenpyrad in kale, Chinese cabbage, and eggplant samples. The results shows that CGN-ICTS was sensitive, with calculated detection limits of 0.49 ng/g for kale and Chinese cabbage and 0.99 ng/g for eggplant. Subsequently, CGN-ICTS and LC-MS were used to analyze the tolfenpyrad-spiked samples. The recovery rate of the CGN-ICTS for kale samples was 97.1-103.0%, for Chinese cabbage samples was 93.7-103.4%, and for eggplant samples was 92.7-105.7%. Recovery rates were similar between CGN-ICTS and LC-MS. Therefore, CGN-ICTS can be used to quickly screen tolfenpyrad residues in foods.
Collapse
Affiliation(s)
- Yuan Cheng
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Lingling Guo
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Aihong Wu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| | - Liqiang Liu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China.
| |
Collapse
|
6
|
Qiao W, He B, Ren W, Zhao R, Suo Z, Yan H, Xu Y, Wei M, Jin H. Colloidal Au sphere and nanoflower-based immunochromatographic strips for sensitive detection of zearalenone in cereals. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3831-3839. [PMID: 36168770 DOI: 10.1039/d2ay01365g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Zearalenone (ZEN), also known as an F-2 toxin, is a secondary metabolite in the toxic Fusarium species with estrogen properties. ZEN and its derivatives can cause developmental and reproductive disorders in humans and other mammals. In this study, colloidal Au spheres (AuSPs) and Au nanoflowers (AuNFs) were used as signal labels to detect ZEN in cereals, and the critical factors affecting the sensitivity of the immunochromatographic strip (ICS), namely the volume of antigen, antibody, and probe quantities were optimized and compared in detail. Since the large specific surface area of AuNFs reduces the steric hindrance of proteins, it is more conducive to improving the fixation rate of antibodies and proteins. Compared with the traditional colloidal AuSP immunochromatographic strip (AuSP-ICS), the volume of the antibody used in the AuNF immunochromatographic strip (AuNF-ICS) was 0.6 times that in the AuSPs-ICS. At the same antigen volume, a lower amount of probe can achieve the desired visual detection effect and higher sensitivity. For the AuNF-ICS, the limit of detection (LOD) was as low as 0.08 ng mL-1. ZEN could be detected quickly and accurately from 0.08-10.2 ng mL-1. And the AuNF-ICS had a high degree of specificity and sensitivity to ZEN. In summary, the AuNF-ICS serves as a valuable tool in large-scale on-site detection of ZEN.
Collapse
Affiliation(s)
- Weili Qiao
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China.
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China.
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China.
| | - Renyong Zhao
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China.
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China.
| | - Haoyang Yan
- School of International Education, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Yiwei Xu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China.
| | - Min Wei
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China.
| | - Huali Jin
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China.
| |
Collapse
|