1
|
Contribution of Adipose Tissue Oxidative Stress to Obesity-Associated Diabetes Risk and Ethnic Differences: Focus on Women of African Ancestry. Antioxidants (Basel) 2021; 10:antiox10040622. [PMID: 33921645 PMCID: PMC8073769 DOI: 10.3390/antiox10040622] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Adipose tissue (AT) storage capacity is central in the maintenance of whole-body homeostasis, especially in obesity states. However, sustained nutrients overflow may dysregulate this function resulting in adipocytes hypertrophy, AT hypoxia, inflammation and oxidative stress. Systemic inflammation may also contribute to the disruption of AT redox equilibrium. AT and systemic oxidative stress have been involved in the development of obesity-associated insulin resistance (IR) and type 2 diabetes (T2D) through several mechanisms. Interestingly, fat accumulation, body fat distribution and the degree of how adiposity translates into cardio-metabolic diseases differ between ethnicities. Populations of African ancestry have a higher prevalence of obesity and higher T2D risk than populations of European ancestry, mainly driven by higher rates among African women. Considering the reported ethnic-specific differences in AT distribution and function and higher levels of systemic oxidative stress markers, oxidative stress is a potential contributor to the higher susceptibility for metabolic diseases in African women. This review summarizes existing evidence supporting this hypothesis while acknowledging a lack of data on AT oxidative stress in relation to IR in Africans, and the potential influence of other ethnicity-related modulators (e.g., genetic-environment interplay, socioeconomic factors) for consideration in future studies with different ethnicities.
Collapse
|
2
|
Goedecke JH, Chorell E, van Jaarsveld PJ, Risérus U, Olsson T. Fatty Acid Metabolism and Associations with Insulin Sensitivity Differs Between Black and White South African Women. J Clin Endocrinol Metab 2021; 106:e140-e151. [PMID: 32995848 DOI: 10.1210/clinem/dgaa696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/28/2020] [Indexed: 01/22/2023]
Abstract
PURPOSE Genetic differences in desaturase genes and consequently fatty acid metabolism have been reported. The aims were to examine ethnic differences in serum fatty acid composition and desaturase indices, and assess the ethnic-specific associations with insulin sensitivity (IS) and liver fat in black and white South African (SA) women. METHODS In this cross-sectional study including 92 premenopausal black (n = 46) and white (n = 46) SA women, serum fatty acid composition was measured in cholesteryl ester (CE) and nonesterified fatty acid (NEFA) fractions. Desaturase activities were estimated as product-to-precursor ratios: stearoyl-CoA desaturase-1 (SCD1-16, 16:1n-7/16:0); δ-5 desaturase (D5D, 20:4n-6/20:3n-6), and δ-6 desaturase (D6D, 18:3n-6/18:2n-6). Whole-body IS was estimated from an oral glucose tolerance test using the Matsuda index. In a subsample (n = 30), liver fat and hepatic IS were measured by 1H-magnetic resonance spectroscopy and hyperinsulinemic euglycemic clamp, respectively. RESULTS Despite lower whole-body IS (P = .006), black women had higher CE D5D and lower D6D and SCD1-16 indices than white women (P < .01). CE D6D index was associated with lower IS in white women only (r = -0.31, P = .045), whereas D5D index was associated with higher IS in black women only (r = 0.31, P = .041). In the subsample, D6D and SCD1-16 indices were positively and D5D was negatively associated with liver fat (P < .05). Conversely, CE SCD1-16 was negatively associated with hepatic IS (P < .05), but not independently of liver fat. CONCLUSIONS Ethnic differences in fatty acid-derived desaturation indices were observed, with insulin-resistant black SA women paradoxically showing a fatty acid pattern typical for higher insulin sensitivity in European populations.
Collapse
Affiliation(s)
- Julia H Goedecke
- Non-communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
- Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Elin Chorell
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Paul J van Jaarsveld
- Non-communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Tommy Olsson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
3
|
Goedecke JH, Mendham AE, Clamp L, Nono Nankam PA, Fortuin-de Smidt MC, Phiri L, Micklesfield LK, Keswell D, Woudberg NJ, Lecour S, Alhamud A, Kaba M, Lutomia FM, van Jaarsveld PJ, de Villiers A, Kahn SE, Chorell E, Hauksson J, Olsson T. An Exercise Intervention to Unravel the Mechanisms Underlying Insulin Resistance in a Cohort of Black South African Women: Protocol for a Randomized Controlled Trial and Baseline Characteristics of Participants. JMIR Res Protoc 2018; 7:e75. [PMID: 29669711 PMCID: PMC5932332 DOI: 10.2196/resprot.9098] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/20/2017] [Accepted: 11/20/2017] [Indexed: 11/13/2022] Open
Abstract
Background The pathogenesis of type 2 diabetes (T2D) in black African women is complex and differs from that in their white counterparts. However, earlier studies have been cross-sectional and provide little insight into the causal pathways. Exercise training is consistently used as a model to examine the mechanisms underlying insulin resistance and risk for T2D. Objective The objective of the study was to examine the mechanisms underlying the changes in insulin sensitivity and secretion in response to a 12-week exercise intervention in obese black South African (SA) women. Methods A total of 45 obese (body mass index, BMI: 30-40 kg/m2) black SA women were randomized into a control (n=22) or experimental (exercise; n=23) group. The exercise group completed 12 weeks of supervised combined aerobic and resistance training (40-60 min, 4 days/week), while the control group maintained their typical physical activity patterns, and both groups were requested not to change their dietary patterns. Before and following the 12-week intervention period, insulin sensitivity and secretion (frequently sampled intravenous glucose tolerance test) and its primary and secondary determinants were measured. Dietary intake, sleep quality and quantity, physical activity, and sedentary behaviors were measured every 4 weeks. Results The final sample included 20 exercise and 15 control participants. Baseline sociodemographics, cardiorespiratory fitness, anthropometry, cardiometabolic risk factors, physical activity, and diet did not differ between the groups (P>.05). Conclusions The study describes a research protocol for an exercise intervention to understand the mechanisms underlying insulin sensitivity and secretion in obese black SA women and aims to identify causal pathways underlying the high prevalence of insulin resistance and risk for T2D in black SA women, targeting specific areas for therapeutic intervention. Trial Registration Pan African Clinical Trial Registry PACTR201711002789113; http://www.pactr.org/ATMWeb/ appmanager/atm/atmregistry?_nfpb=true&_pageLabel=portals_app_atmregistry_portal_page_13 (Archived by WebCite at http://www.webcitation.org/6xLEFqKr0)
Collapse
Affiliation(s)
- Julia H Goedecke
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa.,Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Amy E Mendham
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa.,Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Louise Clamp
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Pamela A Nono Nankam
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Melony C Fortuin-de Smidt
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Lindokuhle Phiri
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Lisa K Micklesfield
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa.,South African Medical Research Council / University of the Witwatersrand Developmental Pathways for Health Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Gauteng, South Africa
| | - Dheshnie Keswell
- Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Nicholas J Woudberg
- Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Ali Alhamud
- Division of Biomedical Engineering, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Mamadou Kaba
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Faith M Lutomia
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Paul J van Jaarsveld
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa.,Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anniza de Villiers
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, Veterans Affairs Puget Sound Health Care System and University of Washington, Seattle, WA, United States
| | - Elin Chorell
- Department of Public Health and Clinical Medicine, Umeå University, Umea, Sweden
| | - Jon Hauksson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Tommy Olsson
- Department of Public Health and Clinical Medicine, Umeå University, Umea, Sweden
| |
Collapse
|
4
|
Abstract
Type 2 diabetes remains an important cause of morbidity and mortality. The metabolic syndrome affects 25% of the adult US population based on the Third Report of the Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults from the National Cholesterol Education Program. Knowledge on the impact of obesity on metabolic health parameters has increased greatly over the past decade. This review discusses the limitations of the National Cholesterol Education Program metabolic syndrome definition and the racial disparities in the clinical presentation of the insulin resistance syndrome. We also examine the current literature with particular emphasis on albuminuria, nonalcoholic fatty liver disease, and intramyocellular lipid content. This review explores potential environmental and genetic reasons for differences in the manifestation of insulin resistance across racial/ethnic groups and highlights several promising areas for further study.
Collapse
Affiliation(s)
- Holly Kramer
- Departments of Public Health Sciences and Medicine, Division of Nephrology and Hypertension, Loyola University Chicago Health Sciences Campus, Maywood, IL.
| | | | | |
Collapse
|
5
|
Goedecke JH, Levitt NS, Evans J, Ellman N, Hume DJ, Kotze L, Tootla M, Victor H, Keswell D. The role of adipose tissue in insulin resistance in women of African ancestry. J Obes 2013; 2013:952916. [PMID: 23401754 PMCID: PMC3557633 DOI: 10.1155/2013/952916] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 12/13/2012] [Indexed: 01/01/2023] Open
Abstract
Women of African ancestry, particularly those living in industrialized countries, experience a disproportionately higher prevalence of type 2 diabetes (T2D) compared to their white counterparts. Similarly, obesity and insulin resistance, which are major risk factors for T2D, are greater in black compared to white women. The exact mechanisms underlying these phenomena are not known. This paper will focus on the role of adipose tissue biology. Firstly, the characteristic body fat distribution of women of African ancestry will be discussed, followed by the depot-specific associations with insulin resistance. Factors involved in adipose tissue biology and their relation to insulin sensitivity will then be explored, including the role of sex hormones, glucocorticoid metabolism, lipolysis and adipogenesis, and their consequent effects on adipose tissue hypoxia, oxidative stress, and inflammation. Finally the role of ectopic fat deposition will be discussed. The paper proposes directions for future research, in particular highlighting the need for longitudinal and/or intervention studies to better understand the mechanisms underlying the high prevalence of insulin resistance and T2D in women of African ancestry.
Collapse
Affiliation(s)
- Julia H Goedecke
- UCT/MRC Research Unit for Exercise Science and Sports Medicine, South African Medical Research Council, Parow, Cape Town 7505, South Africa.
| | | | | | | | | | | | | | | | | |
Collapse
|