1
|
Kim H, Roh H, Kim SH, Lee K, Im M, Oh SJ. Effective protection of photoreceptors using an inflammation-responsive hydrogel to attenuate outer retinal degeneration. NPJ Regen Med 2023; 8:68. [PMID: 38097595 PMCID: PMC10721838 DOI: 10.1038/s41536-023-00342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Retinitis pigmentosa (RP) is an outer retinal degenerative disease that can lead to photoreceptor cell death and profound vision loss. Although effective regulation of intraretinal inflammation can slow down the progression of the disease, an efficient anti-inflammatory treatment strategy is still lacking. This study reports the fabrication of a hyaluronic acid-based inflammation-responsive hydrogel (IRH) and its epigenetic regulation effects on retinal degeneration. The injectable IRH was designed to respond to cathepsin overexpression in an inflammatory environment. The epigenetic drug, the enhancer of zeste homolog 2 (EZH2) inhibitors, was loaded into the hydrogel to attenuate inflammatory factors. On-demand anti-inflammatory effects of microglia cells via the drug-loaded IRH were verified in vitro and in vivo retinal degeneration 10 (rd10) mice model. Therefore, our IRH not only reduced intraretinal inflammation but also protected photoreceptors morphologically and functionally. Our results suggest the IRH reported here can be used to considerably delay vision loss caused by RP.
Collapse
Affiliation(s)
- Hyerim Kim
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea
| | - Hyeonhee Roh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
- School of Electrical Engineering, College of Engineering, Korea University, Seoul, 02841, South Korea
| | - Sang-Heon Kim
- Center for Biomaterials, Biomedical Research Institute, KIST, Seoul, 02792, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, South Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea.
- Research Institute for Convergence Science, Seoul National University, Seoul, 08826, South Korea.
| | - Maesoon Im
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea.
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, South Korea.
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, South Korea.
| | - Seung Ja Oh
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, South Korea.
| |
Collapse
|
2
|
Ashok A, Tai WL, Lennikov A, Chang K, Chen J, Li B, Cho KS, Utheim TP, Chen DF. Electrical stimulation alters DNA methylation and promotes neurite outgrowth. J Cell Biochem 2023; 124:1530-1545. [PMID: 37642194 DOI: 10.1002/jcb.30462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
Electrical stimulation (ES) influences neural regeneration and functionality. We here investigate whether ES regulates DNA demethylation, a critical epigenetic event known to influence nerve regeneration. Retinal ganglion cells (RGCs) have long served as a standard model for central nervous system neurons, whose growth and disease development are reportedly affected by DNA methylation. The current study focuses on the ability of ES to rescue RGCs and preserve vision by modulating DNA demethylation. To evaluate DNA demethylation pattern during development, RGCs from mice at different stages of development, were analyzed using qPCR for ten-eleven translocation (TETs) and immunostained for 5 hydroxymethylcytosine (5hmc) and 5 methylcytosine (5mc). To understand the effect of ES on neurite outgrowth and DNA demethylation, cells were subjected to ES at 75 µAmp biphasic ramp for 20 min and cultured for 5 days. ES increased TETs mediated neurite outgrowth, DNA demethylation, TET1 and growth associated protein 43 levels significantly. Immunostaining of PC12 cells following ES for histone 3 lysine 9 trimethylation showed cells attained an antiheterochromatin configuration. Cultured mouse and human retinal explants stained with β-III tubulin exhibited increased neurite growth following ES. Finally, mice subjected to optic nerve crush injury followed by ES exhibited improved RGCs function and phenotype as validated using electroretinogram and immunohistochemistry. Our results point to a possible therapeutic regulation of DNA demethylation by ES in neurons.
Collapse
Affiliation(s)
- Ajay Ashok
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Wai Lydia Tai
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Anton Lennikov
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Karen Chang
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Julie Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Boyuan Li
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Kin-Sang Cho
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Tor Paaske Utheim
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, Oslo, Norway
| | - Dong Feng Chen
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Lu CF, Zhou YN, Zhang J, Su S, Liu Y, Peng GH, Zang W, Cao J. The role of epigenetic methylation/demethylation in the regulation of retinal photoreceptors. Front Cell Dev Biol 2023; 11:1149132. [PMID: 37305686 PMCID: PMC10251769 DOI: 10.3389/fcell.2023.1149132] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Photoreceptors are integral and crucial for the retina, as they convert light into electrical signals. Epigenetics plays a vital role in determining the precise expression of genetic information in space and time during the development and maturation of photoreceptors, cell differentiation, degeneration, death, and various pathological processes. Epigenetic regulation has three main manifestations: histone modification, DNA methylation, and RNA-based mechanisms, where methylation is involved in two regulatory mechanisms-histone methylation and DNA methylation. DNA methylation is the most studied form of epigenetic modification, while histone methylation is a relatively stable regulatory mechanism. Evidence suggests that normal methylation regulation is essential for the growth and development of photoreceptors and the maintenance of their functions, while abnormal methylation can lead to many pathological forms of photoreceptors. However, the role of methylation/demethylation in regulating retinal photoreceptors remains unclear. Therefore, this study aims to review the role of methylation/demethylation in regulating photoreceptors in various physiological and pathological situations and discuss the underlying mechanisms involved. Given the critical role of epigenetic regulation in gene expression and cellular differentiation, investigating the specific molecular mechanisms underlying these processes in photoreceptors may provide valuable insights into the pathogenesis of retinal diseases. Moreover, understanding these mechanisms could lead to the development of novel therapies that target the epigenetic machinery, thereby promoting the maintenance of retinal function throughout an individual's lifespan.
Collapse
Affiliation(s)
- Chao-Fan Lu
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Ya-Nan Zhou
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jingjing Zhang
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Songxue Su
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Yupeng Liu
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Guang-Hua Peng
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Weidong Zang
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jing Cao
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Yin W, Mao X, Xu M, Chen M, Xue M, Su N, Yuan S, Liu Q. Epigenetic regulation in the commitment of progenitor cells during retinal development and regeneration. Differentiation 2023:S0301-4681(23)00023-3. [PMID: 37069005 DOI: 10.1016/j.diff.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023]
Abstract
Retinal development is initiated by multipotent retinal progenitor cells, which undergo several rounds of cell divisions and subsequently terminal differentiation. Retinal regeneration is usually considered as the recapitulation of retinal development, which share common mechanisms underlying the cell cycle re-entry of adult retinal stem cells and the differentiation of retinal neurons. However, how proliferative retinal progenitor cells perform a precise transition to postmitotic retinal cell types during the process of development and regeneration remains elusive. It is proposed that both the intrinsic and extrinsic programming are involved in the transcriptional regulation of the spatio-temporal fate commitment. Epigenetic modifications and the regulatory mechanisms at both DNA and chromatin levels are also postulated to play an important role in the timing of differentiation of specific retinal cells. In the present review, we have summarized recent knowledge of epigenetic regulation that underlies the commitment of retinal progenitor cells in the settings of retinal development and regeneration.
Collapse
Affiliation(s)
- Wenjie Yin
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Xiying Mao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Miao Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Mingkang Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Mengting Xue
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Na Su
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Songtao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
5
|
Song J, VanBuskirk JA, Merbs SL. Regulation of Opsin Gene Expression by DNA Methylation and Histone Acetylation. Int J Mol Sci 2022; 23:ijms23031408. [PMID: 35163334 PMCID: PMC8836077 DOI: 10.3390/ijms23031408] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 02/04/2023] Open
Abstract
One important role of epigenetic regulation is controlling gene expression in development and homeostasis. However, little is known about epigenetics' role in regulating opsin expression. Cell cultures (HEK 293, Y79, and WERI) producing different levels of opsins were treated with 5-aza-2'-deoxycytidine (5-Aza-dc) and/or sodium butyrate (SB) or suberoylanilide hydroxamic acid (SAHA) for 72 h. Global DNA methylation, site-specific methylation, and expressions of opsins were measured by LUMA assay, bisulfite pyrosequencing, and qPCR, respectively. Mouse retinal explants from wild-type P0/P1 pups were ex vivo cultured with/without 5-Aza-dc or SAHA for 6 days. The morphology of explants, DNA methylation, and expressions of opsins was examined. The drugs induced global DNA hypomethylation or increased histone acetylation in cells, including DNA hypomethylation of rhodopsin (RHO) and L-opsin (OPN1LW) and a concomitant increase in their expression. Further upregulation of RHO and/or OPN1LW in HEK 293 or WERI cells was observed with 5-Aza-dc and either SB or SAHA combination treatment. Mouse retinal explants developed normally but had drug-dependent differential DNA methylation and expression patterns of opsins. DNA methylation and histone acetylation directly regulate opsin expression both in vitro and ex vivo. The ability to manipulate opsin expression using epigenetic modifiers enables further study into the role of epigenetics in eye development and disease.
Collapse
Affiliation(s)
- Jin Song
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Correspondence: (J.S.); (S.L.M.)
| | - Julia A. VanBuskirk
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Shannath L. Merbs
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD 21287, USA
- Correspondence: (J.S.); (S.L.M.)
| |
Collapse
|
6
|
Mellough CB, Bauer R, Collin J, Dorgau B, Zerti D, Dolan DWP, Jones CM, Izuogu OG, Yu M, Hallam D, Steyn JS, White K, Steel DH, Santibanez-Koref M, Elliott DJ, Jackson MS, Lindsay S, Grellscheid S, Lako M. An integrated transcriptional analysis of the developing human retina. Development 2019; 146:146/2/dev169474. [PMID: 30696714 PMCID: PMC6361134 DOI: 10.1242/dev.169474] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022]
Abstract
The scarcity of embryonic/foetal material as a resource for direct study means that there is still limited understanding of human retina development. Here, we present an integrated transcriptome analysis combined with immunohistochemistry in human eye and retinal samples from 4 to 19 post-conception weeks. This analysis reveals three developmental windows with specific gene expression patterns that informed the sequential emergence of retinal cell types and enabled identification of stage-specific cellular and biological processes, and transcriptional regulators. Each stage is characterised by a specific set of alternatively spliced transcripts that code for proteins involved in the formation of the photoreceptor connecting cilium, pre-mRNA splicing and epigenetic modifiers. Importantly, our data show that the transition from foetal to adult retina is characterised by a large increase in the percentage of mutually exclusive exons that code for proteins involved in photoreceptor maintenance. The circular RNA population is also defined and shown to increase during retinal development. Collectively, these data increase our understanding of human retinal development and the pre-mRNA splicing process, and help to identify new candidate disease genes.
Collapse
Affiliation(s)
- Carla B. Mellough
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK,Lions Eye Institute, 2 Verdun Street, Nedlands, Perth, WA 6009, Australia
| | - Roman Bauer
- School of Computing, Newcastle University, Newcastle NE4 5TG, UK
| | - Joseph Collin
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK
| | - Birthe Dorgau
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK
| | - Darin Zerti
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK
| | - David W. P. Dolan
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Carl M. Jones
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Osagie G. Izuogu
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK,European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK
| | - Min Yu
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK
| | - Dean Hallam
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK
| | - Jannetta S. Steyn
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK
| | - Kathryn White
- EM Research Services, Newcastle University, Newcastle NE2 4HH, UK
| | - David H. Steel
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK
| | | | - David J. Elliott
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK
| | - Michael S. Jackson
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK
| | - Susan Lindsay
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK
| | - Sushma Grellscheid
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Majlinda Lako
- Institute of Genetic Medicine, Newcastle University, Newcastle NE1 3BZ, UK
| |
Collapse
|
7
|
Zheng S, Xiao L, Liu Y, Wang Y, Cheng L, Zhang J, Yan N, Chen D. DZNep inhibits H3K27me3 deposition and delays retinal degeneration in the rd1 mice. Cell Death Dis 2018; 9:310. [PMID: 29472543 PMCID: PMC5833420 DOI: 10.1038/s41419-018-0349-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/12/2018] [Accepted: 01/25/2018] [Indexed: 02/05/2023]
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinal degenerative diseases causing progressive loss of photoreceptors. Numerous gene mutations are identified to be related with RP, but epigenetic modifications may also be involved in the pathogenesis. Previous studies suggested that both DNA methylation and histone acetylation regulate photoreceptor cell death in RP mouse models. However, the role of histone methylation in RP has never been investigated. In this study, we found that trimethylation of several lysine sites of histone H3, including lysine 27 (H3K27me3), increased in the retinas of rd1 mice. Histone methylation inhibitor DZNep significantly reduced the calpain activity, delayed the photoreceptor loss, and improved ERG response of rd1 retina. RNA-sequencing indicated that DZNep synergistically acts on several molecular pathways that regulate photoreceptor survival in rd1 retina, including PI3K-Akt and photoreceptor differentiation pathways, revealing the therapeutic potential of DZNep for RP treatment. PI3K-Akt pathway and H3K27me3 form a feedback loop in rd1 retina, thus PI3K inhibitor LY294002 reduces phosphorylation of Ezh2 at serine 21 and enhances H3K27me3 deposition, and inhibiting H3K27me3 by DZNep can activate PI3K-Akt pathway by de-repressing gene expression of PI3K subunits Pik3r1 and Pik3r3. These findings suggest that histone methylation, especially H3K27me3 deposition is a novel mechanism and therapeutic target for retinal degenerative diseases, similar to H3K27me3-mediated ataxia-telangiectasia in Atm−/− mouse.
Collapse
Affiliation(s)
- Shijie Zheng
- Research Laboratory of Ophthalmology and Vision Sciences, Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Lirong Xiao
- Research Laboratory of Ophthalmology and Vision Sciences, Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Yu Liu
- Program in Systems Biology, University of Massachusetts Medical School, 368 Plantations Street, Worcester, MA, 01606, USA
| | - Yujiao Wang
- Research Laboratory of Ophthalmology and Vision Sciences, Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Lin Cheng
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital Affiliated to Jinan University, 518040, Shenzhen, China
| | - Junjun Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Naihong Yan
- Research Laboratory of Ophthalmology and Vision Sciences, Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Danian Chen
- Research Laboratory of Ophthalmology and Vision Sciences, Torsten-Wiesel Research Institute of World Eye Organization, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China. .,Department of Ophthalmology, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
8
|
Samd7 is a cell type-specific PRC1 component essential for establishing retinal rod photoreceptor identity. Proc Natl Acad Sci U S A 2017; 114:E8264-E8273. [PMID: 28900001 DOI: 10.1073/pnas.1707021114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Precise transcriptional regulation controlled by a transcription factor network is known to be crucial for establishing correct neuronal cell identities and functions in the CNS. In the retina, the expression of various cone and rod photoreceptor cell genes is regulated by multiple transcription factors; however, the role of epigenetic regulation in photoreceptor cell gene expression has been poorly understood. Here, we found that Samd7, a rod-enriched sterile alpha domain (SAM) domain protein, is essential for silencing nonrod gene expression through H3K27me3 regulation in rod photoreceptor cells. Samd7-null mutant mice showed ectopic expression of nonrod genes including S-opsin in rod photoreceptor cells and rod photoreceptor cell dysfunction. Samd7 physically interacts with Polyhomeotic homologs (Phc proteins), components of the Polycomb repressive complex 1 (PRC1), and colocalizes with Phc2 and Ring1B in Polycomb bodies. ChIP assays showed a significant decrease of H3K27me3 in the genes up-regulated in the Samd7-deficient retina, showing that Samd7 deficiency causes the derepression of nonrod gene expression in rod photoreceptor cells. The current study suggests that Samd7 is a cell type-specific PRC1 component epigenetically defining rod photoreceptor cell identity.
Collapse
|
9
|
Epigenetics and Signaling Pathways in Glaucoma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5712341. [PMID: 28210622 PMCID: PMC5292191 DOI: 10.1155/2017/5712341] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/28/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022]
Abstract
Glaucoma is the most common cause of irreversible blindness worldwide. This neurodegenerative disease becomes more prevalent with aging, but predisposing genetic and environmental factors also contribute to increased risk. Emerging evidence now suggests that epigenetics may also be involved, which provides potential new therapeutic targets. These three factors work through several pathways, including TGF-β, MAP kinase, Rho kinase, BDNF, JNK, PI-3/Akt, PTEN, Bcl-2, Caspase, and Calcium-Calpain signaling. Together, these pathways result in the upregulation of proapoptotic gene expression, the downregulation of neuroprotective and prosurvival factors, and the generation of fibrosis at the trabecular meshwork, which may block aqueous humor drainage. Novel therapeutic agents targeting these pathway members have shown preliminary success in animal models and even human trials, demonstrating that they may eventually be used to preserve retinal neurons and vision.
Collapse
|
10
|
Characterization and pharmacologic targeting of EZH2, a fetal retinal protein and epigenetic regulator, in human retinoblastoma. J Transl Med 2015; 95:1278-90. [PMID: 26280220 PMCID: PMC4626270 DOI: 10.1038/labinvest.2015.104] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/01/2015] [Accepted: 07/07/2015] [Indexed: 12/31/2022] Open
Abstract
Retinoblastoma (RB) is the most common primary intraocular cancer in children, and the third most common cancer overall in infants. No molecular-targeted therapy for this lethal tumor exists. Since the tumor suppressor RB1, whose genetic inactivation underlies RB, is upstream of the epigenetic regulator EZH2, a pharmacologic target for many solid tumors, we reasoned that EZH2 might regulate human RB tumorigenesis. Histologic and immunohistochemical analyses were performed using an EZH2 antibody in sections from 43 samples of primary, formalin-fixed, paraffin-embedded human RB tissue, cryopreserved mouse retina, and in whole cell lysates from human RB cell lines (Y79 and WERI-Rb1), primary human fetal retinal pigment epithelium (RPE) and fetal and adult retina, mouse retina and embryonic stem (ES) cells. Although enriched during fetal human retinal development, EZH2 protein was not present in the normal postnatal retina. However, EZH2 was detected in all 43 analyzed human RB specimens, indicating that EZH2 is a fetal protein expressed in postnatal human RB. EZH2 expression marked single RB cell invasion into the optic nerve, a site of invasion whose involvement may influence the decision for systemic chemotherapy. To assess the role of EZH2 in RB cell survival, human RB and primary RPE cells were treated with two EZH2 inhibitors (EZH2i), GSK126 and SAH-EZH2 (SAH). EZH2i impaired intracellular adenosine triphosphate (ATP) production, an indicator of cell viability, in a time and dose-dependent manner, but did not affect primary human fetal RPE. Thus, aberrant expression of a histone methyltransferase protein is a feature of human RB. This is the first time this mechanism has been implicated for an eye, adnexal, or orbital tumor. The specificity of EZH2i toward human RB cells, but not RPE, warrants further in vivo testing in animal models of RB, especially those EZH2i currently in clinical trials for solid tumors and lymphoma.
Collapse
|
11
|
Syed J, Chandran A, Pandian GN, Taniguchi J, Sato S, Hashiya K, Kashiwazaki G, Bando T, Sugiyama H. A Synthetic Transcriptional Activator of Genes Associated with the Retina in Human Dermal Fibroblasts. Chembiochem 2015; 16:1497-501. [DOI: 10.1002/cbic.201500140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 01/30/2023]
|
12
|
Wilken MS, Brzezinski JA, La Torre A, Siebenthall K, Thurman R, Sabo P, Sandstrom RS, Vierstra J, Canfield TK, Hansen RS, Bender MA, Stamatoyannopoulos J, Reh TA. DNase I hypersensitivity analysis of the mouse brain and retina identifies region-specific regulatory elements. Epigenetics Chromatin 2015; 8:8. [PMID: 25972927 PMCID: PMC4429822 DOI: 10.1186/1756-8935-8-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 01/27/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The brain, spinal cord, and neural retina comprise the central nervous system (CNS) of vertebrates. Understanding the regulatory mechanisms that underlie the enormous cell-type diversity of the CNS is a significant challenge. Whole-genome mapping of DNase I-hypersensitive sites (DHSs) has been used to identify cis-regulatory elements in many tissues. We have applied this approach to the mouse CNS, including developing and mature neural retina, whole brain, and two well-characterized brain regions, the cerebellum and the cerebral cortex. RESULTS For the various regions and developmental stages of the CNS that we analyzed, there were approximately the same number of DHSs; however, there were many DHSs unique to each CNS region and developmental stage. Many of the DHSs are likely to mark enhancers that are specific to the specific CNS region and developmental stage. We validated the DNase I mapping approach for identification of CNS enhancers using the existing VISTA Browser database and with in vivo and in vitro electroporation of the retina. Analysis of transcription factor consensus sites within the DHSs shows distinct region-specific profiles of transcriptional regulators particular to each region. Clustering developmentally dynamic DHSs in the retina revealed enrichment of developmental stage-specific transcriptional regulators. Additionally, we found reporter gene activity in the retina driven from several previously uncharacterized regulatory elements surrounding the neurodevelopmental gene Otx2. Identification of DHSs shared between mouse and human showed region-specific differences in the evolution of cis-regulatory elements. CONCLUSIONS Overall, our results demonstrate the potential of genome-wide DNase I mapping to cis-regulatory questions regarding the regional diversity within the CNS. These data represent an extensive catalogue of potential cis-regulatory elements within the CNS that display region and temporal specificity, as well as a set of DHSs common to CNS tissues. Further examination of evolutionary conservation of DHSs between CNS regions and different species may reveal important cis-regulatory elements in the evolution of the mammalian CNS.
Collapse
Affiliation(s)
- Matthew S Wilken
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Box 357420, Seattle, WA 98195 USA ; Molecular and Cellular Biology Program, University of Washington, MCB Program Office, T-466 Health Sciences Building, Box 357275, Seattle, WA 98195 USA
| | - Joseph A Brzezinski
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Box 357420, Seattle, WA 98195 USA ; Department of Ophthalmology, University of Colorado School of Medicine, 1675 Aurora Court, Aurora, CO 80045 USA
| | - Anna La Torre
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Box 357420, Seattle, WA 98195 USA
| | - Kyle Siebenthall
- Department of Genome Sciences, University of Washington, Foege Building S-250, 3720 15th Ave NE, Box 355065, Seattle, WA 98195 USA
| | - Robert Thurman
- Department of Genome Sciences, University of Washington, Foege Building S-250, 3720 15th Ave NE, Box 355065, Seattle, WA 98195 USA
| | - Peter Sabo
- Department of Genome Sciences, University of Washington, Foege Building S-250, 3720 15th Ave NE, Box 355065, Seattle, WA 98195 USA
| | - Richard S Sandstrom
- Department of Genome Sciences, University of Washington, Foege Building S-250, 3720 15th Ave NE, Box 355065, Seattle, WA 98195 USA
| | - Jeff Vierstra
- Department of Genome Sciences, University of Washington, Foege Building S-250, 3720 15th Ave NE, Box 355065, Seattle, WA 98195 USA
| | - Theresa K Canfield
- Department of Genome Sciences, University of Washington, Foege Building S-250, 3720 15th Ave NE, Box 355065, Seattle, WA 98195 USA
| | - R Scott Hansen
- Department of Genome Sciences, University of Washington, Foege Building S-250, 3720 15th Ave NE, Box 355065, Seattle, WA 98195 USA
| | - Michael A Bender
- Department of Pediatrics, University of Washington, 1959 NE Pacific St, Health Sciences Building, Seattle, WA Box 356320, 98195 USA ; Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109 USA
| | - John Stamatoyannopoulos
- Department of Genome Sciences, University of Washington, Foege Building S-250, 3720 15th Ave NE, Box 355065, Seattle, WA 98195 USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Box 357420, Seattle, WA 98195 USA
| |
Collapse
|