1
|
Yang JL, Qin Y, Li L, Cao CY, Wang Q, Li Q, Lv YF, Wang Y. Apoptotic Melanoma B16-F1 Cells Induced by Lidamycin Could Initiate the Antitumor Immune Response in BABL/c Mice. Oncol Res 2016; 23:79-86. [PMID: 26802654 PMCID: PMC7842507 DOI: 10.3727/096504015x14478843952942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In the process of tumor cell apoptosis induced by specific regents, calreticulin (CRT) was transferred from endoplasmic reticulum (ER) onto the cell membrane. These tumor cells, when used as the cellular vaccine to immunize experimental animals, could initiate effective antitumor immunoresponse against homologous tumor cells. This is referred to as immunogenic cell death. Lidamycin (LDM) is an enediyne antibiotic, which has extremely potent cytotoxicity to cancer cells. In this study, the mouse melanoma B16-F1 cancer cells were used to investigate the ability of LDM in promoting immunogenic cell death. Our data showed that LDM could induce apoptosis of B16-F1 cancer cells, accompanied by CRT translocation onto the cell membrane. These LDM-treated B16-F1 cells could be recognized and phagocytosed more efficiently by macrophage and dendritic cells. When the LDM-treated apoptotic B16-F1 cells were used as a whole-cell tumor vaccine to immune mice, the mice obtained resistance against rechallenged B16-F1 living cells. At the same time, the specific antitumor immune response was observed in these vaccinated mice. The splenocytes from the mice vaccinated with LDM-treated B16-F1 cells showed significantly enhanced NK lymphocyte activities and also faster growth rate and increased secretion of IFN-γ when encountering the cellular antigens from B16-F1 cells. All these results suggested that LDM could promote immunogenic cell death in B16-F1 cells, and these LDM-treated B16-F1 cells could be used as a sort of cell vaccine to initiate effective antitumor immunoresponse in mice.
Collapse
Affiliation(s)
- Jian-lin Yang
- China Three Gorges University Medical College, Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Yichang, Hubei, China
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Qiao M, Wu D, Carey M, Zhou X, Zhang L. Multi-Scale Agent-Based Multiple Myeloma Cancer Modeling and the Related Study of the Balance between Osteoclasts and Osteoblasts. PLoS One 2015; 10:e0143206. [PMID: 26659358 PMCID: PMC4676611 DOI: 10.1371/journal.pone.0143206] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 11/02/2015] [Indexed: 12/31/2022] Open
Abstract
Research Background Currently, multiple myeloma is the second most common hematological malignancy in the U.S., constituting 1% of all cancers. With conventional treatment, the median survival time is typically 3–4 years, although it can be extended to 5–7 years or longer with advanced treatments. Recent research indicated that an increase in osteoclast (OC) activity is often associated withmultiple myeloma (MM) and that a decrease inosteoblast (OB) activity contributesto the osteolytic lesions in MM. Normally, the populations of OCs and OBs are inequilibrium, and an imbalance in this statecontributes to the development of lesions. Research procedures A multi-scale agent-based multiple myeloma model was developed to simulate the proliferation, migration and death of OBs and OCs. Subsequently, this model was employed to investigate the efficacy of thethree most commonly used drugs for MM treatment under the following two premises: the reduction in the progression of MM and the re-establishment of the equilibrium between OCs and OBs. Research purposes The simulated results not only demonstrated the capacity of the model to choose optimal combinations of the drugs but also showed that the optimal use of the three drugs can restore the balance between OCs and OBs as well as kill MMs. Furthermore, the drug synergism analysis function of the model revealed that restoring the balance between OBs and OCs can significantly increase the efficacy of drugs against tumor cells.
Collapse
Affiliation(s)
- Minna Qiao
- College of Computer and Information Science, Southwest University, Chongqing, P. R. China
| | - Dan Wu
- Department of Radiology, Wake Forest University School of Medicine, Winston Salem, United States of America
| | - Michelle Carey
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, United States of America
| | - Xiaobo Zhou
- Department of Radiology, Wake Forest University School of Medicine, Winston Salem, United States of America
- * E-mail: (LZ); (XBZ)
| | - Le Zhang
- College of Computer and Information Science, Southwest University, Chongqing, P. R. China
- * E-mail: (LZ); (XBZ)
| |
Collapse
|
3
|
Li XQ, Ouyang ZG, Zhang SH, Liu H, Shang Y, Li Y, Zhen YS. Synergy of enediyne antibiotic lidamycin and temozolomide in suppressing glioma growth with potentiated apoptosis induction. J Neurooncol 2014; 119:91-100. [PMID: 24842385 DOI: 10.1007/s11060-014-1477-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 04/30/2014] [Indexed: 12/15/2022]
Abstract
The present work evaluated the synergistic efficacy of an enediyne antibiotic lidamycin (LDM) plus temozolomide (TMZ) against glioma in vitro and in vivo. LDM plus TMZ inhibited the proliferations of rat glioma C6 cells and human glioma U87 cells more efficiently than the single usage of LDM or TMZ. In addition, LDM also potentiated the apoptosis inductions by TMZ in rat C6 cells and human U87 cells. Meanwhile, the results of TdT-mediated dUTP Nick End Labeling assay for subcutaneous U87 tumor sections indicated an enhanced apoptosis induction in vivo by LDM plus TMZ, which confirmed the high potency of the combination for glioma therapy. As determined by Western blot, apoptosis signal pathways in C6 cells and U87 cells were markedly affected by the synergistic alteration of P53, bax, procaspase 3, and bcd-2 expression. In both subcutaneous U87 xenograft and C6 intracerebral orthotopic implant model, TMZ-induced glioma growth suppression was dramatically potentiated by LDM. As shown, the combination therapy efficiently reduced the tumor volumes and tumor weights of the human glioma U87 xenograft. Kaplan-Meier assay revealed that LDM plus TMZ dramatically prolonged the life span of C6 intracerebral tumor-bearing rats with decreased tumor size. This study indicates that the combination of LDM with TMZ might be a promising strategy for glioma therapy.
Collapse
Affiliation(s)
- Xing-Qi Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | | | | | | | | | | | | |
Collapse
|
4
|
Bortezomid enhances the efficacy of lidamycin against human multiple myeloma cells. Anticancer Drugs 2013; 24:609-16. [DOI: 10.1097/cad.0b013e3283615006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Lidamycin induces neural differentiation of mouse embryonic carcinoma cells through down-regulation of transcription factor Oct4. Biochem Biophys Res Commun 2012; 421:44-50. [PMID: 22480685 DOI: 10.1016/j.bbrc.2012.03.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 01/17/2023]
Abstract
Lidamycin is a potential anti-cancer drug, which is widely used in a variety of human cancer types. It has been reported that lidamycin inhibited mouse embryonic carcinoma (EC) cells growth through down-regulation of embryonic stem (ES) cell-like genes. In this study, whether 0.01 nM lidamycin induces neuronal differentiation of mouse EC cells was investigated. It was observed that lidamycin decreased transcription factor Oct4, and increased both p21 mRNA and protein expression in P19 EC cells. Furthermore, luciferase assay showed that lidamycin activated p21 promoter activity through suppression of Oct4, and Chromatin immunoprecipitation (ChIP) assay confirmed that binding of transcription factor Oct4 to the p21 promoter decreased in lidamycin-exposed cells. Knockdown of Oct4 resulted in neuron-like differentiation and up-regulation of p21 expression. In accordance, overexpression of Oct4 blocked neural differentiation and down-regulated p21 in lidamycin-treated P19 cells. Taken together, these results suggested that neuronal differentiation of EC cells induced by lidamycin was associated with the inhibition of Oct4 expression and the activation of p21 transcription. Our results have provided a novel mechanism, in which lidamycin led to cancer cell differentiation.
Collapse
|
6
|
Zhen YZ, Lin YJ, Gao JL, Zhao YF, Xu AJ. Rhein lysinate inhibits cell growth by modulating various mitogen-activated protein kinases in cervical cancer cells. Oncol Lett 2010; 2:129-133. [PMID: 22870141 DOI: 10.3892/ol.2010.200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/20/2010] [Indexed: 11/06/2022] Open
Abstract
In previous studies, we found that rhein lysinate (RHL; the salt of rhein and lysine, easily dissolved in water) inhibited the growth of tumor cells in breast and ovarian cancer and hepatocellular carcinoma. This study aimed to investigate the effect of RHL on the growth of human cervical carcinoma HeLa cells and any underlying mechanisms. RHL inhibited the growth of HeLa cells in a dose- and time-dependent manner. It was also noted that RHL induced apoptosis in HeLa cells in a dose-dependent manner. Mechanistically, RHL triggered HeLa cell apoptosis by increasing the levels of cleaved poly ADP-ribose polymerase (PARP) and caspase-3/7. In addition, the activation of p38 mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase (JNK) was a critical mediator in RHL-induced growth inhibition. Inhibition of the expression of p38 MAPK and JNK by pharmacological inhibitors reversed RHL-induced growth inhibition by decreasing the level of cleaved PARP and caspase-3/7. Phosphorylation of the extracellular signal-related kinase (ERK) was increased by RHL; conversely, the MEK inhibitor which inhibits ERK activity, synergistically enhanced RHL-induced growth inhibition in HeLa cells. The results showed that RHL inhibits Hela cell growth through the activation of p38 MAPK and JNK, and is a potential chemotherapeutic agent for cervical cancer.
Collapse
Affiliation(s)
- Yong-Zhan Zhen
- North China Coal Medical University, Tangshan, Hebei 063000
| | | | | | | | | |
Collapse
|
7
|
Sun LR, Zhong JL, Cui SX, Li X, Ward SG, Shi YQ, Zhang XF, Cheng YN, Gao JJ, Qu XJ. Modulation of P-glycoprotein activity by the substituted quinoxalinone compound QA3 in adriamycin-resistant K562/A02 cells. Pharmacol Rep 2010; 62:333-42. [PMID: 20508289 DOI: 10.1016/s1734-1140(10)70273-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 10/21/2009] [Indexed: 10/25/2022]
Abstract
QA3 is a derivative of the substituted 1,3-dimethyl-1H-quinoxalin-2-ones, which are compounds that may selectively antagonize P-glycoprotein (P-gp) in multidrug resistance (MDR) cancer cells. Our previous work identified QA3 as a candidate compound for reversing MDR in cancer cells. In the present study, we found that QA3 significantly decreases the intracellular level of ATP, stimulates ATPase activity in membrane microsomes and decreases protein kinase C (PKC) activity. These results indicated that QA3 inhibits P-gp activity by blocking ATP hydrolysis and ATP regeneration. Furthermore, QA3 triggered and increased adriamycin-induced K562/A02 cell apoptosis as evidenced by Annexin V-FITC plus PI staining.Western blot analysis showed that the levels of cleaved caspase-9 and cleaved caspase-3 proteins increased, and similarly, the levels of procaspase-9 and procaspase-3 decreased after QA3 treatment. Consequently, poly ADP-ribose polymerase (PARP) activity increased as evidenced by the presence of the PARP cleavage product in K562/A02 cells. QA3 also enhanced the potency of adriamycin against K562/A02 cells as demonstrated by increased apoptosis and activation of caspase-9,-3 and PARP. These data support the observation that P-gp activity is inhibited after QA3 treatment. Moreover, these results indicate that QA3 is a novel MDR reversal agent with potent inhibitory action against P-gp MDR cancer cells.
Collapse
Affiliation(s)
- Li-Rui Sun
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Inhibition of mouse embryonic carcinoma cell growth by lidamycin through down-regulation of embryonic stem cell-like genes Oct4, Sox2 and Myc. Invest New Drugs 2010; 29:1188-97. [PMID: 20596749 DOI: 10.1007/s10637-010-9463-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 05/20/2010] [Indexed: 12/24/2022]
Abstract
Lidamycin (LDM, also known as C-1027) as an anti-cancer agent inhibits growth in a variety of cancer cells by inducing apoptosis and cell cycle arrest. In this study we demonstrated that inhibition of mouse embryonic carcinoma (EC) cell growth using LDM at low concentrations can be attributed to a loss of the cell's self-renewal capability but not to apoptosis or cell death, which can be correlated to the down-regulation of embryonic stem (ES) cell-like genes Oct4, Sox2 and c-Myc. MTT assays showed that LDM inhibited the growth of mouse P19 EC cells in a time- and dose-dependent manner. The EC cells exposed to a low dose (0.01 nM) of LDM lost their capability to generate colonies, as evidenced by the colony forming assay. Flow cytometer analyses demonstrated that LDM induced G1 arrest in exposed EC cells without apoptosis. Real-time qPCR, Western blotting and immunocytochemistry revealed that Oct4, Sox2 and c-Myc were down-regulated in LDM-exposed EC cells, but not adriamycin (ADM)-exposed cells. Furthermore, a combination of the low dose of LDM and ADM significantly reduced the proliferation of the cancer cells than single-agent treatment. This suggested that synergy of ADM and LDM improved chemotherapy. Taking together, our results indicate that LDM can reduce the capability for self-renewal that mouse EC cells possess through the repression of ES cell-like genes, thereby inhibiting carcinoma cell growth. This data also suggests that LDM might have potential for application in CSC-based therapy and be a useful tool for studying ES cell pluripotency and differentiation.
Collapse
|
9
|
Tanaka Y, Fuse S, Tanaka H, Doi T, Takahashi T. An Efficient Synthesis of a Cyclic Ether Key Intermediate for 9-Membered Masked Enediyne Using an Automated Synthesizer. Org Process Res Dev 2009. [DOI: 10.1021/op9002455] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yoshikazu Tanaka
- Department of Applied Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan, and Graduate School of Pharmaceutical Sciences, Tohoku University, Aza-Aoba, Aramaki, Aoba, Sendai 980-8578, Japan
| | - Shinichiro Fuse
- Department of Applied Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan, and Graduate School of Pharmaceutical Sciences, Tohoku University, Aza-Aoba, Aramaki, Aoba, Sendai 980-8578, Japan
| | - Hiroshi Tanaka
- Department of Applied Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan, and Graduate School of Pharmaceutical Sciences, Tohoku University, Aza-Aoba, Aramaki, Aoba, Sendai 980-8578, Japan
| | - Takayuki Doi
- Department of Applied Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan, and Graduate School of Pharmaceutical Sciences, Tohoku University, Aza-Aoba, Aramaki, Aoba, Sendai 980-8578, Japan
| | - Takashi Takahashi
- Department of Applied Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan, and Graduate School of Pharmaceutical Sciences, Tohoku University, Aza-Aoba, Aramaki, Aoba, Sendai 980-8578, Japan
| |
Collapse
|