1
|
Fibach E. Erythropoiesis In Vitro-A Research and Therapeutic Tool in Thalassemia. J Clin Med 2019; 8:jcm8122124. [PMID: 31810354 PMCID: PMC6947291 DOI: 10.3390/jcm8122124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
Thalassemia (thal) is a hereditary chronic hemolytic anemia due to a partial or complete deficiency in the production of globin chains, in most cases, α or β, which compose, together with the iron-containing porphyrins (hemes), the hemoglobin molecules in red blood cells (RBC). The major clinical symptom of β-thal is severe chronic anemia—a decrease in RBC number and their hemoglobin content. In spite of the improvement in therapy, thal still severely affects the quality of life of the patients and their families and imposes a substantial financial burden on the community. These considerations position β-thal, among other hemoglobinopathies, as a major health and social problem that deserves increased efforts in research and its clinical application. These efforts are based on clinical studies, experiments in animal models and the use of erythroid cells grown in culture. The latter include immortal cell lines and cultures initiated by erythroid progenitor and stem cells derived from the blood and RBC producing (erythropoietic) sites of normal and thal donors, embryonic stem cells, and recently, "induced pluripotent stem cells" generated by manipulation of differentiated somatic cells. The present review summarizes the use of erythroid cultures, their technological aspects and their contribution to the research and its clinical application in thal. The former includes deciphering of the normal and pathological biology of the erythroid cell development, and the latter—their role in developing innovative therapeutics—drugs and methods of gene therapy, as well as providing an alternative source of RBC that may complement or substitute blood transfusions.
Collapse
Affiliation(s)
- Eitan Fibach
- The Hematology Department, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| |
Collapse
|
3
|
Shah S, Huang X, Cheng L. Concise review: stem cell-based approaches to red blood cell production for transfusion. Stem Cells Transl Med 2013; 3:346-55. [PMID: 24361925 DOI: 10.5966/sctm.2013-0054] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Blood transfusion is a common procedure in modern medicine, and it is practiced throughout the world; however, many countries report a less than sufficient blood supply. Even in developed countries where the supply is currently adequate, projected demographics predict an insufficient supply as early as 2050. The blood supply is also strained during occasional widespread disasters and crises. Transfusion of blood components such as red blood cells (RBCs), platelets, or neutrophils is increasingly used from the same blood unit for multiple purposes and to reduce alloimmune responses. Even for RBCs and platelets lacking nuclei and many antigenic cell-surface molecules, alloimmunity could occur, especially in patients with chronic transfusion requirements. Once alloimmunization occurs, such patients require RBCs from donors with a different blood group antigen combination, making it a challenge to find donors after every successive episode of alloimmunization. Alternative blood substitutes such as synthetic oxygen carriers have so far proven unsuccessful. In this review, we focus on current research and technologies that permit RBC production ex vivo from hematopoietic stem cells, pluripotent stem cells, and immortalized erythroid precursors.
Collapse
Affiliation(s)
- Siddharth Shah
- Division of Hematology, Department of Medicine, and Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
4
|
Rousseau GF, Giarratana MC, Douay L. Large-scale production of red blood cells from stem cells: what are the technical challenges ahead? Biotechnol J 2013; 9:28-38. [PMID: 24408610 DOI: 10.1002/biot.201200368] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/05/2013] [Accepted: 09/12/2013] [Indexed: 12/11/2022]
Abstract
Blood-transfusion centers regularly face the challenge of donor blood shortages, especially for rare blood groups. The possibility of producing universal red blood cells from stem cells industrially has become a possible alternative since the successful injection of blood generated in vitro into a human being in 2011. Although there remains many biological and regulatory issues concerning the efficacy and safety of this new product, the major challenge today for future clinical applications is switching from the current limited 2-dimensional production techniques to large-scale 3-dimensional bioreactors. In addition to requiring technological breakthroughs, the whole process also has to become at least five-fold more cost-efficient to match the current prices of high-quality blood products. The current review sums up the main biological advances of the past decade, outlines the key biotechnological challenges for the large-scale cost-effective production of red blood cells, proposes solutions based on strategies used in the bioindustry and presents the state-of-the-art of large-scale blood production.
Collapse
Affiliation(s)
- Guillaume F Rousseau
- UPMC University Paris 6, UMR_S938, Proliferation and Differentiation of Stem Cells, Paris, France; INSERM, UMR_S938, Proliferation and Differentiation of Stem Cells, Paris, France; Université Paris Diderot, Paris, France
| | | | | |
Collapse
|
5
|
Abstract
Autism and autism spectrum disorders (ASDs) are complex neurodevelopmental disorders. ASDs are clinically defined by deficits in communication, social skills, and repetitive and/or restrictive interests and behaviours. With the prevalence rates for ASDs rapidly increasing, the need for effective therapies for autism is a priority for biomedical research. Currently available medications do not target the core symptoms, can have markedly adverse side-effects, and are mainly palliative for negative behaviours. The development of molecular and regenerative interventions is progressing rapidly, and medicine holds great expectations for stem cell therapies. Cells could be designed to target the observed molecular mechanisms of ASDs, that is, abnormal neurotransmitter regulation, activated microglia, mitochondrial dysfunction, blood-brain barrier disruptions, and chronic intestinal inflammation. Presently, the paracrine, secretome, and immunomodulatory effects of stem cells would appear to be the likely mechanisms of application for ASD therapeutics. This review will focus on the potential use of the various types of stem cells: embryonic, induced pluripotential, fetal, and adult stem cells as targets for ASD therapeutics.
Collapse
|
6
|
Perspectives on the use of stem cells for autism treatment. Stem Cells Int 2013; 2013:262438. [PMID: 24222772 PMCID: PMC3810518 DOI: 10.1155/2013/262438] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/22/2013] [Accepted: 09/06/2013] [Indexed: 12/13/2022] Open
Abstract
Autism and autism spectrum disorders (ASDs) are complex neurodevelopmental disorders. ASDs are clinically defined by deficits in communication, social skills, and repetitive and/or restrictive interests and behaviours. With the prevalence rates for ASDs rapidly increasing, the need for effective therapies for autism is a priority for biomedical research. Currently available medications do not target the core symptoms, can have markedly adverse side-effects, and are mainly palliative for negative behaviours. The development of molecular and regenerative interventions is progressing rapidly, and medicine holds great expectations for stem cell therapies. Cells could be designed to target the observed molecular mechanisms of ASDs, that is, abnormal neurotransmitter regulation, activated microglia, mitochondrial dysfunction, blood-brain barrier disruptions, and chronic intestinal inflammation. Presently, the paracrine, secretome, and immunomodulatory effects of stem cells would appear to be the likely mechanisms of application for ASD therapeutics. This review will focus on the potential use of the various types of stem cells: embryonic, induced pluripotential, fetal, and adult stem cells as targets for ASD therapeutics.
Collapse
|
7
|
Huang X, Shah S, Wang J, Ye Z, Dowey SN, Tsang KM, Mendelsohn LG, Kato GJ, Kickler TS, Cheng L. Extensive ex vivo expansion of functional human erythroid precursors established from umbilical cord blood cells by defined factors. Mol Ther 2013; 22:451-463. [PMID: 24002691 DOI: 10.1038/mt.2013.201] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/21/2013] [Indexed: 12/15/2022] Open
Abstract
There is a constant shortage of red blood cells (RBCs) from sufficiently matched donors for patients who need chronic transfusion. Ex vivo expansion and maturation of human erythroid precursors (erythroblasts) from the patients or optimally matched donors could represent a potential solution. Proliferating erythroblasts can be expanded from umbilical cord blood mononuclear cells (CB MNCs) ex vivo for 10(6)-10(7)-fold (in ~50 days) before proliferation arrest and reaching sufficient number for broad application. Here, we report that ectopic expression of three genetic factors (Sox2, c-Myc, and an shRNA against TP53 gene) associated with iPSC derivation enables CB-derived erythroblasts to undergo extended expansion (~10(68)-fold in ~12 months) in a serum-free culture condition without change of cell identity or function. These expanding erythroblasts maintain immature erythroblast phenotypes and morphology, a normal diploid karyotype and dependence on a specific combination of growth factors for proliferation throughout expansion period. When being switched to a terminal differentiation condition, these immortalized erythroblasts gradually exit cell cycle, decrease cell size, accumulate hemoglobin, condense nuclei and eventually give rise to enucleated hemoglobin-containing erythrocytes that can bind and release oxygen. Our result may ultimately lead to an alternative approach to generate unlimited numbers of RBCs for personalized transfusion medicine.
Collapse
Affiliation(s)
- Xiaosong Huang
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Siddharth Shah
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jing Wang
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhaohui Ye
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sarah N Dowey
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kit Man Tsang
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Laurel G Mendelsohn
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gregory J Kato
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas S Kickler
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Linzhao Cheng
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Stem Cell Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
9
|
Ebihara Y, Ma F, Tsuji K. Generation of red blood cells from human embryonic/induced pluripotent stem cells for blood transfusion. Int J Hematol 2012; 95:610-6. [PMID: 22648827 DOI: 10.1007/s12185-012-1107-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 05/14/2012] [Accepted: 05/14/2012] [Indexed: 12/19/2022]
Abstract
Red blood cell (RBC) transfusion is necessary for many patients with emergency or hematological disorders. However, to date the supply of RBCs remains labile and dependent on voluntary donations. In addition, the transmission of infectious disease via blood transfusion from unspecified donors remains a risk. Establishing a large quantity of safe RBCs would help to address this issue. Human embryonic stem (hES) cells and the recently established human induced pluripotent stem (hiPS) cells represent potentially unlimited sources of donor-free RBCs for blood transfusion, as they can proliferate indefinitely in vitro. Extensive research has been done to efficiently generate transfusable RBCs from hES/iPS cells. Nevertheless, a number of challenges must be overcome before the clinical usage of hES/iPS cell-derived RBCs can become a reality.
Collapse
Affiliation(s)
- Yasuhiro Ebihara
- Division of Stem Cell Processing, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
10
|
Chang KH, Bonig H, Papayannopoulou T. Generation and characterization of erythroid cells from human embryonic stem cells and induced pluripotent stem cells: an overview. Stem Cells Int 2011; 2011:791604. [PMID: 22135684 PMCID: PMC3205655 DOI: 10.4061/2011/791604] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 08/29/2011] [Indexed: 12/29/2022] Open
Abstract
Because of the imbalance in the supply and demand of red blood cells (RBCs), especially for alloimmunized patients or patients with rare blood phenotypes, extensive research has been done to generate therapeutic quantities of mature RBCs from hematopoietic stem cells of various sources, such as bone marrow, peripheral blood, and cord blood. Since human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) can be maintained indefinitely in vitro, they represent potentially inexhaustible sources of donor-free RBCs. In contrast to other ex vivo stem-cell-derived cellular therapeutics, tumorigenesis is not a concern, as RBCs can be irradiated without marked adverse effects on in vivo function. Here, we provide a comprehensive review of the recent publications relevant to the generation and characterization of hESC- and iPSC-derived erythroid cells and discuss challenges to be met before the eventual realization of clinical usage of these cells.
Collapse
Affiliation(s)
- Kai-Hsin Chang
- Division of Hematology, Department of Medicine, University of Washington, 1705 NE Pacific, Rm K243, P. O. Box 357710, Seattle, WA 98195-7710, USA
| | | | | |
Collapse
|
12
|
Timmins NE, Nielsen LK. Manufactured RBC--rivers of blood, or an oasis in the desert? Biotechnol Adv 2011; 29:661-6. [PMID: 21609758 DOI: 10.1016/j.biotechadv.2011.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Revised: 04/26/2011] [Accepted: 05/08/2011] [Indexed: 12/29/2022]
Abstract
Red blood cell (RBC) transfusion is an essential practice in modern medicine, one that is entirely dependent on the availability of donor blood. Constraints in donor supply have led to proposals that transfusible RBC could be manufactured from stem cells. While it is possible to generate small amounts of RBC in vitro, very large numbers of cells are required to be of clinical significance. We explore the challenges facing large scale manufacture of RBC and technological developments required for such a scenario to be realised.
Collapse
Affiliation(s)
- N E Timmins
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia.
| | | |
Collapse
|