1
|
Zhang J, Huang W. Concomitant Detection of Serum Activating Transcription Factor 4 Levels and Mean Amplitude of Glycemic Excursion Is Helpful to Predict Osteoporosis in Adults With Type 2 Diabetes Mellitus. Can J Diabetes 2025; 49:53-61. [PMID: 39522875 DOI: 10.1016/j.jcjd.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/30/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Activating transcription factor 4 (ATF4) and mean amplitude of glycemic excursion (MAGE) have been implicated in the pathogenesis of osteoporosis (OP) and type 2 diabetes mellitus (T2DM). In this retrospective cohort study we assessed the predictive value of serum ATF4 and MAGE for occurrence of OP in individuals with T2DM. METHODS A total of 162 individuals with T2DM were assigned to T2DM or T2DM+OP groups. All participants underwent serum ATF4 level detection and 72-hour blood glucose monitoring (MAGE measurement). The correlations of ATF4 and MAGE with glucose and bone metabolism indicators and bone mineral density (BMD) were analyzed. A multivariate logistic regression model was developed to evaluate the correlations of ATF4 and MAGE with T2DM-associated OP. The diagnostic performance of concomitant detection of ATF4 and MAGE was assessed based on area under the receiver operating characteristic (AUC) curve. RESULTS Individuals with T2DM with OP had higher serum ATF4 levels and MAGE than those with T2DM only. ATF4 and MAGE correlated positively with fasting insulin, glycated hemoglobin, homeostatic model for insulin resistance assessment, beta-C-terminal crosslinking telopeptide of type I collagen, and tartrate-resistant acid phosphatase-5b, but negatively with bone alkaline phosphatase, serum procollagen type I N-propeptide, procollagen type I carboxy-terminal propeptide, and BMD. Elevated levels of ATF4 and MAGE were independent risk factors, but increased BMD at the hip, femoral neck, and lumbar spine was a protective factor for individuals with T2DM with OP. More importantly, the AUC of concomitant ATF4 and MAGE was considerably higher than that of ATF4 or MAGE alone. CONCLUSION Concomitant detection of ATF4 and MAGE may aid in predicting the occurrence of OP in individuals with T2DM.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Endocrinology, Puren Hospital affiliated with Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Wei Huang
- Department of Endocrinology, Puren Hospital affiliated with Wuhan University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Xiao Y, Xie X, Chen Z, Yin G, Kong W, Zhou J. Advances in the roles of ATF4 in osteoporosis. Biomed Pharmacother 2023; 169:115864. [PMID: 37948991 DOI: 10.1016/j.biopha.2023.115864] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Osteoporosis (OP) is characterized by reduced bone mass, decreased strength, and enhanced bone fragility fracture risk. Activating transcription factor 4 (ATF4) plays a role in cell differentiation, proliferation, apoptosis, redox balance, amino acid uptake, and glycolipid metabolism. ATF4 induces the differentiation of bone marrow mesenchymal stem cells (BM-MSCs) into osteoblasts, increases osteoblast activity, and inhibits osteoclast formation, promoting bone formation and remodeling. In addition, ATF4 mediates the energy metabolism in osteoblasts and promotes angiogenesis. ATF4 is also involved in the mediation of adipogenesis. ATF4 can selectively accumulate in osteoblasts. ATF4 can directly interact with RUNT-related transcription factor 2 (RUNX2) and up-regulate the expression of osteocalcin (OCN) and osterix (Osx). Several upstream factors, such as Wnt/β-catenin and BMP2/Smad signaling pathways, have been involved in ATF4-mediated osteoblast differentiation. ATF4 promotes osteoclastogenesis by mediating the receptor activator of nuclear factor κ-B (NF-κB) ligand (RANKL) signaling. Several agents, such as parathyroid (PTH), melatonin, and natural compounds, have been reported to regulate ATF4 expression and mediate bone metabolism. In this review, we comprehensively discuss the biological activities of ATF4 in maintaining bone homeostasis and inhibiting OP development. ATF4 has become a therapeutic target for OP treatment.
Collapse
Affiliation(s)
- Yaosheng Xiao
- Department of Orthopaetics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xunlu Xie
- Department of Pathology, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Zhixi Chen
- Department of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Guoqiang Yin
- Ganzhou Hospital Affiliated to Nanchang University, Ganzhou 341000, China
| | - Weihao Kong
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China.
| |
Collapse
|
3
|
Zhong M, Wu Z, Chen Z, Ren Q, Zhou J. Advances in the interaction between endoplasmic reticulum stress and osteoporosis. Biomed Pharmacother 2023; 165:115134. [PMID: 37437374 DOI: 10.1016/j.biopha.2023.115134] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023] Open
Abstract
The endoplasmic reticulum (ER) is the main site for protein synthesis, folding, and secretion, and accumulation of the unfolded/misfolded proteins in the ER may induce ER stress. ER stress is an important participant in various intracellular signaling pathways. Prolonged- or high-intensity ER stress may induce cell apoptosis. Osteoporosis, characterized by imbalanced bone remodeling, is a global disease caused by many factors, such as ER stress. ER stress stimulates osteoblast apoptosis, increases bone loss, and promotes osteoporosis development. Many factors, such as the drug's adverse effects, metabolic disorders, calcium ion imbalance, bad habits, and aging, have been reported to activate ER stress, resulting in the pathological development of osteoporosis. Increasing evidence shows that ER stress regulates osteogenic differentiation, osteoblast activity, and osteoclast formation and function. Various therapeutic agents have been developed to counteract ER stress and thereby suppress osteoporosis development. Thus, inhibition of ER stress has become a potential target for the therapeutic management of osteoporosis. However, the in-depth understanding of ER stress in the pathogenesis of osteoporosis still needs more effort.
Collapse
Affiliation(s)
- Mingliang Zhong
- College of Rehabilitation, Gannan Medical University, Ganzhou 341000, China
| | - Zhenyu Wu
- First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China.
| |
Collapse
|
4
|
Nakaue E, Teramachi J, Tenshin H, Hiasa M, Harada T, Oda A, Inoue Y, Shimizu S, Higa Y, Sogabe K, Oura M, Hara T, Sumitani R, Maruhashi T, Yamagami H, Endo I, Tanaka E, Abe M. Mechanisms of preferential bone formation in myeloma bone lesions by proteasome inhibitors. Int J Hematol 2023:10.1007/s12185-023-03601-2. [PMID: 37039914 DOI: 10.1007/s12185-023-03601-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023]
Abstract
Proteasome inhibitors (PIs) can preferentially restore bone in bone-defective lesions of patients with multiple myeloma (MM) who respond favorably to these drugs. Most prior in vitro studies on PIs used continuous exposure to low PI concentrations, although pharmacokinetic analysis in patients has shown that serum concentrations of PIs change in a pulsatile manner. In the present study, we explored the effects of pulsatile treatment with PIs on bone metabolism to simulate in vivo PI pharmacokinetics. Pulsatile treatment with bortezomib, carfilzomib, or ixazomib induced MM cell death but only marginally affected the viability of osteoclasts (OCs) with F-actin ring formation. Pulsatile PI treatment suppressed osteoclastogenesis in OC precursors and bone resorption by mature OCs. OCs robustly enhanced osteoblastogenesis in cocultures with OCs and MC3T3-E1 pre-osteoblastic cells, indicating OC-mediated coupling to osteoblastogenesis. Importantly, pulsatile PI treatment did not impair robust OC-mediated osteoblastogenesis. These results suggest that PIs might sufficiently reduce MM cell-derived osteoblastogenesis inhibitors to permit OC-driven bone formation coupling while suppressing OC differentiation and activity in good responders to PIs. OC-mediated coupling to osteoblastogenesis appears to be a predominant mechanism for preferential occurrence of bone regeneration at sites of osteoclastic bone destruction in good responders.
Collapse
Affiliation(s)
- Emiko Nakaue
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Jumpei Teramachi
- Department of Oral Function and Anatomy, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University Graduate School, 2-5-1 Shikata, Okayama, 700-8525, Japan.
| | - Hirofumi Tenshin
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masahiro Hiasa
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takeshi Harada
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Asuka Oda
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Yusuke Inoue
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - So Shimizu
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yoshiki Higa
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kimiko Sogabe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Masahiro Oura
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Tomoyo Hara
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Ryohei Sumitani
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Tomoko Maruhashi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Hiroki Yamagami
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Itsuro Endo
- Department of Bioregulatory Sciences, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan.
| |
Collapse
|
5
|
Teramachi J, Miki H, Nakamura S, Hiasa M, Harada T, Abe M. Myeloma bone disease: pathogenesis and management in the era of new anti-myeloma agents. J Bone Miner Metab 2023; 41:388-403. [PMID: 36856824 PMCID: PMC9975874 DOI: 10.1007/s00774-023-01403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/20/2023] [Indexed: 03/02/2023]
Abstract
INTRODUCTION Multiple myeloma (MM) is a malignancy of plasma cells with characteristic bone disease. Despite recent great strides achieved in MM treatment owing to the implementation of new anti-MM agents, MM is still incurable and bone destruction remains a serious unmet issue in patients with MM. APPROACH In this review, we will summarize and discuss the mechanisms of the formation of bone disease in MM and the available preclinical and clinical evidence on the treatment for MM bone disease. CONCLUSIONS MM cells produce a variety of cytokines to stimulate receptor activator of nuclear factor-κB ligand-mediated osteoclastogenesis and suppress osteoblastic differentiation from bone marrow stromal cells, leading to extensive bone destruction with rapid loss of bone. MM cells alter the microenvironment through bone destruction where they colonize, which in turn favors tumor growth and survival, thereby forming a vicious cycle between tumor progression and bone destruction. Denosumab or zoledronic acid is currently recommended to be administered at the start of treatment in newly diagnosed patients with MM with bone disease. Proteasome inhibitors and the anti-CD38 monoclonal antibody daratumumab have been demonstrated to exert bone-modifying activity in responders. Besides their anti-tumor activity, the effects of new anti-MM agents on bone metabolism should be more precisely analyzed in patients with MM. Because prognosis in patients with MM has been significantly improved owing to the implementation of new agents, the therapeutic impact of bone-modifying agents should be re-estimated in the era of these new agents.
Collapse
Affiliation(s)
- Jumpei Teramachi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan.
- Department of Oral Function and Anatomy, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University Graduate School, 2-5-1 Shikata, Okayama, 700-8525, Japan.
| | - Hirokazu Miki
- Division of Transfusion Medicine and Cell Therapy, Tokushima University Hospital, Tokushima, Japan
| | - Shingen Nakamura
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masahiro Hiasa
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takeshi Harada
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan.
| |
Collapse
|
6
|
Zhang H, Jiang H, Zhao M, Xu Y, Liang J, Ye Y, Chen H. Treatment of Gout with TCM Using Turmeric and Corn Silk: A Concise Review Article and Pharmacology Network Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3143733. [PMID: 36276864 PMCID: PMC9586733 DOI: 10.1155/2022/3143733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This work aimed to study the compounds, targets, and pathways of turmeric and corn silk for gout and to explore the mechanism of "the same disease with different treatments" based on network pharmacology and molecular docking. METHODS We used the TCMSP, PubChem, and SEA databases to screen the compounds and targets of turmeric and corn silk, gout-related proteins through TTD, Drugbank, DisGeNET, GeneCards, OMIM, and PharmGkb, and used Cytoscape to construct a "compound-target-disease" network. Then, we constructed a protein-protein interaction network (PPI) and used Metascape to perform GO and KEGG analysis. Finally, molecular docking (SYBYL) was used to verify the degree of binding between key targets and compounds. RESULTS We found bisacumol, campesterol, and stigmasterol to be the main turmeric compounds that exerted a marked effect on gout treatment by targeting protein processing in the endoplasmic reticulum through the HSPA1B, HSP90AB1, and STUB1 proteins. The main corn silk compound, Mandenol, treated gout by targeting the Hippo signaling pathway through the CTNNB1, YWHAG, and YWHAZ proteins. CONCLUSION Turmeric and corn silk can treat the same disease, gout, through different pathways and targets. The scientific connotation of "same disease with different treatments" can be preliminarily clarified by analyzing targets and pathways.
Collapse
Affiliation(s)
- Haoyu Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
- Guangzhou Panyu Central Hospital, Guangzhou 511400, China
| | - Huizhong Jiang
- Guizhou University of Traditional Chinese Medicine, Guiyang 550000, China
| | - Mengya Zhao
- Guizhou University of Traditional Chinese Medicine, Guiyang 550000, China
| | - Yan Xu
- School of Pediatrics, Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Jiabin Liang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yufeng Ye
- Guangzhou Panyu Central Hospital, Guangzhou 511400, China
| | - Hanwei Chen
- Guangzhou Panyu Central Hospital, Guangzhou 511400, China
- Panyu Health Management Center (Panyu Rehabilitation Hospital), Guangzhou 511495, China
| |
Collapse
|
7
|
Su S, Zhang D, Liu J, Zhao H, Tang X, Che H, Wang Q, Ren W, Zhen D. Folate ameliorates homocysteine-induced osteoblast dysfunction by reducing endoplasmic reticulum stress-activated PERK/ATF-4/CHOP pathway in MC3T3-E1 cells. J Bone Miner Metab 2022; 40:422-433. [PMID: 35190897 DOI: 10.1007/s00774-022-01313-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 01/14/2022] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Homocysteine (Hcy) is considered a newly identified risk factor for osteoporosis. Nevertheless, the underlying mechanism of folate (FA), a key factor in the metabolism of Hcy, in protection against osteoblast dysfunction remains unclear. The purpose of this study was to investigate the mechanism by which FA attenuates Hcy-induced osteoblast damage. MATERIALS AND METHODS The Hcy-induced MC3T3-E1 cells were treated with different concentrations of FA. Cell morphology, cell density, cell proliferation ability, alkaline phosphatase (ALP) activity and mineralization capacity were observed and determined; the gene expression of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (BAX) and ERS-associated factors, including glucose-regulated protein 78 (GRP-78), activating transcription factor 4 (ATF-4) and growth arrest and DNA damage inducible gene 153 (CHOP/GADD153), were assessed by RT-PCR; and protein levels of GRP-78 and ATF-4 were analyzed by western blotting. RESULTS Hcy suppressed the proliferation, differentiation and mineralization ability of MC3T3-E1 cells in a concentration-dependent manner and activated the ERS signaling pathway. After intervention with different concentrations of FA, the cell viability and density, ALP activity, number of mineralized nodules, calcium content and Bcl-2 gene expression were all significantly increased, whereas the gene expression of GRP-78, CHOP/GADD153, ATF-4 and Bax was markedly downregulated, and protein levels of GRP-78 and ATF-4 were also markedly decreased. CONCLUSION The adverse effects of Hcy on osteoblast differentiation are dose dependent. FA not only protects against osteoblasts apoptosis but also has a direct osteogenic effect on Hcy-induced osteoblasts, which could be partially mediated by inhibition of the PERK-activated ERS pathway.
Collapse
Affiliation(s)
- Shan Su
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Di Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Jinjin Liu
- Department of Endocrinology, The First Hospital of Lanzhou University, 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Haiyan Zhao
- Department of Paediatrics, Gansu Province People's Hospital, Lanzhou, 730000, Gansu Province, China
| | - Xulei Tang
- Department of Endocrinology, The First Hospital of Lanzhou University, 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China
| | - Hongxia Che
- Department of Endocrinology, The Third People's Hospital, Lanzhou, 730000, Gansu Province, China
| | - Qiangmei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Wanna Ren
- Department of Opthalmology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Donghu Zhen
- Department of Endocrinology, The First Hospital of Lanzhou University, 1 Donggang West Road, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
8
|
Cheng Z, Liu Y, Ma M, Sun S, Ma Z, Wang Y, Yu L, Qian X, Sun L, Zhang X, Liu Y, Wang Y. Lansoprazole-induced osteoporosis via the IP3R- and SOCE-mediated calcium signaling pathways. Mol Med 2022; 28:21. [PMID: 35183103 PMCID: PMC8858482 DOI: 10.1186/s10020-022-00448-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/28/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Many clinical studies have shown a correlation between proton pump inhibitors (PPIs) and osteoporosis or fractures. The purpose of this study was to establish a murine model of chronic oral PPI administration to verify whether PPIs caused bone metabolic impairment and investigate the relevant molecular mechanism underlying the effects of PPIs on MC3T3-E1 murine osteoblasts. METHODS A lansoprazole-induced bone loss model was used to investigate the damaging effects of PPIs. In vivo, immunohistochemistry, Hematoxylin-Eosin (HE) staining, micro-CT analysis, and blood biochemical analyses were used to evaluate the effect of lansoprazole on bone injury in mice. In vitro, the effects of lansoprazole and related signaling pathways in MC3T3-E1 cells were investigated by CCK-8 assays, EdU assays, flow cytometry, laser confocal microscopy, patch clamping, reverse transcription-quantitative polymerase chain reaction and Western blotting. RESULTS After 6 months of lansoprazole gavage in ICR mice, the micro-CT results showed that compared with that in the vehicle group, the bone mineral density (BMD) in the high-dose group was significantly decreased (P < 0.05), and the bone microarchitecture gradually degraded. Biochemical analysis of bone serum showed that blood calcium and phosphorus were both decreased (P < 0.01). We found that long-term administration of lansoprazole impaired skeletal function in mice. In vitro, we found that lansoprazole (LPZ) could cause calcium overload in MC3T3-E1 cells leading to apoptosis, and 2-APB, an inhibitor of IP3R calcium release channel and SOCE pathway, effectively blocked increase in calcium caused by LPZ, thus protecting cell viability. CONCLUSIONS Longterm administration of LPZ induced osteoporotic symptoms in mice, and LPZ triggered calcium increases in osteoblasts in a concentration-dependent manner. Intracellular calcium ([Ca2+]i) persisted at a high concentration, thereby causing endoplasmic reticulum stress (ERS) and inducing osteoblast apoptosis.
Collapse
Affiliation(s)
- Ziping Cheng
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210009, China
| | - Yangjie Liu
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210009, China
| | - Mengyuan Ma
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210009, China
| | - Shiyu Sun
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210009, China
| | - Zengqing Ma
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210009, China
| | - Yu Wang
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210009, China
| | - Liyuan Yu
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210009, China
| | - Xuping Qian
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210009, China
| | - Luning Sun
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210009, China
| | - Xuehui Zhang
- Department of Pharmacy, Jiangsu Shengze Hospital, Nanjing Medical University, Suzhou, China
| | - Yun Liu
- Department of Geriatrics Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Yongqing Wang
- Research Division of Clinical Pharmacology, The First Affiliated Hospital of Nanjing Medical University and Jiangsu Province Hospital, 300 Guangzhou Road, Nanjing, 210009, China.
- Department of Pharmacy, Jiangsu Shengze Hospital, Nanjing Medical University, Suzhou, China.
- Department of Pharmacy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
9
|
Hu X, Li B, Wu F, Liu X, Liu M, Wang C, Shi Y, Ye L. GPX7 Facilitates BMSCs Osteoblastogenesis via ER Stress and mTOR Pathway. J Cell Mol Med 2021; 25:10454-10465. [PMID: 34626080 PMCID: PMC8581313 DOI: 10.1111/jcmm.16974] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023] Open
Abstract
Emerging evidence indicates extensive oxidative stress is a consequence of obesity which impairs bone formation. Glutathione peroxidase 7 (GPX7) is a conserved endoplasmic reticulum (ER) retention protein, lacking of which causes accumulation of reactive oxygen species (ROS) and promotes adipogenesis. Since the imbalance between osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cell (BMSC) leads to severe bone diseases such as osteoporosis, it is critical to investigate the potential protective role of Gpx7 in osteogenesis. Here, we provide evidence that deficiency of Gpx7 reduces osteogenesis, but increases adipogenesis in both human BMSCs (hBMSCs) and mouse mesenchymal stem cell line. Interestingly, further studies indicate this defect can be alleviated by the ER stress antagonist, but not the ROS inhibitor, unveiling an unexpected finding that, unlike adipogenesis, lacking of Gpx7 inhibits osteogenesis mediating by induced ER stress instead of enhanced ROS. Furthermore, the mTOR signalling pathway is found down‐regulation during osteogenic differentiation in Gpx7‐deficient condition, which can be rescued by relief of ER stress. Taken together, for the first time we identify a novel function of Gpx7 in BMSCs’ osteogenic differentiation and indicate that Gpx7 may protect against osteoporotic deficits in humans through ER stress and mTOR pathway interplay.
Collapse
Affiliation(s)
- Xuchen Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boer Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengyu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Zhang D, De Veirman K, Fan R, Jian Q, Zhang Y, Lei L, Evans H, Wang Y, Lei L, Wang B, Williamson RA, Chantry A, He P, Li A, De Raeve H, Vanderkerken K, He A, Hu J. ER stress arm XBP1s plays a pivotal role in proteasome inhibition-induced bone formation. Stem Cell Res Ther 2020; 11:516. [PMID: 33256835 PMCID: PMC7708206 DOI: 10.1186/s13287-020-02037-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Bone destruction is a hallmark of multiple myeloma (MM). It has been reported that proteasome inhibitors (PIs) can reduce bone resorption and increase bone formation in MM patients, but the underlying mechanisms remain unclear. METHODS Mesenchymal stem cells (MSCs) were treated with various doses of PIs, and the effects of bortezomib or carfilzomib on endoplasmic reticulum (ER) stress signaling pathways were analyzed by western blotting and real-time PCR. Alizarin red S (ARS) and alkaline phosphatase (ALP) staining were used to determine the osteogenic differentiation in vitro. Specific inhibitors targeting different ER stress signaling and a Tet-on inducible overexpressing system were used to validate the roles of key ER stress components in regulating osteogenic differentiation of MSCs. Chromatin immunoprecipitation (ChIP) assay was used to evaluate transcription factor-promoter interaction. MicroCT was applied to measure the microarchitecture of bone in model mice in vivo. RESULTS We found that both PERK-ATF4 and IRE1α-XBP1s ER stress branches are activated during PI-induced osteogenic differentiation. Inhibition of ATF4 or XBP1s signaling can significantly impair PI-induced osteogenic differentiation. Furthermore, we demonstrated that XBP1s can transcriptionally upregulate ATF4 expression and overexpressing XBP1s can induce the expression of ATF4 and other osteogenic differentiation-related genes and therefore drive osteoblast differentiation. MicroCT analysis further demonstrated that inhibition of XBP1s can strikingly abolish bortezomib-induced bone formation in mouse. CONCLUSIONS These results demonstrated that XBP1s is a master regulator of PI-induced osteoblast differentiation. Activation of IRE1α-XBP1s ER stress signaling can promote osteogenesis, thus providing a novel strategy for the treatment of myeloma bone disease.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, China
| | - Kim De Veirman
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Rong Fan
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, China.,Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Qiang Jian
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, China
| | - Yuchen Zhang
- Department of Oncology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Lei
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, China
| | - Holly Evans
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Yanmeng Wang
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, China.,Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Lei Lei
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, China
| | - Baiyan Wang
- Department of Clinical Hematology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ramone A Williamson
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, China
| | - Andrew Chantry
- Sheffield Myeloma Research Team, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Pengcheng He
- Department of Clinical Hematology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hendrik De Raeve
- Department of Pathology, UZ Brussel, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Aili He
- Department of Clinical Hematology, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jinsong Hu
- Department of Cell Biology and Genetics, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, 710061, China.
| |
Collapse
|
11
|
Li J, Yang S, Li X, Liu D, Wang Z, Guo J, Tan N, Gao Z, Zhao X, Zhang J, Gou F, Yokota H, Zhang P. Role of endoplasmic reticulum stress in disuse osteoporosis. Bone 2017; 97:2-14. [PMID: 27989543 DOI: 10.1016/j.bone.2016.12.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/28/2016] [Accepted: 12/14/2016] [Indexed: 12/14/2022]
Abstract
Osteoporosis is a major skeletal disease with low bone mineral density, which leads to an increased risk of bone fracture. Salubrinal is a synthetic chemical that inhibits dephosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) in response to endoplasmic reticulum (ER) stress. To understand possible linkage of osteoporosis to ER stress, we employed an unloading mouse model and examined the effects of salubrinal in the pathogenesis of disuse osteoporosis. The results presented several lines of evidence that osteoclastogenesis in the development of osteoporosis was associated with ER stress, and salubrinal suppressed unloading-induced bone loss. Compared to the age-matched control, unloaded mice reduced the trabecular bone area/total area (B.Ar/T.Ar) as well as the number of osteoblasts, and they increased the osteoclasts number on the trabecular bone surface in a time-dependent way. Unloading-induced disuse osteoporosis significantly increased the expression of Bip, p-eIF2α and ATF4 in short-term within 6h of tail suspension, but time-dependent decreased in HU2d to HU14d. Furthermore, a significant correlation of ER stress with the differentiation of osteoblasts and osteoclasts was observed. Administration of salubrinal suppressed the unloading-induced decrease in bone mineral density, B.Ar/T.Ar and mature osteoclast formation. Salubrinal also increased the colony-forming unit-fibroblasts and colony-forming unit-osteoblasts. It reduced the formation of mature osteoclasts, suppressed their migration and adhesion, and increased the expression of Bip, p-eIF2α and ATF4. Electron microscopy showed that rough endoplasmic reticulum expansion and a decreased number of ribosomes on ER membrane were observed in osteoblast of unloading mice, and the abnormal ER expansion was significantly improved by salubrinal treatment. A TUNEL assay together with CCAAT/enhancer binding protein homologous protein (CHOP) expression indicated that ER stress-induced osteoblast apoptosis was rescued by salubrinal. Collectively, the results support the notion that ER stress plays a key role in the pathogenesis of disuse osteoporosis, and salubrinal attenuates unloading-induced bone loss by altering proliferation and differentiation of osteoblasts and osteoclasts via eIF2α signaling.
Collapse
Affiliation(s)
- Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300457, China
| | - Shuang Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300457, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300457, China; Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300457, China; Department of Pharmacology, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Zhaonan Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jialu Guo
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Nian Tan
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhe Gao
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoyu Zhao
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jiuguo Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Fanglin Gou
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300457, China; Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China; Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA.
| |
Collapse
|
12
|
Garcia-Gomez A, Sanchez-Guijo F, del Cañizo MC, San Miguel JF, Garayoa M. Multiple myeloma mesenchymal stromal cells: Contribution to myeloma bone disease and therapeutics. World J Stem Cells 2014; 6:322-343. [PMID: 25126382 PMCID: PMC4131274 DOI: 10.4252/wjsc.v6.i3.322] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/24/2014] [Accepted: 06/11/2014] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma is a hematological malignancy in which clonal plasma cells proliferate and accumulate within the bone marrow. The presence of osteolytic lesions due to increased osteoclast (OC) activity and suppressed osteoblast (OB) function is characteristic of the disease. The bone marrow mesenchymal stromal cells (MSCs) play a critical role in multiple myeloma pathophysiology, greatly promoting the growth, survival, drug resistance and migration of myeloma cells. Here, we specifically discuss on the relative contribution of MSCs to the pathophysiology of osteolytic lesions in light of the current knowledge of the biology of myeloma bone disease (MBD), together with the reported genomic, functional and gene expression differences between MSCs derived from myeloma patients (pMSCs) and their healthy counterparts (dMSCs). Being MSCs the progenitors of OBs, pMSCs primarily contribute to the pathogenesis of MBD because of their reduced osteogenic potential consequence of multiple OB inhibitory factors and direct interactions with myeloma cells in the bone marrow. Importantly, pMSCs also readily contribute to MBD by promoting OC formation and activity at various levels (i.e., increasing RANKL to OPG expression, augmenting secretion of activin A, uncoupling ephrinB2-EphB4 signaling, and through augmented production of Wnt5a), thus further contributing to OB/OC uncoupling in osteolytic lesions. In this review, we also look over main signaling pathways involved in the osteogenic differentiation of MSCs and/or OB activity, highlighting amenable therapeutic targets; in parallel, the reported activity of bone-anabolic agents (at preclinical or clinical stage) targeting those signaling pathways is commented.
Collapse
|
13
|
Kitagaki J, Miyauchi S, Xie CJ, Yamashita M, Yamada S, Kitamura M, Murakami S. Effects of the proteasome inhibitor, bortezomib, on cytodifferentiation and mineralization of periodontal ligament cells. J Periodontal Res 2014; 50:248-55. [PMID: 24948468 DOI: 10.1111/jre.12202] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE The proteasome inhibitor, bortezomib, is known to induce osteoblastic differentiation in a number of cell lines, such as mesenchymal stem cells and osteoblastic precursor cells. As periodontal ligament (PDL) cells are multipotent, we examined whether bortezomib may induce the differentiation of PDL cells into hard-tissue-forming cells. MATERIAL AND METHODS A mouse PDL clone cell line, MPDL22 cells, was cultured in mineralization medium in the presence or absence of bortezomib. Expression of calcification-related genes and calcified-nodule formation were evaluated by real-time PCR and Alizarin Red staining, respectively. RESULTS Bortezomib increased the expression of calcification-related mRNAs, such as tissue nonspecific alkaline phosphatase isoenzyme (ALPase), bone sialoprotein (Bsp), runt-related transcription factor 2 (Runx2) and osteopontin, and calcified-nodule formation in MPDL22 cells. These effects were induced, in part, by increasing the cytosolic accumulation and nuclear translocation of β-catenin, leading to an increase in expression of bone morphogenetic protein (Bmp)-2, -4 and -6 mRNAs. In addition, bortezomib enhanced BMP-2-induced expression of Bsp and osteopontin mRNAs and increased calcified-nodule formation in MPDL22 cells. CONCLUSION Bortezomib induced cytodifferentiation and mineralization of PDL cells by enhancing the accumulation of β-catenin within the cytosol and the nucleus and increasing the expression of Bmp-2, -4 and -6 mRNAs. Moreover, bortezomib enhanced the BMP-2-induced cytodifferentiation and mineralization of PDL cells, suggesting that bortezomib may be efficacious for use in periodontal regeneration therapy.
Collapse
Affiliation(s)
- J Kitagaki
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan; Challenge to Intractable Oral Diseases, Center for Translational Dental Research, Osaka University Dental Hospital, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Kikuchi J, Koyama D, Mukai HY, Furukawa Y. Suitable drug combination with bortezomib for multiple myeloma under stroma-free conditions and in contact with fibronectin or bone marrow stromal cells. Int J Hematol 2014; 99:726-36. [DOI: 10.1007/s12185-014-1573-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/17/2014] [Accepted: 03/17/2014] [Indexed: 12/12/2022]
|