1
|
Bubb QR, Balood M, Seir GE, Swartzrock L, Haslett E, Ho K, Xu P, Wiltz SG, Sotillo E, Gruber TA, Richards RM, Mackall CL, Czechowicz A. Development of multivalent CAR T cells as dual immunotherapy and conditioning agents. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200944. [PMID: 40034967 PMCID: PMC11872492 DOI: 10.1016/j.omton.2025.200944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/18/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025]
Abstract
Hematopoietic stem cell transplantation (HSCT) is the only definitive cure for pediatric acute myeloid leukemia (AML). Despite adjustments in HSCT protocols and improvements in supportive care, 30% of high-risk patients who receive HSCT as part of their therapy still experience disease relapse with high transplant-related mortality. Relapsed AML has a dismal prognosis, and novel therapies are needed. To improve upon the status quo, HSCT would more effectively eliminate relapse-initiating leukemic cells and be delivered with safer, non-genotoxic conditioning. Here, we investigate hematopoietic cytokine receptors (HCRs) and identify that KIT, MPL, and FLT3 are collectively highly expressed in virtually all pediatric AML samples studied. Further, we establish proof-of-concept of a first-in-class chimeric antigen receptor (CAR) T cell that enables simultaneous targeting of KIT, MPL, and FLT3 through a single receptor, which we term the extracellularly linked concatemeric trivalent cytokine (ELECTRIC) CAR. ELECTRIC CARs exhibit potent cytotoxicity against normal and malignant hematopoietic cells in vitro and display anti-HCR activity in a murine xenograft model. We propose that the ELECTRIC system can be the foundation to developing a non-genotoxic, anti-leukemic conditioning regimen to enable safer, more durable efficacy with minimal toxicity.
Collapse
Affiliation(s)
- Quenton Rashawn Bubb
- Stem Cell Biology and Regenerative Medicine Graduate Program, Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mohammad Balood
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gabe Eduardo Seir
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Leah Swartzrock
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ethan Haslett
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katie Ho
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peng Xu
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Saida G. Wiltz
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elena Sotillo
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tanja A. Gruber
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rebecca M. Richards
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Crystal L. Mackall
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Blood and Stem Cell Transplantation and Cell Therapy, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Agnieszka Czechowicz
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Yusoff NA, Abd Hamid Z, Budin SB, Taib IS. Hematopoietic stem cell discovery: unveiling the historical and future perspective of colony-forming units assay. PeerJ 2025; 13:e18854. [PMID: 39897489 PMCID: PMC11786707 DOI: 10.7717/peerj.18854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025] Open
Abstract
Stem cells are special cells with the distinctive capability to self-renew, forming a new pool of undifferentiated stem cells. They are also able to differentiate into lineage-specific cell types that are specialized and matured. Thus, stem cells are considered as the building blocks of tissues and organs in which they reside. Among the many types of stem cells, hematopoietic stem cells (HSCs) are the most studied adult stem cells and are considered as a promising source of cells for applications in the clinical and basic sciences. Historically, research on HSCs was initiated in the 1940s, where in a groundbreaking experiment, intravenously injected bone marrow (BM) cells prevented the death of irradiated mice by restoring blood cell production. Since then, HSCs have been studied and utilized in medical therapies and research for over several decades. Over time, more sophisticated tools have been developed to evaluate the behaviour of specifically purified subsets of hematopoietic cells that have the capacity to produce blood cells. One of the established tools is the colony-forming units (CFUs) assay. This assay facilitates the identification, enumeration, and analysis of colonies formed by differentiated hematopoietic stem and progenitor cells (HSPCs) from myeloid, erythroid and lymphoid lineages. Hence, the CFUs assay is a fundamental in vitro platform that allows functional studies on the lineage potential of an individual HSPCs. The outcomes of such studies are crucial in providing critical insights into hematopoiesis. In this review, we explore the fundamental discoveries concerning the CFUs assay by covering the following aspects: (i) the historical overview of the CFUs assay for the study of clonal hematopoiesis involving multilineage potential of HSPCs, (ii) its use in various experimental models comprising humans, mice/rodents, zebrafish and induced pluripotent stem cells (iPSCs) and (iii) research gaps and future direction concerning the role of CFUs assay in clinical and basic sciences. Overall, the CFUs assay confers a transformative platform for a better understanding of HSPCs biology in governing hematopoiesis.
Collapse
Affiliation(s)
- Nur Afizah Yusoff
- Biomedical Science Programme and Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Zariyantey Abd Hamid
- Biomedical Science Programme and Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Balkis Budin
- Biomedical Science Programme and Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Izatus Shima Taib
- Biomedical Science Programme and Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Maul-Newby HM, Halene S. Splicing the Difference: Harnessing the Complexity of the Transcriptome in Hematopoiesis. Exp Hematol 2024; 140:104655. [PMID: 39393608 PMCID: PMC11732257 DOI: 10.1016/j.exphem.2024.104655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Alternative splicing has long been recognized as a powerful tool to expand the diversity of the transcriptome and the proteome. The study of hematopoiesis, from hematopoietic stem cell maintenance and differentiation into committed progenitors to maturation into functional blood cells, has led the field of stem cell research and cellular differentiation for decades. The importance of aberrant splicing due to mutations in cis has been exemplified in thalassemias, resulting from aberrant expression of β-globin. The simultaneous development of increasingly sophisticated technologies, in particular the combination of multicolor flow cytometric cell sorting with bulk and single-cell sequencing, has provided sophisticated insights into the complex regulation of the blood system. The recognition that mutations in key splicing factors drive myeloid malignancies, in particular myelodysplastic syndromes, has galvanized research into alternative splicing in hematopoiesis and its diseases. In this review, we will update the audience on the exciting novel technologies, highlight alternative splicing events and their regulators with essential functions in hematopoiesis, and provide a high-level overview how splicing factor mutations contribute to hematologic malignancies.
Collapse
Affiliation(s)
- Hannah M Maul-Newby
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine, Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
4
|
Beraldo-Neto E, Amador FC, Fernandes KR, Justo GZ, Lacerda JT, Juliano MA. Proteomic Dynamics of Multidrug Resistance Mechanisms in Lucena 1 Cell Line. Cells 2024; 13:1427. [PMID: 39272999 PMCID: PMC11394376 DOI: 10.3390/cells13171427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The Lucena 1 cell line, derived from the human chronic myeloid leukemia cell line K562 under selective pressure of vincristine supplementation, exhibits multidrug resistance (MDR). This study aims to explore and elucidate the underlying mechanisms driving MDR in the Lucena 1 cell line. A proteomic analysis comparing K562 and Lucena 1 revealed qualitative differences, with a focus on the ATP-dependent efflux pump, Translocase ABCB1, a key contributor to drug resistance. Tubulin analysis identified two unique isoforms, Tubulin beta 8B and alpha chain-like 3, exclusive to Lucena 1, potentially influencing resistance mechanisms. Additionally, the association of Rap1A and Krit1 in cytoskeletal regulation and the presence of STAT1, linked to the urea cycle and tumor development, offered insights into Lucena 1's distinctive biology. The increased expression of carbonic anhydrase I suggested a role in pH regulation. The discovery of COP9, a tumor suppressor targeting p53, further highlighted the Lucena 1 complex molecular landscape. This study offers new insights into the MDR phenotype and its multifactorial consequences in cellular pathways. Thus, unraveling the mechanisms of MDR holds promise for innovating cancer models and antitumor targeted strategies, since inhibiting the P-glycoprotein (P-gp)/ABCB1 protein is not always an effective approach given the associated treatment toxicity.
Collapse
Affiliation(s)
- Emidio Beraldo-Neto
- Biochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - Fernanda Cardoso Amador
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - Karolina Rosa Fernandes
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - Giselle Zenker Justo
- Department of Biochemistry, Paulista School of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - José Thalles Lacerda
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| | - Maria A. Juliano
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo 04023-062, Brazil
| |
Collapse
|
5
|
Azizidoost S, Nasrolahi A, Sheykhi-Sabzehpoush M, Anbiyaiee A, Khoshnam SE, Farzaneh M, Uddin S. Signaling pathways governing the behaviors of leukemia stem cells. Genes Dis 2024; 11:830-846. [PMID: 37692500 PMCID: PMC10491880 DOI: 10.1016/j.gendis.2023.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/02/2023] [Indexed: 08/28/2023] Open
Abstract
Leukemia is a malignancy in the blood that develops from the lymphatic system and bone marrow. Although various treatment options have been used for different types of leukemia, understanding the molecular pathways involved in the development and progression of leukemia is necessary. Recent studies showed that leukemia stem cells (LSCs) play essential roles in the pathogenesis of leukemia by targeting several signaling pathways, including Notch, Wnt, Hedgehog, and STAT3. LSCs are highly proliferative cells that stimulate tumor initiation, migration, EMT, and drug resistance. This review summarizes cellular pathways that stimulate and prevent LSCs' self-renewal, metastasis, and tumorigenesis.
Collapse
Affiliation(s)
- Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Mohadeseh Sheykhi-Sabzehpoush
- Department of Laboratory, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran 2193672411, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6193673111, Iran
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
6
|
Tsilingiris D, Vallianou NG, Spyrou N, Kounatidis D, Christodoulatos GS, Karampela I, Dalamaga M. Obesity and Leukemia: Biological Mechanisms, Perspectives, and Challenges. Curr Obes Rep 2024; 13:1-34. [PMID: 38159164 PMCID: PMC10933194 DOI: 10.1007/s13679-023-00542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW To examine the epidemiological data on obesity and leukemia; evaluate the effect of obesity on leukemia outcomes in childhood acute lymphoblastic leukemia (ALL) survivors; assess the potential mechanisms through which obesity may increase the risk of leukemia; and provide the effects of obesity management on leukemia. Preventive (diet, physical exercise, obesity pharmacotherapy, bariatric surgery) measures, repurposing drugs, candidate therapeutic agents targeting oncogenic pathways of obesity and insulin resistance in leukemia as well as challenges of the COVID-19 pandemic are also discussed. RECENT FINDINGS Obesity has been implicated in the development of 13 cancers, such as breast, endometrial, colon, renal, esophageal cancers, and multiple myeloma. Leukemia is estimated to account for approximately 2.5% and 3.1% of all new cancer incidence and mortality, respectively, while it represents the most frequent cancer in children younger than 5 years. Current evidence indicates that obesity may have an impact on the risk of leukemia. Increased birthweight may be associated with the development of childhood leukemia. Obesity is also associated with worse outcomes and increased mortality in leukemic patients. However, there are several limitations and challenges in meta-analyses and epidemiological studies. In addition, weight gain may occur in a substantial number of childhood ALL survivors while the majority of studies have documented an increased risk of relapse and mortality among patients with childhood ALL and obesity. The main pathophysiological pathways linking obesity to leukemia include bone marrow adipose tissue; hormones such as insulin and the insulin-like growth factor system as well as sex hormones; pro-inflammatory cytokines, such as IL-6 and TNF-α; adipocytokines, such as adiponectin, leptin, resistin, and visfatin; dyslipidemia and lipid signaling; chronic low-grade inflammation and oxidative stress; and other emerging mechanisms. Obesity represents a risk factor for leukemia, being among the only known risk factors that could be prevented or modified through weight loss, healthy diet, and physical exercise. Pharmacological interventions, repurposing drugs used for cardiometabolic comorbidities, and bariatric surgery may be recommended for leukemia and obesity-related cancer prevention.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100, Alexandroupolis, Greece
| | - Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Nikolaos Spyrou
- Tisch Cancer Institute Icahn School of Medicine at Mount Sinai, 1190 One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Dimitris Kounatidis
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | | | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Str, 12462, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, 11527, Athens, Greece.
| |
Collapse
|
7
|
Li Y, Seet CS, Mack R, Joshi K, Runde AP, Hagen PA, Barton K, Breslin P, Kini A, Ji HL, Zhang J. Distinct roles of hematopoietic cytokines in the regulation of leukemia stem cells in murine MLL-AF9 leukemia. Stem Cell Reports 2024; 19:100-111. [PMID: 38101400 PMCID: PMC10828676 DOI: 10.1016/j.stemcr.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Lymphoid-primed multipotent progenitor (LMPP)-like and granulocyte-monocyte progenitor (GMP)-like leukemia stem cells (LSCs) co-exist in the blood of most patients with acute myeloid leukemia (AML). Complete elimination of both types of LSCs is required to cure AML. Using an MLL-AF9-induced murine AML model, we studied the role of hematopoietic cytokines in the survival of LMPP- and GMP-like LSCs. We found that SCF or FLT3L promotes the survival of LMPP-like LSCs by stimulating Stat5-mediated Mcl1 expression, whereas interleukin-3 (IL-3) or IL-6 induces the survival of GMP-like LSCs by stimulating Stat3/nuclear factor κB (NF-κB)-mediated Bcl2 expression. Functional study demonstrated that, compared to AML cells cultured in IL-3 and IL-6 medium, AML cells in SCF- or Flt3L-only culture are highly clonogenic in in vitro culture and are highly leukemogenic in vivo. Our study suggests that co-inhibition of both STAT5-MCL1 and STAT3/NF-κB-BCL2 signaling might represent an improved treatment strategy against AML, specifically AML cases with a monocytic phenotype and/or FLT3 mutations.
Collapse
Affiliation(s)
- Yanchun Li
- Blood Disease Laboratory, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710126, P.R. China
| | - Christopher S Seet
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Ryan Mack
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Departments of Cancer Biology and Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Kanak Joshi
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Departments of Cancer Biology and Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Austin P Runde
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Departments of Cancer Biology and Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Patrick A Hagen
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Kevin Barton
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Peter Breslin
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Departments of Biology, Molecular/Cellular Physiology, and Cancer Biology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Ameet Kini
- Department of Pathology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Hong-Long Ji
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA; Burn and Shock Trauma Research Institute, Stritch School of Medicine, Loyola University Chicago Health Sciences Division, Maywood, IL 60153, USA
| | - Jiwang Zhang
- Oncology Institute, Cardinal Bernardin Cancer Canter, Loyola University Medical Center, Maywood, IL 60153, USA; Departments of Cancer Biology and Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL 60153, USA; Department of Pathology, Loyola University Medical Center, Maywood, IL 60153, USA.
| |
Collapse
|
8
|
Li H, Gu J, Sun X, Zuo Q, Li B, Gu X. Isolation of Swine Bone Marrow Lin-/CD45-/CD133 + Cells and Cardio-protective Effects of its Exosomes. Stem Cell Rev Rep 2023; 19:213-229. [PMID: 35925437 PMCID: PMC9822881 DOI: 10.1007/s12015-022-10432-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND The identification in murine bone marrow (BM) of CD133 + /Lin-/CD45- cells, possessing several features of pluripotent stem cells, encouraged us to investigate if similar population of cells could be also isolated from the swine BM. Heart failure is the terminal stage of many cardiovascular diseases, and its key pathological basis is cardiac fibrosis (CF). Research showed that stem cell derived exosomes may play a critical role in cardiac fibrosis. The effect of exosomes (Exos) on CF has remained unclear. OBJECTIVE To establish an isolation and amplification method of CD133 + /Lin-/CD45- cells from newbron swine BM in vitro, explore an highly efficient method to enrich swine bone marrow derived CD133 + /Lin-/CD45- cells and probe into their biological characteristics further. Furher more, to extract exosomes from it and explore its effect on CF. METHODS The mononuclear cells isolated from swine bone marrow by red blood cell (RBC) lysing buffer were coated by adding FcR blocking solution and coupled with CD133 antibody immunomagnetic beads, obtaining CD133 + cell group via Magnetic Activated Cell Sorting (MACS). In steps, the CD133 + /Lin-/CD45- cells were collected by fluorescence-activated cell sorting (FACS) labeled with CD133, Lin and CD45 antibodies, which were cultured and amplified in vitro. The biological features of CD133 + /Lin-/CD45- cells were studied in different aspects, including morphological trait observed with inverted microscope, ultrastructural characteristics observed under transmission electron microscope, expression of pluripotent markersidentified by immunofluorescent staining and Alkaline phosphatase staining. The Exos were extracted using a sequential centrifugation approach and its effects on CF were analyzed in Angiotensin II (Ang-II) induced-cardiac fibrosis in vivo. Rats in each group were treated for 4 weeks, and 2D echocardiography was adopted to evaluate the heart function. The degree of cardiac fibrosis was assessed by Hematoxylin-Eosin (HE) and Masson's trichrome staining. RESULTS The CD133 + /Lin-/CD45- cells accounted for about 0.2%-0.5% of the total mononuclear cells isolated from swine bone marrow. The combination of MACS and FACS to extract CD133 + /Lin-/CD45- cells could improved efficiency and reduced cell apoptosis. The CD133 + /Lin-/CD45- cells featured typical traits of pluripotent stem cells, the nucleus is large, mainly composed of euchromatin, with less cytoplasm and larger nucleoplasmic ratio, which expressed pluripotent markers (SSEA-1, Oct-4, Nanog and Sox-2) and alkaline phosphatase staining was positive.Animal experiment indicated that the cardiac injury related indexes (BNP、cTnI、CK-MB and TNF-α), the expression of key gene Smad3 and the degree of cardiac fibrosis in Exo treatment group were significantly reduced compared with the control group. 4 weeks after the treatment, cardiac ejection fraction (EF) value in the model group showed a remarkable decrease, indicating the induction of HF model. While Exo elevated the EF values, demonstrating cardio-protective effects. CONCLUSION The CD133 + /Lin-/CD45- cells derived from swine bone marrow were successfully isolated and amplified, laying a good foundation for further research on this promising therapeutic cell. The Exos may be a promising potential treatment strategy for CF.
Collapse
Affiliation(s)
- Hongxiao Li
- Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, 225001, Jiangsu, China
| | - Jianjun Gu
- Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, 225001, Jiangsu, China
| | - Xiaolin Sun
- Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, 225001, Jiangsu, China
| | - Qisheng Zuo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Bichun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Xiang Gu
- Medical College of Yangzhou University, Yangzhou, 225001, Jiangsu, China.
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
9
|
Riether C. Regulation of hematopoietic and leukemia stem cells by regulatory T cells. Front Immunol 2022; 13:1049301. [PMID: 36405718 PMCID: PMC9666425 DOI: 10.3389/fimmu.2022.1049301] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/20/2022] [Indexed: 01/25/2023] Open
Abstract
Adult bone marrow (BM) hematopoietic stem cells (HSCs) are maintained in a quiescent state and sustain the continuous production of all types of blood cells. HSCs reside in a specialized microenvironment the so-called HSC niche, which equally promotes HSC self-renewal and differentiation to ensure the integrity of the HSC pool throughout life and to replenish hematopoietic cells after acute injury, infection or anemia. The processes of HSC self-renewal and differentiation are tightly controlled and are in great part regulated through cellular interactions with classical (e.g. mesenchymal stromal cells) and non-classical niche cells (e.g. immune cells). In myeloid leukemia, some of these regulatory mechanisms that evolved to maintain HSCs, to protect them from exhaustion and immune destruction and to minimize the risk of malignant transformation are hijacked/disrupted by leukemia stem cells (LSCs), the malignant counterpart of HSCs, to promote disease progression as well as resistance to therapy and immune control. CD4+ regulatory T cells (Tregs) are substantially enriched in the BM compared to other secondary lymphoid organs and are crucially involved in the establishment of an immune privileged niche to maintain HSC quiescence and to protect HSC integrity. In leukemia, Tregs frequencies in the BM even increase. Studies in mice and humans identified the accumulation of Tregs as a major immune-regulatory mechanism. As cure of leukemia implies the elimination of LSCs, the understanding of these immune-regulatory processes may be of particular importance for the development of future treatments of leukemia as targeting major immune escape mechanisms which revolutionized the treatment of solid tumors such as the blockade of the inhibitory checkpoint receptor programmed cell death protein 1 (PD-1) seems less efficacious in the treatment of leukemia. This review will summarize recent findings on the mechanisms by which Tregs regulate stem cells and adaptive immune cells in the BM during homeostasis and in leukemia.
Collapse
Affiliation(s)
- Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland,*Correspondence: Carsten Riether,
| |
Collapse
|
10
|
Luciano M, Krenn PW, Horejs-Hoeck J. The cytokine network in acute myeloid leukemia. Front Immunol 2022; 13:1000996. [PMID: 36248849 PMCID: PMC9554002 DOI: 10.3389/fimmu.2022.1000996] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous malignancy of the blood and bone marrow, characterized by clonal expansion of myeloid stem and progenitor cells and rapid disease progression. Chemotherapy has been the first-line treatment for AML for more than 30 years. Application of recent high-throughput next-generation sequencing technologies has revealed significant molecular heterogeneity to AML, which in turn has motivated efforts to develop new, targeted therapies. However, due to the high complexity of this disease, including multiple driver mutations and the coexistence of multiple competing tumorigenic clones, the successful incorporation of these new agents into clinical practice remains challenging. These continuing difficulties call for the identification of innovative therapeutic approaches that are effective for a larger cohort of AML patients. Recent studies suggest that chronic immune stimulation and aberrant cytokine signaling act as triggers for AML initiation and progression, facets of the disease which might be exploited as promising targets in AML treatment. However, despite the greater appreciation of cytokine profiles in AML, the exact functions of cytokines in AML pathogenesis are not fully understood. Therefore, unravelling the molecular basis of the complex cytokine networks in AML is a prerequisite to develop new therapeutic alternatives based on targeting cytokines and their receptors.
Collapse
Affiliation(s)
- Michela Luciano
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Peter W. Krenn
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
11
|
Agapito G, Milano M, Cannataro M. A statistical network pre-processing method to improve relevance and significance of gene lists in microarray gene expression studies. BMC Bioinformatics 2022; 23:393. [PMID: 36167506 PMCID: PMC9516794 DOI: 10.1186/s12859-022-04936-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Microarrays can perform large scale studies of differential expressed gene (DEGs) and even single nucleotide polymorphisms (SNPs), thereby screening thousands of genes for single experiment simultaneously. However, DEGs and SNPs are still just as enigmatic as the first sequence of the genome. Because they are independent from the affected biological context. Pathway enrichment analysis (PEA) can overcome this obstacle by linking both DEGs and SNPs to the affected biological pathways and consequently to the underlying biological functions and processes. RESULTS To improve the enrichment analysis results, we present a new statistical network pre-processing method by mapping DEGs and SNPs on a biological network that can improve the relevance and significance of the DEGs or SNPs of interest to incorporate pathway topology information into the PEA. The proposed methodology improves the statistical significance of the PEA analysis in terms of computed p value for each enriched pathways and limit the number of enriched pathways. This helps reduce the number of relevant biological pathways with respect to a non-specific list of genes. CONCLUSION The proposed method provides two-fold enhancements. Network analysis reveals fewer DEGs, by selecting only relevant DEGs and the detected DEGs improve the enriched pathways' statistical significance, rather than simply using a general list of genes.
Collapse
Affiliation(s)
- Giuseppe Agapito
- Department of Law, Economics and Sociology Sciences, University Magna Græcia, 88100 Catanzaro, Italy
- Data Analytics Research Center, University Magna Græcia, 88100 Catanzaro, Italy
| | - Marianna Milano
- Data Analytics Research Center, University Magna Græcia, 88100 Catanzaro, Italy
- Department of Medical and Surgical Sciences, University Magna Græcia, 88100 Catanzaro, Italy
| | - Mario Cannataro
- Data Analytics Research Center, University Magna Græcia, 88100 Catanzaro, Italy
- Department of Medical and Surgical Sciences, University Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
12
|
Ouyang X, Gong Y. One Stone, Two Birds: N6-Methyladenosine RNA Modification in Leukemia Stem Cells and the Tumor Immune Microenvironment in Acute Myeloid Leukemia. Front Immunol 2022; 13:912526. [PMID: 35720276 PMCID: PMC9201081 DOI: 10.3389/fimmu.2022.912526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023] Open
Abstract
Acute myeloid leukemia is the most common acute leukemia in adults, with accumulation of abundant blasts and impairment of hematogenic function. Despite great advances in diagnosis and therapy, the overall survival of patients with acute myeloid leukemia remains poor. Leukemia stem cells are the root cause of relapse and chemoresistance in acute myeloid leukemia. The tumor immune microenvironment is another trigger to induce recurrence and drug resistance. Understanding the underlying factors influencing leukemia stem cells and the tumor immune microenvironment is an urgent and unmet need. Intriguingly, N6-methyladenosine, the most widespread internal mRNA modification in eukaryotes, is found to regulate both leukemia stem cells and the tumor immune microenvironment. Methyltransferases and demethylases cooperatively make N6-methyladenosine modification reversible and dynamic. Increasing evidence demonstrates that N6-methyladenosine modification extensively participates in tumorigenesis and progression in various cancers, including acute myeloid leukemia. In this review, we summarize the current progress in studies on the functions of N6-methyladenosine modification in acute myeloid leukemia, especially in leukemia stem cells and the tumor immune microenvironment. We generalize the landscape of N6-methyladenosine modification in self-renewal of leukemia stem cells and immune microenvironment regulation, as well as in the initiation, growth, proliferation, differentiation, and apoptosis of leukemia cells. In addition, we further explore the clinical application of N6-methyladenosine modification in diagnosis, prognostic stratification, and effect evaluation. Considering the roles of N6-methyladenosine modification in leukemia stem cells and the tumor immune microenvironment, we propose targeting N6-methyladenosine regulators as one stone to kill two birds for acute myeloid leukemia treatment.
Collapse
Affiliation(s)
- Xianfeng Ouyang
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China.,Department of Hematology, Jiujiang First People's Hospital, Jiujiang, China
| | - Yuping Gong
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Splenic red pulp macrophages provide a niche for CML stem cells and induce therapy resistance. Leukemia 2022; 36:2634-2646. [PMID: 36163264 PMCID: PMC7613762 DOI: 10.1038/s41375-022-01682-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022]
Abstract
Disease progression and relapse of chronic myeloid leukemia (CML) are caused by therapy resistant leukemia stem cells (LSCs), and cure relies on their eradication. The microenvironment in the bone marrow (BM) is known to contribute to LSC maintenance and resistance. Although leukemic infiltration of the spleen is a hallmark of CML, it is unknown whether spleen cells form a niche that maintains LSCs. Here, we demonstrate that LSCs preferentially accumulate in the spleen and contribute to disease progression. Spleen LSCs were located in the red pulp close to red pulp macrophages (RPM) in CML patients and in a murine CML model. Pharmacologic and genetic depletion of RPM reduced LSCs and decreased their cell cycling activity in the spleen. Gene expression analysis revealed enriched stemness and decreased myeloid lineage differentiation in spleen leukemic stem and progenitor cells (LSPCs). These results demonstrate that splenic RPM form a niche that maintains CML LSCs in a quiescent state, resulting in disease progression and resistance to therapy.
Collapse
|
14
|
Abnormal monocyte differentiation and function in chronic myelomonocytic leukemia. Curr Opin Hematol 2022; 29:20-26. [PMID: 34854831 DOI: 10.1097/moh.0000000000000689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Monocytes serve as the phagocytic defense surveillance system of the human body. Although there is comprehensive evidence regarding monocyte development, characterization and function under steady state hematopoietic continuum, the deviations and complexities in the monocyte secretome during myeloid malignancies have not been comprehensively examined and delineated. RECENT FINDINGS This review summarizes the aspects of development, functions, transcriptional and cytokine-mediated regulation of monocytes during steady state hematopoiesis and also contrasts the aberrations observed in myelomonocytic leukemias like chronic myelomonocytic leukemia (CMML). It presents the findings from the major studies highlighting the novel markers for identifying CMML monocytes, altered signaling cascades, roles in disease progression and potential therapeutic interventions to reduce the monocyte mediated inflammatory milieu for disease amelioration. SUMMARY Recent findings provide rationale for the development of therapeutic strategies aimed at disrupting the leukemic initiating cells and malignant monocyte axis.
Collapse
|
15
|
Bolandi SM, Pakjoo M, Beigi P, Kiani M, Allahgholipour A, Goudarzi N, Khorashad JS, Eiring AM. A Role for the Bone Marrow Microenvironment in Drug Resistance of Acute Myeloid Leukemia. Cells 2021; 10:2833. [PMID: 34831055 PMCID: PMC8616250 DOI: 10.3390/cells10112833] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with a poor prognosis and remarkable resistance to chemotherapeutic agents. Understanding resistance mechanisms against currently available drugs helps to recognize the therapeutic obstacles. Various mechanisms of resistance to chemotherapy or targeted inhibitors have been described for AML cells, including a role for the bone marrow niche in both the initiation and persistence of the disease, and in drug resistance of the leukemic stem cell (LSC) population. The BM niche supports LSC survival through direct and indirect interactions among the stromal cells, hematopoietic stem/progenitor cells, and leukemic cells. Additionally, the BM niche mediates changes in metabolic and signal pathway activation due to the acquisition of new mutations or selection and expansion of a minor clone. This review briefly discusses the role of the BM microenvironment and metabolic pathways in resistance to therapy, as discovered through AML clinical studies or cell line and animal models.
Collapse
Affiliation(s)
- Seyed Mohammadreza Bolandi
- Department of Immunology, Razi Vaccine and Sera Research Institute, Karaj, Iran; (S.M.B.); (N.G.)
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Mahdi Pakjoo
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; (M.P.); (P.B.)
| | - Peyman Beigi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; (M.P.); (P.B.)
| | - Mohammad Kiani
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Ali Allahgholipour
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Negar Goudarzi
- Department of Immunology, Razi Vaccine and Sera Research Institute, Karaj, Iran; (S.M.B.); (N.G.)
| | - Jamshid S. Khorashad
- Centre for Haematology, Hammersmith Hospital, Imperial College London, London W12 0HS, UK;
| | - Anna M. Eiring
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| |
Collapse
|
16
|
ANP32B-mediated repression of p53 contributes to maintenance of normal and CML stem cells. Blood 2021; 138:2485-2498. [PMID: 34359074 DOI: 10.1182/blood.2020010400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/03/2021] [Indexed: 11/20/2022] Open
Abstract
Proper regulation of p53 signaling is critical for the maintenance of hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs). The hematopoietic cell-specific mechanisms regulating p53 activity remain largely unknown. Here, we demonstrate that conditional deletion of acidic leucine-rich nuclear phosphoprotein 32B (ANP32B) in hematopoietic cells impairs repopulation capacity and post-injury regeneration of HSCs. Mechanistically, ANP32B forms a repressive complex with and thus inhibits the transcriptional activity of p53 in hematopoietic cells, and p53 deletion rescues the functional defect in Anp32b-deficient HSCs. Of great interest, ANP32B is highly expressed in leukemic cells from chronic myelogenous leukemia (CML) patients. Anp32b deletion enhances p53 transcriptional activity to impair LSCs function in a murine CML model, and exhibits synergistic therapeutic effects with tyrosine kinase inhibitors in inhibiting CML propagation. In summary, our findings provide a novel strategy to enhance p53 activity in LSCs by inhibiting ANP32B, and identify ANP32B as a potential therapeutic target in treating CML.
Collapse
|
17
|
El Hajj H, Hleihel R, El Sabban M, Bruneau J, Zaatari G, Cheminant M, Marçais A, Akkouche A, Hasegawa H, Hall W, De Thé H, Hermine O, Bazarbachi A. Loss of interleukin-10 activates innate immunity to eradicate adult T-cell leukemia-initiating cells. Haematologica 2021; 106:1443-1456. [PMID: 33567810 PMCID: PMC8094094 DOI: 10.3324/haematol.2020.264523] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is associated with chronic human T-cell leukemia virus type 1 infection and carries a poor pr o gnosi s. Arsenic tr ioxide (AS) and inter feron-alpha (IFN) together selectively trigger Tax viral oncoprotein degradation and cure Tax-driven murine ATL. AS/IFN/zidovudine treatment achieves a high response rate in patients with chronic ATL. Interleukin 10 (IL-10) is an immuno-suppressive cytokine whose expression is activated by Tax. Here we show that, in ATL, AS/IFN-induced abrogation of leukemiainitiating cell activity requires IL-10 expression shutoff. Loss of IL-10 secretion drives production of inflammatory cytokines by the microenvironment, followed by innate immunity-mediated clearance of Tax-driven leukemic cells. Accordingly, anti-IL-10 monoclonal antibodies significantly increased the efficiency of AS/IFNtherapy. These results emphasize the sequential targeting of malignant ATL cells and their immune microenvironment in leukemia-initiating cell eradication and provide a strong rationale to test the AS/IFN/anti-IL10 combination in ATL.
Collapse
Affiliation(s)
- Hiba El Hajj
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, 1107 2020 Beirut, Lebanon; Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, 1107 2020 Beirut.
| | - Rita Hleihel
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, 1107 2020 Beirut
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2020 Beirut
| | - Julie Bruneau
- Institut Imagine - INSERM U1163, Necker Hospital, University of Paris, 75015 Paris France; Department of Pathology, Necker Hospital, University of Paris, Assistance Publique Hôpitaux de Paris, 75015 Paris
| | - Ghazi Zaatari
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, American University of Beirut, 1107 2020 Beirut
| | - Morgane Cheminant
- Institut Imagine - INSERM U1163, Necker Hospital, University of Paris, 75015 Paris France; Department of Hematology, Necker Hospital, University of Paris, Assistance Publique Hôpitaux de Paris, 75015 Paris
| | - Ambroise Marçais
- Department of Hematology, Necker Hospital, University of Paris, Assistance Publique Hôpitaux de Paris, 75015 Paris, France; INSERM UMR 1151, University of Paris, Paris
| | - Abdou Akkouche
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, 1107 2020 Beirut
| | | | - William Hall
- University College Dublin, 47335 Dublin, Ireland; GI CoRE, Center for Zoonosis Control, Hokkaido University, Sapporo
| | - Hugues De Thé
- INSERM UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Hôpital St. Louis 1, Avenue Claude Vellefaux 75475 PARIS cedex 10 France; CNRS UMR 7212, Hôpital St. Louis 1, Avenue Claude Vellefaux 75475 PARIS cedex 10 France; College de France, Place Marcelin Berthelot 75005 PARIS France
| | - Olivier Hermine
- Institut Imagine - INSERM U1163, Necker Hospital, University of Paris, 75015 Paris France; Department of Hematology, Necker Hospital, University of Paris, Assistance Publique Hôpitaux de Paris, 75015 Paris.
| | - Ali Bazarbachi
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, 1107 2020 Beirut, Lebanon; Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2020 Beirut.
| |
Collapse
|
18
|
Camacho V, Matkins VR, Patel SB, Lever JM, Yang Z, Ying L, Landuyt AE, Dean EC, George JF, Yang H, Ferrell PB, Maynard CL, Weaver CT, Turnquist HR, Welner RS. Bone marrow Tregs mediate stromal cell function and support hematopoiesis via IL-10. JCI Insight 2020; 5:135681. [PMID: 33208555 PMCID: PMC7710301 DOI: 10.1172/jci.insight.135681] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 10/07/2020] [Indexed: 12/31/2022] Open
Abstract
The nonimmune roles of Tregs have been described in various tissues, including the BM. In this study, we comprehensively phenotyped marrow Tregs, elucidating their key features and tissue-specific functions. We show that marrow Tregs are migratory and home back to the marrow. For trafficking, marrow Tregs use S1P gradients, and disruption of this axis allows for specific targeting of the marrow Treg pool. Following Treg depletion, the function and phenotype of both mesenchymal stromal cells (MSCs) and hematopoietic stem cells (HSCs) was impaired. Transplantation also revealed that a Treg-depleted niche has a reduced capacity to support hematopoiesis. Finally, we found that marrow Tregs are high producers of IL-10 and that Treg-secreted IL-10 has direct effects on MSC function. This is the first report to our knowledge revealing that Treg-secreted IL-10 is necessary for stromal cell maintenance, and our work outlines an alternative mechanism by which this cytokine regulates hematopoiesis.
Collapse
Affiliation(s)
| | | | | | - Jeremie M. Lever
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, and
| | - Zhengqin Yang
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Li Ying
- Cancer Science Institute of Singapore & Department of Biochemistry, National University of Singapore, Singapore
| | - Ashley E. Landuyt
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Emma C. Dean
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - James F. George
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Henry Yang
- Cancer Science Institute of Singapore & Department of Biochemistry, National University of Singapore, Singapore
| | - Paul Brent Ferrell
- Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Craig L. Maynard
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Casey T. Weaver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Heth R. Turnquist
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
19
|
Ratliff ML, Shankar M, Guthridge JM, James JA, Webb CF. TLR engagement induces ARID3a in human blood hematopoietic progenitors and modulates IFNα production. Cell Immunol 2020; 357:104201. [PMID: 32979763 PMCID: PMC7737244 DOI: 10.1016/j.cellimm.2020.104201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 11/19/2022]
Abstract
The DNA binding protein AT-rich interacting domain 3a (ARID3a)2 is expressed in healthy human hematopoietic cord blood progenitors where its modulation influences myeloid versus B lineage development. ARID3a is also variably expressed in subsets of adult peripheral blood hematopoietic progenitors where the consequences of ARID3a expression are unknown. In B lymphocytes, Toll-like receptor (TLR)3 signaling induces ARID3a expression in association with Type I interferon inflammatory cytokines. We hypothesized that TLR ligand stimulation of peripheral blood hematopoietic progenitors would induce ARID3a expression resulting in interferon production, and potentially influencing lineage decisions. Our data revealed that the TLR9 agonist CpG induces ARID3a expression with interferon alpha synthesis in human hematopoietic progenitors. However, ARID3a expression was not associated with increased B lineage development. These results demonstrate the need for further experiments to better define how pathogen-associated responses influence hematopoiesis.
Collapse
Affiliation(s)
- Michelle L Ratliff
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Malini Shankar
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Joel M Guthridge
- Arthritis and Clinical Immunology Program, Oklahoma Medical Resource Foundation, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Judith A James
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Arthritis and Clinical Immunology Program, Oklahoma Medical Resource Foundation, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Carol F Webb
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
20
|
Tan Y, Wu Q, Zhou F. Targeting acute myeloid leukemia stem cells: Current therapies in development and potential strategies with new dimensions. Crit Rev Oncol Hematol 2020; 152:102993. [PMID: 32502928 DOI: 10.1016/j.critrevonc.2020.102993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
High relapse rate of acute myeloid leukemia (AML) is still a crucial problem despite considerable advances in anti-cancer therapies. One crucial cause of relapse is the existence of leukemia stem cells (LSCs) with self-renewal ability, which contribute to repeated treatment resistance and recurrence. Treatments targeting LSCs, especially in combination with existing chemotherapy regimens or hematopoietic stem cell transplantation might help achieve a higher complete remission rate and improve overall survival. Many novel agents of different therapeutic strategies that aim to modulate LSCs self-renewal, proliferation, apoptosis, and differentiation are under investigation. In this review, we summarize the latest advances of different therapies in development based on the biological characteristics of LSCs, with particular attention on natural products, synthetic compounds, antibody therapies, and adoptive cell therapies that promote the LSC eradication. We also explore the causes of AML recurrence and proposed potential strategies with new dimensions for targeting LSCs in the future.
Collapse
Affiliation(s)
- Yuxin Tan
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China.
| |
Collapse
|
21
|
Lian Z, Hu Z, Xian H, Jiang R, Huang H, Jiang Y, Zheng Z, Lloyd RS, Yuan J, Sha Y, Wang S, Hu D. Exosomes derived from normal human bronchial epithelial cells down-regulate proliferation and migration of hydroquinone-transformed malignant recipient cells via up-regulating PTEN expression. CHEMOSPHERE 2020; 244:125496. [PMID: 31812062 DOI: 10.1016/j.chemosphere.2019.125496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
The gene encoding the tumor suppressor, phosphatase and tensin homolog (PTEN), located on chromosome 10, is frequently expressed at low levels in various tumors, resulting in the stimulation of cell proliferation and migration. However, the role of exosomal PTEN in cell-cell communication during the progress of benzene-induced carcinogenesis remains unclear. The goal of this study was to explore whether exosomes derived from normal human bronchial epithelial cells (16HBE) could transmit PTEN to hydroquinone-transformed malignant recipient cells (16HBE-t) and its possible effects on cell proliferation and migration. Consistent with PTEN expression being down-regulated in transformed cells, we found that its expression was significantly decreased in 16HBE-t relative to 16HBE cells and that purified exosomes secreted by 16HBE, up-regulated PTEN levels in recipient 16HBE-t cells. Thus, down-regulating their proliferation and migration. Further, when exosomes derived from 16HBE cells that had been treated with the PTEN inhibitor SF1670, were incubated with recipient 16HBE-t cells, they exhibited decreased PTEN levels, with a corresponding increase in their proliferation and migration. In conclusion, our study demonstrates that exosomes derived from 16HBE cells can down-regulate proliferation and migration of recipient 16HBE-t cells via transferring PTEN.
Collapse
Affiliation(s)
- Zhenwei Lian
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zuqing Hu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China; Department of Medicine, Jiamusi University, Jiamusi, 154007, China
| | - Hongyi Xian
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Ran Jiang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Haoyu Huang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yunxia Jiang
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Zhongdaixi Zheng
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, 3181 S. W. Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Jianhui Yuan
- Nanshan District Center for Disease Control and Prevention, Shenzhen, 518054, China
| | - Yan Sha
- Institute of Occupational Disease, Shenzhen Prevention and Treatment Center for Occupational Disease, Shenzhen, 518020, China
| | - Sanming Wang
- Faculty of Health Sciences, University of Macau, Taipa, SAR, Macau, China
| | - Dalin Hu
- Department of Environmental Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
22
|
Petinati NA, Petrova AN, Chelysheva EY, Shukhov OA, Bykova AV, Nemchenko IS, Sats NV, Turkina AG, Drize NI. Multipotent Mesenchymal Stromal Cells in Patients with Chronic Myeloid Leukemia before Discontinuation of Tyrosine Kinase Inhibitors. Bull Exp Biol Med 2019; 167:580-583. [PMID: 31502137 DOI: 10.1007/s10517-019-04575-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Indexed: 12/27/2022]
Abstract
We analyzed changes in multipotent mesenchymal stromal cells of patients with chronic myeloid leukemia before discontinuation of tyrosine kinase inhibitors. Withdrawal syndrome was significantly more common in patients who have been taking tyrosine kinase inhibitors for a longer time and in patients of older age and with lower body weight. In patients with withdrawal syndrome, the total production of mesenchymal stromal cells and expression of FGFR2 and MMP2 genes were significantly lower; loss of deep molecular response was also less frequent in this group of patients. At the same time, the expression of genes important for the maintenance of stem cells (SOX9, PDGFRa, and LIF) was significantly lower in the mesenchymal stromal cells of patients with withdrawal syndrome and loss of deep molecular response. We observed a clear-cut relationship between the development of withdrawal syndrome and the loss of deep molecular response. The decrease in the expression of FGFR2 and MMP2 genes in the mesenchymal stromal cells of patients with chronic myeloid leukemia before discontinuation of treatment can be a predictor of withdrawal syndrome, while simultaneous decrease in the expression of SOX9, PDGFRa, and LIF in these cells attests to undesirability of therapy discontinuation at the moment.
Collapse
Affiliation(s)
- N A Petinati
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A N Petrova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E Yu Chelysheva
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - O A Shukhov
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Bykova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I S Nemchenko
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - N V Sats
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | - N I Drize
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, Russia.
| |
Collapse
|
23
|
Batatinha HAP, Diniz TA, de Souza Teixeira AA, Krüger K, Rosa-Neto JC. Regulation of autophagy as a therapy for immunosenescence-driven cancer and neurodegenerative diseases: The role of exercise. J Cell Physiol 2019; 234:14883-14895. [PMID: 30756377 DOI: 10.1002/jcp.28318] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/26/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Aging is one of the risk factors for the development of low-grade inflammation morbidities, such as several types of cancer and neurodegenerative diseases, due to changes in the metabolism, hormonal secretion, and immunosenescence. The senescence of the immune system leads to improper control of infections and tissue damage increasing age-related diseases. One of the mechanisms that maintain cellular homeostasis is autophagy, a cell-survival mechanism, and it has been proposed as one of the most powerful antiaging therapies. Regular exercise can reestablish autophagy, probably through AMP-activated protein kinase activation, and help in reducing the age-related senescence diseases. Therefore, in this study, we discuss the effects of exercise training in immunosenescence and autophagy, preventing the two main age-related disease, cancer and neurodegeneration.
Collapse
Affiliation(s)
| | - Tiego Aparecido Diniz
- Department of Cell and Developmental Biology, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Karsten Krüger
- Department Exercise and Health, Institute of Sports Science, Leibniz University Hannover, Hannover, Germany
| | - Jose Cesar Rosa-Neto
- Department of Cell and Developmental Biology, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Nemkov T, D'Alessandro A, Reisz JA. Metabolic underpinnings of leukemia pathology and treatment. Cancer Rep (Hoboken) 2019; 2:e1139. [PMID: 32721091 DOI: 10.1002/cnr2.1139] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/24/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Carcinogenic transformation of white blood cells during hematopoiesis leads to the development of leukemia, a cancer characterized by incompetent immune cells and a disruption of normal bone marrow function. Leukemias are diverse in type, affected population, prognosis, and treatment regimen, yet a common theme in leukemia is the dysregulated metabolism of leukemic cells and leukemic stem cells with respect to their noncancerous counterparts. RECENT FINDINGS In this review, we highlight current findings that elucidate metabolic traits unique to the four major types of leukemia, which confer carcinogenic survival but can be potentially exploited for therapeutic intervention. These metabolic features can work in conjunction with or be independent of unique aspects of the bone marrow microenvironment that can also influence cell survival and proliferation, thus sustaining carcinogenesis. CONCLUSION Deepening our understanding of the interactions of leukemias with their niche environments in vivo will inform future treatments for leukemia, particularly for those that are refractive to tyrosine kinase inhibitors and other therapeutic mainstays.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
25
|
Kogan AA, Lapidus RG, Baer MR, Rassool FV. Exploiting epigenetically mediated changes: Acute myeloid leukemia, leukemia stem cells and the bone marrow microenvironment. Adv Cancer Res 2019; 141:213-253. [PMID: 30691684 DOI: 10.1016/bs.acr.2018.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute myeloid leukemia (AML) derives from the clonal expansion of immature myeloid cells in the bone marrow, and results in the disruption of normal hematopoiesis and subsequent bone marrow failure. The bone marrow microenvironment (BME) and its immune and other supporting cells are regarded to facilitate the survival, differentiation and proliferation of leukemia stem cells (LSCs), which enables AML cells to persist and expand despite treatment. Recent studies have identified epigenetic modifications among AML cells and BME constituents in AML, and have shown that epigenetic therapy can potentially reprogram these alterations. In this review, we summarize the interactions between the BME and LSCs, and discuss changes in how the BME and immune cells interact with AML cells. After describing the epigenetic modifications seen across chromatin, DNA, the BME, and the immune microenvironment, we explore how demethylating agents may reprogram these pathological interactions, and potentially re-sensitize AML cells to treatment.
Collapse
Affiliation(s)
- Aksinija A Kogan
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Rena G Lapidus
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Maria R Baer
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Feyruz V Rassool
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States.
| |
Collapse
|
26
|
|
27
|
Arrigoni E, Del Re M, Galimberti S, Restante G, Rofi E, Crucitta S, Baratè C, Petrini M, Danesi R, Di Paolo A. Concise Review: Chronic Myeloid Leukemia: Stem Cell Niche and Response to Pharmacologic Treatment. Stem Cells Transl Med 2018; 7:305-314. [PMID: 29418079 PMCID: PMC5827745 DOI: 10.1002/sctm.17-0175] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/09/2018] [Indexed: 12/27/2022] Open
Abstract
Nowadays, more than 90% of patients affected by chronic myeloid leukemia (CML) survive with a good quality of life, thanks to the clinical efficacy of tyrosine kinase inhibitors (TKIs). Nevertheless, point mutations of the ABL1 pocket occurring during treatment may reduce binding of TKIs, being responsible of about 20% of cases of resistance among CML patients. In addition, the presence of leukemic stem cells (LSCs) represents the most important event in leukemia progression related to TKI resistance. LSCs express stem cell markers, including active efflux pumps and genetic and epigenetic alterations together with deregulated cell signaling pathways involved in self-renewal, such as Wnt/β-catenin, Notch, and Hedgehog. Moreover, the interaction with the bone marrow microenvironment, also known as hematopoietic niche, may influence the phenotype of surrounding cells, which evade mechanisms controlling cell proliferation and are less sensitive or frankly resistant to TKIs. This Review focuses on the role of LSCs and stem cell niche in relation to response to pharmacological treatments. A literature search from PubMed database was performed until April 30, 2017, and it has been analyzed according to keywords such as chronic myeloid leukemia, stem cell, leukemic stem cells, hematopoietic niche, tyrosine kinase inhibitors, and drug resistance. Stem Cells Translational Medicine 2018;7:305-314.
Collapse
Affiliation(s)
- Elena Arrigoni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Sara Galimberti
- Unit of Hematology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Giuliana Restante
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Eleonora Rofi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Claudia Baratè
- Unit of Hematology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Mario Petrini
- Unit of Hematology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Antonello Di Paolo
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| |
Collapse
|