1
|
Boghean L, Singh S, Mangalaparthi KK, Kizhake S, Umeta L, Wishka D, Grothaus P, Pandey A, Natarajan A. A Selective MAP3K1 Inhibitor Facilitates Discovery of NPM1 as a Member of the Network. Molecules 2025; 30:2001. [PMID: 40363807 PMCID: PMC12073402 DOI: 10.3390/molecules30092001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The quinoxaline core is found in several biologically active compounds, with Erdafitinib being the first FDA-approved quinoxaline derivative that targets a kinase and exhibits anti-cancer properties. We previously reported a quinoxaline analog (84) that displayed anti-cancer effects by inhibiting IKKβ, a key kinase in the NFκB pathway. Here, we present the synthesis of a regioisomer (51-106) and its characterization as a selective MAP3K1 inhibitor with improved metabolic stability and oral bioavailability. We used the small molecule MAP3K1 inhibitor in a proteomics study that identified NPM1 as a member of the MAP3K1 network.
Collapse
Affiliation(s)
- Lidia Boghean
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sarbjit Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kiran K. Mangalaparthi
- Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; (K.K.M.); (A.P.)
| | - Smitha Kizhake
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lelisse Umeta
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Donn Wishka
- Drug Synthesis and Chemistry Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA (P.G.)
| | - Paul Grothaus
- Drug Synthesis and Chemistry Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA (P.G.)
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; (K.K.M.); (A.P.)
- Department of Community Medicine, Manipal Academy of Higher Education, Manipal 576104, India
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
2
|
Tallima Z, Ibraheem D, Wilson M, Elfishawi S. Variability in expression of homeobox genes (HOXA9) and (HOXA7) in acute myeloid leukemia patients. Curr Res Transl Med 2025; 73:103503. [PMID: 40058172 DOI: 10.1016/j.retram.2025.103503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 06/01/2025]
Abstract
The strong association between NPM1 mutation and increased expression levels of HOXA7 and HOXA9 implies that HOXA genes may be utilized as targeted treatment markers in NPM1-mutated patients. We examined HOXA7 and HOXA9 gene expression in acute myeloid leukemia (AML) patients with nucleophosmin1 (NPM1) mutation. This study included 91 cases of AML and 23 samples of matched healthy controls. HOXA7 and HOXA9 gene expression was analyzed using real-time PCR with SYBR Green dye. All cases were subjected to NPM1 mutation detection. Both HOXA7 and HOXA9 gene expressions were significantly correlated with age, with adult patients exhibiting substantially higher gene expression than pediatric patients (p < 0.01). Both HOXA7 and HOXA9 high gene expressions were significantly associated with NPM1 mutation (p = 0.032 and p = 0.001, respectively). Adult patients with AML demonstrated a higher level of HOXA9 expression, which has a negative impact on the disease-free survival of NPM1-mutated patients (p = 0.055). Therefore, targeting the HOXA9 pathway presents a highly plausible treatment option for NPM1-mutated adult AML patients.
Collapse
Affiliation(s)
- Zainab Tallima
- BMT LAB UNIT, Clinical Pathology Department, National Cancer Institute, Cairo University, Foum elkhaligg sq, Cairo, Egypt.
| | - Dalia Ibraheem
- Medical Oncology Department, National Cancer Institute, Cairo University, Egypt.
| | - Manal Wilson
- Clinical Pathology Department, Kasr Alaini Faculty of Medicine, Cairo University, Egypt.
| | - Sally Elfishawi
- BMT LAB UNIT, Clinical Pathology Department, National Cancer Institute, Cairo University, Foum elkhaligg sq, Cairo, Egypt.
| |
Collapse
|
3
|
Cheung HL, Wong YH, Li YY, Yang X, Ko LH, Tan Kabigting JE, Chan KC, Leung AYH, Chan BP. Microenvironment matters: In vitro 3D bone marrow niches differentially modulate survival, phenotype and drug responses of acute myeloid leukemia (AML) cells. Biomaterials 2025; 312:122719. [PMID: 39088912 DOI: 10.1016/j.biomaterials.2024.122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
Acute myeloid leukemia (AML) is a deadly form of leukemia with ineffective traditional treatment and frequent chemoresistance-associated relapse. Personalized drug screening holds promise in identifying optimal regimen, nevertheless, primary AML cells undergo spontaneous apoptosis during cultures, invalidating the drug screening results. Here, we reconstitute a 3D osteogenic niche (3DON) mimicking that in bone marrow to support primary AML cell survival and phenotype maintenance in cultures. Specifically, 3DON derived from osteogenically differentiated mesenchymal stem cells (MSC) from healthy and AML donors are co-cultured with primary AML cells. The AML cells under the AML_3DON niche showed enhanced viability, reduced apoptosis and maintained CD33+ CD34-phenotype, associating with elevated secretion of anti-apoptotic cytokines in the AML_3DON niche. Moreover, AML cells under the AML_3DON niche exhibited low sensitivity to two FDA-approved chemotherapeutic drugs, further suggesting the physiological resemblance of the AML_3DON niche. Most interestingly, AML cells co-cultured with the healthy_3DON niche are highly sensitive to the same sample drugs. This study demonstrates the differential responses of AML cells towards leukemic and healthy bone marrow niches, suggesting the impact of native cancer cell niche in drug screening, and the potential of re-engineering healthy bone marrow niche in AML patients as chemotherapeutic adjuvants overcoming chemoresistance, respectively.
Collapse
Affiliation(s)
- Hoi Lam Cheung
- School of Biomedical Science, Institute of Tissue Engineering and Regenerative Medicine, And Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Yu Hin Wong
- School of Biomedical Science, Institute of Tissue Engineering and Regenerative Medicine, And Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China
| | - Yuk Yin Li
- School of Biomedical Science, Institute of Tissue Engineering and Regenerative Medicine, And Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Xingxing Yang
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Lok Him Ko
- School of Biomedical Science, Institute of Tissue Engineering and Regenerative Medicine, And Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jessica Evangeline Tan Kabigting
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China
| | - Koon Chuen Chan
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Anskar Yu Hung Leung
- Department of Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Barbara Pui Chan
- School of Biomedical Science, Institute of Tissue Engineering and Regenerative Medicine, And Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China; Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China; Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR, China.
| |
Collapse
|
4
|
Shimosato Y, Yamamoto K, Jia Y, Zhang W, Shiba N, Hayashi Y, Ito S, Kitamura T, Goyama S. NPM1-fusion proteins promote myeloid leukemogenesis through XPO1-dependent HOX activation. Leukemia 2025; 39:75-86. [PMID: 39443736 PMCID: PMC11717694 DOI: 10.1038/s41375-024-02438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Nucleophosmin (NPM1) is a nucleolar protein and one of the most frequently mutated genes in acute myeloid leukemia (AML). In addition to the commonly detected frameshift mutations in exon12 (NPM1c), previous studies have identified NPM1 gene rearrangements leading to the expression of NPM1-fusion proteins in pediatric AML. However, whether the NPM1-fusions are indeed oncogenic and how the NPM1-fusions cause AML have been largely unknown. In this study, we investigated the subcellular localization and leukemogenic potential of two rare NPM1-fusion proteins, NPM1::MLF1 and NPM1::CCDC28A. NPM1::MLF1 is present in both the nucleus and cytoplasm and occasionally induces AML in the mouse transplantation assay. NPM1::CCDC28A is more localized to the cytoplasm, immortalizes mouse bone marrow cells in vitro and efficiently induces AML in vivo. Mechanistically, both NPM1-fusions bind to the HOX gene cluster and, like NPM1c, cause aberrant upregulation of HOX genes in cooperation with XPO1. The XPO1 inhibitor selinexor suppressed HOX activation and colony formation driven by the NPM1-fusions. NPM1::CCDC28A cells were also sensitive to menin inhibition. Thus, our study provides experimental evidence that both NPM1::MLF1 and NPM1::CCDC28A are oncogenes with functions similar to NPM1c. Inhibition of XPO1 and menin may be a promising strategy for the NPM1-rearranged AML.
Collapse
MESH Headings
- Nucleophosmin
- Animals
- Exportin 1 Protein
- Mice
- Karyopherins/metabolism
- Karyopherins/genetics
- Humans
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Triazoles/pharmacology
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Gene Expression Regulation, Leukemic
- DNA-Binding Proteins
- Hydrazines
- Cell Cycle Proteins
Collapse
Affiliation(s)
- Yuko Shimosato
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Department of Pediatrics, Yokohama City University Hospital, Yokohama, Japan
| | - Keita Yamamoto
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuhan Jia
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Wenyu Zhang
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Norio Shiba
- Department of Pediatrics, Yokohama City University Hospital, Yokohama, Japan
| | - Yasuhide Hayashi
- Department of Hematology/Oncology, Gunma Children's Medical Center, Shibukawa, Japan
| | - Shuichi Ito
- Department of Pediatrics, Yokohama City University Hospital, Yokohama, Japan
| | - Toshio Kitamura
- Division of Molecular Pharmacology of Malignant Diseases, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Susumu Goyama
- Division of Molecular Oncology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
de Freitas FA, Levy D, Reichert CO, Sampaio-Silva J, Giglio PN, de Pádua Covas Lage LA, Demange MK, Pereira J, Bydlowski SP. Influence of Human Bone Marrow Mesenchymal Stem Cells Secretome from Acute Myeloid Leukemia Patients on the Proliferation and Death of K562 and K562-Lucena Leukemia Cell Lineages. Int J Mol Sci 2024; 25:4748. [PMID: 38731966 PMCID: PMC11084554 DOI: 10.3390/ijms25094748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Leukemias are among the most prevalent types of cancer worldwide. Bone marrow mesenchymal stem cells (MSCs) participate in the development of a suitable niche for hematopoietic stem cells, and are involved in the development of diseases such as leukemias, to a yet unknown extent. Here we described the effect of secretome of bone marrow MSCs obtained from healthy donors and from patients with acute myeloid leukemia (AML) on leukemic cell lineages, sensitive (K562) or resistant (K562-Lucena) to chemotherapy drugs. Cell proliferation, viability and death were evaluated, together with cell cycle, cytokine production and gene expression of ABC transporters and cyclins. The secretome of healthy MSCs decreased proliferation and viability of both K562 and K562-Lucena cells; moreover, an increase in apoptosis and necrosis rates was observed, together with the activation of caspase 3/7, cell cycle arrest in G0/G1 phase and changes in expression of several ABC proteins and cyclins D1 and D2. These effects were not observed using the secretome of MSCs derived from AML patients. In conclusion, the secretome of healthy MSCs have the capacity to inhibit the development of leukemia cells, at least in the studied conditions. However, MSCs from AML patients seem to have lost this capacity, and could therefore contribute to the development of leukemia.
Collapse
Affiliation(s)
- Fábio Alessandro de Freitas
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Medical School of Sao Paulo University (FMUSP), Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.); (J.S.-S.)
| | - Débora Levy
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Medical School of Sao Paulo University (FMUSP), Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.); (J.S.-S.)
| | - Cadiele Oliana Reichert
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Medical School of Sao Paulo University (FMUSP), Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.); (J.S.-S.)
| | - Juliana Sampaio-Silva
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Medical School of Sao Paulo University (FMUSP), Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.); (J.S.-S.)
| | - Pedro Nogueira Giglio
- Institute of Orthopedics and Traumatology, Clinic Hospital of Medical School, Sao Paulo University (HCFMUSP), Sao Paulo 05403-010, SP, Brazil; (P.N.G.); (M.K.D.)
| | - Luís Alberto de Pádua Covas Lage
- Laboratory of Pathogenesis and Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hemotherapy and Cell Therapy, Clinic Hospital of Medical School, Sao Paulo University (HCFMUSP), Sao Paulo 05403-900, SP, Brazil; (L.A.d.P.C.L.); (J.P.)
| | - Marco Kawamura Demange
- Institute of Orthopedics and Traumatology, Clinic Hospital of Medical School, Sao Paulo University (HCFMUSP), Sao Paulo 05403-010, SP, Brazil; (P.N.G.); (M.K.D.)
| | - Juliana Pereira
- Laboratory of Pathogenesis and Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hemotherapy and Cell Therapy, Clinic Hospital of Medical School, Sao Paulo University (HCFMUSP), Sao Paulo 05403-900, SP, Brazil; (L.A.d.P.C.L.); (J.P.)
| | - Sérgio Paulo Bydlowski
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Medical School of Sao Paulo University (FMUSP), Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.); (J.S.-S.)
- National Institute of Science and Technology in Regenerative Medicine (INCT-Regenera), National Council for Scientific and Technological Development (CNPq), Rio de Janeiro 21941-902, RJ, Brazil
- Department of General Physics, Physics Institute, Sao Paulo University, Sao Paulo 05508-090, SP, Brazil
| |
Collapse
|
6
|
Longitudinal single-cell profiling of chemotherapy response in acute myeloid leukemia. Nat Commun 2023; 14:1285. [PMID: 36890137 PMCID: PMC9995364 DOI: 10.1038/s41467-023-36969-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/22/2023] [Indexed: 03/10/2023] Open
Abstract
Acute myeloid leukemia may be characterized by a fraction of leukemia stem cells (LSCs) that sustain disease propagation eventually leading to relapse. Yet, the contribution of LSCs to early therapy resistance and AML regeneration remains controversial. We prospectively identify LSCs in AML patients and xenografts by single-cell RNA sequencing coupled with functional validation by a microRNA-126 reporter enriching for LSCs. Through nucleophosmin 1 (NPM1) mutation calling or chromosomal monosomy detection in single-cell transcriptomes, we discriminate LSCs from regenerating hematopoiesis, and assess their longitudinal response to chemotherapy. Chemotherapy induced a generalized inflammatory and senescence-associated response. Moreover, we observe heterogeneity within progenitor AML cells, some of which proliferate and differentiate with expression of oxidative-phosphorylation (OxPhos) signatures, while others are OxPhos (low) miR-126 (high) and display enforced stemness and quiescence features. miR-126 (high) LSCs are enriched at diagnosis in chemotherapy-refractory AML and at relapse, and their transcriptional signature robustly stratifies patients for survival in large AML cohorts.
Collapse
|
7
|
Uckelmann HJ, Haarer EL, Takeda R, Wong EM, Hatton C, Marinaccio C, Perner F, Rajput M, Antonissen NJC, Wen Y, Yang L, Brunetti L, Chen CW, Armstrong SA. Mutant NPM1 Directly Regulates Oncogenic Transcription in Acute Myeloid Leukemia. Cancer Discov 2023; 13:746-765. [PMID: 36455613 PMCID: PMC10084473 DOI: 10.1158/2159-8290.cd-22-0366] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/27/2022] [Accepted: 11/30/2022] [Indexed: 01/05/2023]
Abstract
The dysregulation of developmental and stem cell-associated genes is a common phenomenon during cancer development. Around half of patients with acute myeloid leukemia (AML) express high levels of HOXA cluster genes and MEIS1. Most of these AML cases harbor an NPM1 mutation (NPM1c), which encodes for an oncoprotein mislocalized from the nucleolus to the cytoplasm. How NPM1c expression in hematopoietic cells leads to its characteristic gene-expression pattern remains unclear. Here, we show that NPM1c directly binds to specific chromatin targets, which are co-occupied by the histone methyltransferase KMT2A (MLL1). Targeted degradation of NPM1c leads to a rapid decrease in gene expression and loss of RNA polymerase II, as well as activating histone modifications at its targets. We demonstrate that NPM1c directly regulates oncogenic gene expression in collaboration with the MLL1 complex and define the mechanism by which MLL1-Menin small-molecule inhibitors produce clinical responses in patients with NPM1-mutated AML. SIGNIFICANCE We uncovered an important functional role of mutant NPM1 as a crucial direct driver of oncogenic gene expression in AML. NPM1c can bind to chromatin and cooperate with the MLL complex, providing the first functional insight into the mechanism of Menin-MLL inhibition in NPM1c leukemias. See related article by Wang et al., p. 724. This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Hannah J. Uckelmann
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Elena L. Haarer
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Reina Takeda
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Eric M. Wong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Charlie Hatton
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Christian Marinaccio
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Florian Perner
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Masooma Rajput
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
- German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Noa J. C. Antonissen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Yanhe Wen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Lorenzo Brunetti
- Department of Medicine and Surgery, University of Perugia, Perugia Italy
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Scott A. Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Division of Hematology/Oncology, Boston Children’s Hospital, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Aryal S, Zhang Y, Wren S, Li C, Lu R. Molecular regulators of HOXA9 in acute myeloid leukemia. FEBS J 2023; 290:321-339. [PMID: 34743404 DOI: 10.1111/febs.16268] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/30/2021] [Accepted: 11/05/2021] [Indexed: 02/05/2023]
Abstract
Dysregulation of the oncogenic transcription factor HOXA9 is a prominent feature for most aggressive acute myeloid leukemia cases and a strong indicator of poor prognosis in patients. Leukemia subtypes with hallmark overexpression of HOXA9 include those carrying MLL gene rearrangements, NPM1c mutations, and other genetic alternations. A growing body of evidence indicates that HOXA9 dysregulation is both sufficient and necessary for leukemic transformation. The HOXA9 mRNA and protein regulation includes multilayered controls by transcription factors (such as CDX2/4 and USF2/1), epigenetic factors (such as MLL-menin-LEDGF, DOT1L, ENL, HBO1, NPM1c-XPO1, and polycomb proteins), microRNAs (such as miR-126 and miR-196b), long noncoding RNAs (such as HOTTIP), three-dimensional chromatin interactions, and post-translational protein modifications. Recently, insights into the dynamic regulation of HOXA9 have led to an advanced understanding of the HOXA9 regulome and provided new cancer therapeutic opportunities, including developing inhibitors targeting DOT1L, menin, and ENL proteins. This review summarizes recent advances in understanding the molecular mechanisms controlling HOXA9 regulation and the pharmacological approaches that target HOXA9 regulators to treat HOXA9-driven acute myeloid leukemia.
Collapse
Affiliation(s)
- Sajesan Aryal
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - Yang Zhang
- Department of Tumor Cell Biology & Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Spencer Wren
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - Chunliang Li
- Department of Tumor Cell Biology & Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rui Lu
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
9
|
Szelest M, Masternak M, Zając M, Chojnacki M, Skórka K, Zaleska J, Karczmarczyk A, Stasiak G, Wawrzyniak E, Kotkowska A, Siemieniuk-Ryś M, Purkot J, Subocz E, Cichocka E, Tomczak W, Zawirska D, Giannopoulos K. The role of NPM1 alternative splicing in patients with chronic lymphocytic leukemia. PLoS One 2022; 17:e0276674. [PMID: 36282861 PMCID: PMC9595542 DOI: 10.1371/journal.pone.0276674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVES Chronic lymphocytic leukemia (CLL) is a lymphoproliferative disease with heterogeneous clinical course. Recent studies revealed a link between NOTCH1 mutation and the overexpression of MYC and MYC-related genes involved in ribosome biogenesis and protein biosynthesis, such as nucleophosmin-1 (NPM1), in CLL cells. In the present study, we aim to evaluate the impact of the NOTCH1 mutation on the MYC and MYC induced NPM1 expression in CLL cells via quantification of their transcripts. METHODS Using qRT-PCR, we analyzed the levels of MYC and three main NPM1 splice variants in 214 samples collected from CLL patients. We assessed the impact of each splice variant on CLL prognostic markers, including the IGHV, TP53, NOTCH1, SF3B1, and MYD88 mutational status, cytogenetic aberrations, and laboratory features. RESULTS Significantly higher levels of NPM1.R1 transcripts in patients with unmutated compared to mutated IGHV status were found. The median time to first treatment (TTFT) in patients with a high level of NPM1.R1 was significantly shorter compared to the group with low NPM1.R1 levels (1.5 vs 33 months, p = 0.0002). Moreover, in Multivariate Cox Proportional Hazard Regression Model NPM1.R1 splice variant provided an independent prognostic value for TTFT. CONCLUSION In conclusion, our study indicates the prognostic significance of the level of NPM1.R1 expression and suggests the importance of splicing alterations in the pathogenesis of CLL.
Collapse
Affiliation(s)
- Monika Szelest
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | - Marta Masternak
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
- Department of Hematology, St. John’s Cancer Centre, Lublin, Poland
| | - Małgorzata Zając
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | - Michał Chojnacki
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Skórka
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | - Joanna Zaleska
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | | | - Grażyna Stasiak
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | - Ewa Wawrzyniak
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | | | | | - Joanna Purkot
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
| | - Edyta Subocz
- Department of Hematology, Military Institute of Medicine, Warsaw, Poland
- Independent Public Health Care Center of the Ministry of Internal Affairs and Administration with the Warmian-Masurian Oncology Centre in Olsztyn, Olsztyn, Poland
| | - Edyta Cichocka
- Department of Hematology, Copernicus Hospital, Torun, Poland
| | - Waldemar Tomczak
- Department of Hematooncology and Bone Marrow Transplantation Unit, Medical University of Lublin, Lublin, Poland
| | - Daria Zawirska
- Department of Hematology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, Lublin, Poland
- Department of Hematology, St. John’s Cancer Centre, Lublin, Poland
- * E-mail:
| |
Collapse
|
10
|
Prolonged XPO1 inhibition is essential for optimal antileukemic activity in NPM1-mutated AML. Blood Adv 2022; 6:5938-5949. [PMID: 36037515 PMCID: PMC9701620 DOI: 10.1182/bloodadvances.2022007563] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/10/2022] [Indexed: 12/15/2022] Open
Abstract
NPM1 is the most frequently mutated gene in adults with acute myeloid leukemia (AML). The interaction between mutant NPM1 (NPM1c) and exportin-1 (XPO1) causes aberrant cytoplasmic dislocation of NPM1c and promotes the high expression of homeobox (HOX) genes, which is critical for maintaining the leukemic state of NPM1-mutated cells. Although there is a rationale for using XPO1 inhibitors in NPM1-mutated AML, selinexor administered once or twice per week did not translate into clinical benefit in patients with NPM1 mutations. Here, we show that this dosing strategy results in only a temporary disruption of the XPO1-NPM1c interaction, limiting the efficacy of selinexor. Because the second-generation XPO1 inhibitor eltanexor can be administered more frequently, we tested the antileukemic activity of prolonged XPO1 inhibition in NPM1-mutated AML models. Eltanexor caused irreversible HOX downregulation, induced terminal AML differentiation, and prolonged the survival of leukemic mice. This study provides essential information for the appropriate design of clinical trials with XPO1 inhibitors in NPM1-mutated AML.
Collapse
|
11
|
Greiner J, Goetz M, Schuler PJ, Bulach C, Hofmann S, Schrezenmeier H, Dӧhner H, Schneider V, Guinn BA. Enhanced stimulation of antigen-specific immune responses against nucleophosmin 1 mutated acute myeloid leukaemia by an anti-programmed death 1 antibody. Br J Haematol 2022; 198:866-874. [PMID: 35799423 DOI: 10.1111/bjh.18326] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/20/2022] [Accepted: 06/10/2022] [Indexed: 12/17/2022]
Abstract
Nucleophosmin1 (NPM1) is one of the most commonly mutated genes in AML and is often associated with a favourable prognosis. Immune responses play an increasing role in AML treatment decisions; however, the role of immune checkpoint inhibition is still not clear. To address this, we investigated specific immune responses against NPM1, and three other leukaemia-associated antigens (LAA), PRAME, Wilms' tumour 1 and RHAMM in AML patients. We investigated T cell responses against leukaemic progenitor/stem cells (LPC/LSC) using colony-forming immunoassays and flow cytometry. We examined whether immune checkpoint inhibition with the anti-programmed death 1 antibody increases the immune response against stem cell-like cells, comparing cells from NPM1 mutated and NPM1 wild-type AML patients. We found that the anti-PD-1 antibody, nivolumab, increases LAA stimulated cytotoxic T lymphocytes and the cytotoxic effect against LPC/LSC. The effect was strongest against NPM1mut cells when the immunogenic epitope was derived from the mutated region of NPM1 and these effects were enhanced through the addition of anti-PD-1. The data suggest that patients with NPM1 mutated AML could be treated with the immune checkpoint inhibitor anti-PD-1 and that this treatment combined with NPM1-mutation specific directed immunotherapy could be even more effective for this unique group of patients.
Collapse
Affiliation(s)
- Jochen Greiner
- Department of Internal Medicine, Diakonie Hospital Stuttgart, Stuttgart, Germany.,Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Marlies Goetz
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Patrick J Schuler
- Department of Otorhinolaryngology, University Hospital Ulm, Ulm, Germany
| | - Christiane Bulach
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Susanne Hofmann
- Department of Internal Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Donation Service Baden-Württemberg-Hessen and Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Harmut Dӧhner
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Vanessa Schneider
- Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | | |
Collapse
|
12
|
Tayel SI, Soliman SE, Ahmedy IA, Abdelhafez M, Elkholy AM, Hegazy A, Muharram NM. Deregulation of CircANXA2, Circ0075001, and CircFBXW7 Gene Expressions and Their Predictive Value in Egyptian Acute Myeloid Leukemia Patients. Appl Clin Genet 2022; 15:69-85. [PMID: 35874179 PMCID: PMC9300747 DOI: 10.2147/tacg.s365613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
Background Aim of the Work Methods Results Conclusion
Collapse
Affiliation(s)
- Safaa I Tayel
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, 32511, Egypt
- Correspondence: Safaa I Tayel, Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, Menoufia, Egypt, Email
| | - Shimaa E Soliman
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, 32511, Egypt
| | - Iman A Ahmedy
- Clinical Pathology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, 32511, Egypt
| | - Mohamed Abdelhafez
- Hematology Unit, Department of Internal Medicine, Faculty of Medicine, Menoufia University, Shebin El-Kom, 32511, Egypt
| | - Aly M Elkholy
- Hematology Unit, Department of Internal Medicine, Faculty of Medicine, Menoufia University, Shebin El-Kom, 32511, Egypt
| | - Amira Hegazy
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, 32511, Egypt
| | - Nashwa M Muharram
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Shebin El-Kom, 32511, Egypt
| |
Collapse
|
13
|
Functional characterization of NPM1-TYK2 fusion oncogene. NPJ Precis Oncol 2022; 6:3. [PMID: 35042970 PMCID: PMC8766497 DOI: 10.1038/s41698-021-00246-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/16/2021] [Indexed: 11/08/2022] Open
Abstract
Gene fusions are known to drive many human cancers. Therefore, the functional characterization of newly discovered fusions is critical to understanding the oncobiology of these tumors and to enable therapeutic development. NPM1–TYK2 is a novel fusion identified in CD30 + lymphoproliferative disorders, and here we present the functional evaluation of this fusion gene as an oncogene. The chimeric protein consists of the amino-terminus of nucleophosmin 1 (NPM1) and the carboxyl-terminus of tyrosine kinase 2 (TYK2), including the kinase domain. Using in vitro lymphoid cell transformation assays and in vivo tumorigenic xenograft models we present direct evidence that the fusion gene is an oncogene. NPM1 fusion partner provides the critical homodimerization needed for the fusion kinase constitutive activation and downstream signaling that are responsible for cell transformation. As a result, our studies identify NPM1–TYK2 as a novel fusion oncogene and suggest that inhibition of fusion homodimerization could be a precision therapeutic approach in cutaneous T-cell lymphoma patients expressing this chimera.
Collapse
|
14
|
TERT genetic variability and telomere length as factors affecting survival and risk in acute myeloid leukaemia. Sci Rep 2021; 11:23301. [PMID: 34857839 PMCID: PMC8640063 DOI: 10.1038/s41598-021-02767-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a neoplasm of immature myeloid cells characterized by various cytogenetic alterations. The present study showed that in addition to the FLT3-ITD and NPM1 mutation status, telomere length (TL) and telomerase reverse transcriptase (TERT) gene polymorphisms may affect risk and overall survival (OS) in AML. TL was longer in healthy controls than in AML patients and positively correlated with age in the patients, but not in healthy subjects. TL was found to be independently affected by the presence of the FLT3-ITD mutation. As for the TERT gene polymorphism, AML patients with the TERT rs2853669 CC genotype were characterized by significantly shorter OS than patients carrying the T allele. Another observation in our study is the difference in TL and OS in patients belonging to various risk stratification groups related to the FLT3-ITD and NPM1 mutation status. Patients with adverse risk classification (mutation in FLT3-ITD and lack of mutation in NPM1) presented with the shortest telomeres and significantly worse OS. In conclusion, OS of AML patients appears to be affected by TERT gene variability and TL in addition to other well-established factors such as age, WBC count, or FLT3-ITD and NPM1 mutation status.
Collapse
|
15
|
Qu J, Lin Z. Autophagy Regulation by Crosstalk between miRNAs and Ubiquitination System. Int J Mol Sci 2021; 22:ijms222111912. [PMID: 34769343 PMCID: PMC8585084 DOI: 10.3390/ijms222111912] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules encoded by endogenous genes with ~22 nucleotides which are involved in the regulation of post-transcriptional gene expression. Ubiquitination and deubiquitination are common post-translational modifications in eukaryotic cells and important pathways in regulating protein degradation and signal transduction, in which E3 ubiquitin ligases and deubiquitinases (DUBs) play a decisive role. MiRNA and ubiquitination are involved in the regulation of most biological processes, including autophagy. Furthermore, in recent years, the direct interaction between miRNA and E3 ubiquitin ligases or deubiquitinases has attracted much attention, and the cross-talk between miRNA and ubiquitination system has been proved to play key regulatory roles in a variety of diseases. In this review, we summarized the advances in autophagy regulation by crosstalk between miRNA and E3 ubiquitin ligases or deubiquitinases.
Collapse
|
16
|
Molina B, Chavez J, Grainger S. Zebrafish models of acute leukemias: Current models and future directions. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2021; 10:e400. [PMID: 33340278 PMCID: PMC8213871 DOI: 10.1002/wdev.400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022]
Abstract
Acute myeloid leukemias (AML) and acute lymphoid leukemias (ALL) are heterogenous diseases encompassing a wide array of genetic mutations with both loss and gain of function phenotypes. Ultimately, these both result in the clonal overgrowth of blast cells in the bone marrow, peripheral blood, and other tissues. As a consequence of this, normal hematopoietic stem cell function is severely hampered. Technologies allowing for the early detection of genetic alterations and understanding of these varied molecular pathologies have helped to advance our treatment regimens toward personalized targeted therapies. In spite of this, both AML and ALL continue to be a major cause of morbidity and mortality worldwide, in part because molecular therapies for the plethora of genetic abnormalities have not been developed. This underscores the current need for better model systems for therapy development. This article reviews the current zebrafish models of AML and ALL and discusses how novel gene editing tools can be implemented to generate better models of acute leukemias. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cells and Disease Technologies > Perturbing Genes and Generating Modified Animals.
Collapse
Affiliation(s)
- Brandon Molina
- Biology Department, San Diego State University, San Diego, California, USA
| | - Jasmine Chavez
- Biology Department, San Diego State University, San Diego, California, USA
| | - Stephanie Grainger
- Biology Department, San Diego State University, San Diego, California, USA
| |
Collapse
|
17
|
Blasi F, Bruckmann C. MEIS1 in Hematopoiesis and Cancer. How MEIS1-PBX Interaction Can Be Used in Therapy. J Dev Biol 2021; 9:jdb9040044. [PMID: 34698191 PMCID: PMC8544432 DOI: 10.3390/jdb9040044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/26/2022] Open
Abstract
Recently MEIS1 emerged as a major determinant of the MLL-r leukemic phenotype. The latest and most efficient drugs effectively decrease the levels of MEIS1 in cancer cells. Together with an overview of the latest drugs developed to target MEIS1 in MLL-r leukemia, we review, in detail, the role of MEIS1 in embryonic and adult hematopoiesis and suggest how a more profound knowledge of MEIS1 biochemistry can be used to design potent and effective drugs against MLL-r leukemia. In addition, we present data showing that the interaction between MEIS1 and PBX1 can be blocked efficiently and might represent a new avenue in anti-MLL-r and anti-leukemic therapy.
Collapse
|
18
|
NPM1-mutated acute myeloid leukemia: from bench to bedside. Blood 2021; 136:1707-1721. [PMID: 32609823 DOI: 10.1182/blood.2019004226] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
The nucleophosmin (NPM1) gene encodes for a multifunctional protein with prominent nucleolar localization that shuttles between nucleus and cytoplasm. NPM1 mutations represent the most common genetic lesion in adult acute myeloid leukemia (AML; about one third of cases), and they act deterministically to cause the aberrant cytoplasmic delocalization of NPM1 mutants. Because of its unique features, NPM1-mutated AML is recognized as a distinct entity in the 2017 World Health Organization (WHO) classification of hematopoietic neoplasms. Here, we focus on recently identified functions of wild-type NPM1 in the nucleolus and address new biological and clinical issues related to NPM1-mutated AML. The relevance of the cooperation between NPM1 and other mutations in driving AML with different outcomes is presented. We also discuss the importance of eradicating NPM1-mutated clones to achieve AML cure and the impact of preleukemic clonal hematopoiesis persistence in predisposing to second AML. The contribution of HOX genes' expression to the development of NPM1-mutated AML is also highlighted. Clinically, yet unsolved diagnostic issues in the 2017 WHO classification of myeloid neoplasms and the importance of NPM1 mutations in defining the framework of European LeukemiaNet genetic-based risk stratification are discussed. Finally, we address the value and limits of NPM1-based measurable residual disease assessment for treatment guidance and present the results of promising preclinical studies with XPO1 and menin-MLL inhibitors.
Collapse
|
19
|
Othman GO, Mohammad NS, Saeed CH. Molecular study of Nucleophosmin 1(NPM1) gene in acute myeloid leukemia in Kurdish population. Afr Health Sci 2021; 21:687-692. [PMID: 34795724 PMCID: PMC8568245 DOI: 10.4314/ahs.v21i2.26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND In patients with Acute Myeloid Leukemia (AML) the most frequent acquired molecular abnormalities and important prognostic indicators is nucleophosmin-1 (NPM1) mutations. Our study aims was molecular study of Nucleophosmin -1 gene in Acute Myeloid Leukemia in Kurdish population. PATIENTS &METHODS A total of 50 patients with AML, (36) of them attended Nanakaly Hospital and (14) attended Hiwa Hospital and 30 healthy subjects as control were selected randomly, all were matched of age and gender. Polymerase chain reaction (PCR) was used for detection of NPM1 gene mutation. Three samples of PCR product for NPM1 gene mutations were sequenced, and mutations were determined by comparison with the normal NPM1 sequence NCBI (GenBank accession number NM_002520). RESULTS Out of 50 patients with AML, 5 (10%) of them were NPM1 gene mutation positive, and 45 (90%) were negative. The mutation were a base substitution (C to A), (G to C), (G to T), transversion mutation in addition of frame shift mutation and all mutated cases were heterozygous and retained a wild type allele. CONCLUSION Identification of NPM1 mutations in AML are important for prognostication, treatment decision and optimization of patient care.
Collapse
Affiliation(s)
| | - Nawsherwan Sadiq Mohammad
- Hawler Medical University, College of Medicine. Nanakaly Teaching Hospital for Blood Diseases. Erbil- Iraq
| | | |
Collapse
|
20
|
Karimi Dermani F, Gholamzadeh Khoei S, Afshar S, Amini R. The potential role of nucleophosmin (NPM1) in the development of cancer. J Cell Physiol 2021; 236:7832-7852. [PMID: 33959979 DOI: 10.1002/jcp.30406] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022]
Abstract
Nucleophosmin (NPM1) is a well-known nucleocytoplasmic shuttling protein that performs several cellular functions such as ribosome biogenesis, chromatin remodeling, genomic stability, cell cycle progression, and apoptosis. NPM1 has been identified to be necessary for normal cellular functions, and its altered regulation by overexpression, mutation, translocation, loss of function, or sporadic deletion can lead to cancer and tumorigenesis. In this review, we focus on the gene and protein structure of NPM1 and its physiological roles. Finally, we discuss the association of NPM1 with various types of cancer including solid tumors and leukemia.
Collapse
Affiliation(s)
- Fateme Karimi Dermani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeideh Gholamzadeh Khoei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
21
|
Clonal hematopoiesis: mechanisms driving dominance of stem cell clones. Blood 2021; 136:1590-1598. [PMID: 32746453 DOI: 10.1182/blood.2020006510] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
The discovery of clonal hematopoiesis (CH) in older individuals has changed the way hematologists and stem cell biologists view aging. Somatic mutations accumulate in stem cells over time. While most mutations have no impact, some result in subtle functional differences that ultimately manifest in distinct stem cell behaviors. With a large pool of stem cells and many decades to compete, some of these differences confer advantages under specific contexts. Approximately 20 genes are recurrently found as mutated in CH, indicating they confer some advantage. The impact of these mutations has begun to be analyzed at a molecular level by modeling in cell lines and in mice. Mutations in epigenetic regulators such as DNMT3A and TET2 confer an advantage by enhancing self-renewal of stem and progenitor cells and inhibiting their differentiation. Mutations in other genes involved in the DNA damage response may simply enhance cell survival. Here, we review proposed mechanisms that lead to CH, specifically in the context of stem cell biology, based on our current understanding of the function of some of the CH-associated genes.
Collapse
|
22
|
Dactinomycin induces complete remission associated with nucleolar stress response in relapsed/refractory NPM1-mutated AML. Leukemia 2021; 35:2552-2562. [PMID: 33654209 PMCID: PMC8410589 DOI: 10.1038/s41375-021-01192-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/19/2021] [Accepted: 02/08/2021] [Indexed: 01/17/2023]
Abstract
Acute myeloid leukemia (AML) with mutated NPM1 accounts for one-third of newly diagnosed AML. Despite recent advances, treatment of relapsed/refractory NPM1-mutated AML remains challenging, with the majority of patients eventually dying due to disease progression. Moreover, the prognosis is particularly poor in elderly and unfit patients, mainly because they cannot receive intensive treatment. Therefore, alternative treatment strategies are needed. Dactinomycin is a low-cost chemotherapeutic agent, which has been anecdotally reported to induce remission in NPM1-mutated patients, although its mechanism of action remains unclear. Here, we describe the results of a single-center phase 2 pilot study investigating the safety and efficacy of single-agent dactinomycin in relapsed/refractory NPM1-mutated adult AML patients, demonstrating that this drug can induce complete responses and is relatively well tolerated. We also provide evidence that the activity of dactinomycin associates with nucleolar stress both in vitro and in vivo in patients. Finally, we show that low-dose dactinomycin generates more efficient stress response in cells expressing NPM1 mutant compared to wild-type cells, suggesting that NPM1-mutated AML may be more sensitive to nucleolar stress. In conclusion, we establish that dactinomycin is a potential therapeutic alternative in relapsed/refractory NPM1-mutated AML that deserves further investigation in larger clinical studies.
Collapse
|
23
|
Nakamura F, Arai H, Nannya Y, Ichikawa M, Furuichi S, Nagasawa F, Takahashi W, Handa T, Nakamura Y, Tanaka H, Nakamura Y, Sasaki K, Miyano S, Ogawa S, Mitani K. Development of Philadelphia chromosome-negative acute myeloid leukemia with IDH2 and NPM1 mutations in a patient with chronic myeloid leukemia who showed a major molecular response to tyrosine kinase inhibitor therapy. Int J Hematol 2021; 113:936-940. [PMID: 33400143 DOI: 10.1007/s12185-020-03074-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 11/25/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) are standard therapies for chronic myeloid leukemia (CML) that can eradicate Ph-positive leukemic cells. However, disease control is not achievable in a minority of cases, most commonly due to evolution of TKI-resistant clones. There have also been rare cases of emergence of Ph-negative clones with other cytogenetic abnormalities, and, less commonly, development of Ph-negative acute myeloid leukemia (AML), whose molecular pathogenesis is largely unknown. Here we report molecular features of a patient with Ph + CML who developed Ph-negative AML after showing a major molecular response to dasatinib. A 55-year-old man was diagnosed with CML. He achieved a complete cytogenetic response three months after dasatinib therapy but developed AML with normal karyotype 1 year later. After receiving induction and consolidation chemotherapy for AML, the patient achieved complete remission with no evidence of CML under maintenance with bosutinib. Targeted sequencing of serial bone marrow samples identified mutations in IDH2 and NPM1 in the Ph-negative AML cells, which had not been detected in CML cells. These results suggest that Ph-negative AML in this patient originated from a preleukemic population, which might have expanded during or after the successful elimination of CML clones with TKI therapy.
Collapse
MESH Headings
- Aniline Compounds/administration & dosage
- Dasatinib/administration & dosage
- Humans
- Isocitrate Dehydrogenase/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Male
- Middle Aged
- Mutation
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Nitriles/administration & dosage
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nucleophosmin
- Philadelphia Chromosome
- Protein Kinase Inhibitors/administration & dosage
- Quinolines/administration & dosage
Collapse
Affiliation(s)
- Fumi Nakamura
- Department of Hematology and Oncology, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Honoka Arai
- Department of Hematology and Oncology, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Motoshi Ichikawa
- Department of Hematology and Oncology, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Shiho Furuichi
- Department of Hematology and Oncology, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Fusako Nagasawa
- Department of Hematology and Oncology, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Wataru Takahashi
- Department of Hematology and Oncology, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Tomoyuki Handa
- Department of Hematology and Oncology, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Yuko Nakamura
- Department of Hematology and Oncology, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Hiroko Tanaka
- Laboratory of DNA Information Analysis, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yuka Nakamura
- Department of Hematology and Oncology, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Ko Sasaki
- Department of Hematology and Oncology, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Kinuko Mitani
- Department of Hematology and Oncology, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan.
| |
Collapse
|
24
|
Tang Y, Tao Y, Wang L, Yang L, Jing Y, Jiang X, Lei L, Yang Z, Wang X, Peng M, Xiao Q, Ren J, Zhang L. NPM1 mutant maintains ULK1 protein stability via TRAF6‐dependent ubiquitination to promote autophagic cell survival in leukemia. FASEB J 2020; 35:e21192. [DOI: 10.1096/fj.201903183rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 09/06/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Yuting Tang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Yao Tao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Lu Wang
- Department of Clinical Laboratory University‐Town HospitalChongqing Medical University Chongqing China
| | - Liyuan Yang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Yipei Jing
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Xueke Jiang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Li Lei
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Zailin Yang
- Department of Clinical Laboratory The Third Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Xin Wang
- Department of Hematology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Meixi Peng
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Qiaoling Xiao
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Jun Ren
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| | - Ling Zhang
- Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education School of Laboratory Medicine Chongqing Medical University Chongqing China
| |
Collapse
|
25
|
Gilleece MH, Savani BN. A stitch in time saves nine… MRD‐based pre‐emptive therapy. Br J Haematol 2020; 191:19-20. [DOI: 10.1111/bjh.16913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 11/28/2022]
Affiliation(s)
| | - Bipin N. Savani
- Division of Hematology and Oncology Department of Medicine Vanderbilt University Medical Center Nashville TN USA
| |
Collapse
|
26
|
López DJ, Rodríguez JA, Bañuelos S. Nucleophosmin, a multifunctional nucleolar organizer with a role in DNA repair. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140532. [PMID: 32853771 DOI: 10.1016/j.bbapap.2020.140532] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
Nucleophosmin (NPM1) is a mostly nucleolar protein with crucial functions in cell growth and homeostasis, including regulation of ribosome biogenesis and stress response. Such multiple activities rely on its ability to interact with nucleic acids and with hundreds of proteins, as well as on a dynamic subcellular distribution. NPM1 is thus regulated by a complex interplay between localization and interactions, further modulated by post-translational modifications. NPM1 is a homopentamer, with globular domains connected by long, intrinsically disordered linkers. This configuration allows NPM1 to engage in liquid-liquid phase separation phenomena, which could underlie a key role in nucleolar organization. Here, we will discuss NPM1 conformational and functional versatility, emphasizing its emerging, and still largely unexplored, role in DNA damage repair. Since NPM1 is altered in a subtype of acute myeloid leukaemia (AML), we will also present ongoing research on the molecular mechanisms underlying its pathogenic role and potential NPM1-targeting therapeutic strategies.
Collapse
Affiliation(s)
- David J López
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José A Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Sonia Bañuelos
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
27
|
Cela I, Di Matteo A, Federici L. Nucleophosmin in Its Interaction with Ligands. Int J Mol Sci 2020; 21:E4885. [PMID: 32664415 PMCID: PMC7402337 DOI: 10.3390/ijms21144885] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
Nucleophosmin (NPM1) is a mainly nucleolar protein that shuttles between nucleoli, nucleoplasm and cytoplasm to fulfill its many functions. It is a chaperone of both nucleic acids and proteins and plays a role in cell cycle control, centrosome duplication, ribosome maturation and export, as well as the cellular response to a variety of stress stimuli. NPM1 is a hub protein in nucleoli where it contributes to nucleolar organization through heterotypic and homotypic interactions. Furthermore, several alterations, including overexpression, chromosomal translocations and mutations are present in solid and hematological cancers. Recently, novel germline mutations that cause dyskeratosis congenita have also been described. This review focuses on NPM1 interactions and inhibition. Indeed, the list of NPM1 binding partners is ever-growing and, in recent years, many studies contributed to clarifying the structural basis for NPM1 recognition of both nucleic acids and several proteins. Intriguingly, a number of natural and synthetic ligands that interfere with NPM1 interactions have also been reported. The possible role of NPM1 inhibitors in the treatment of multiple cancers and other pathologies is emerging as a new therapeutic strategy.
Collapse
Affiliation(s)
- Ilaria Cela
- Center for Advanced Studies and Technology (CAST), University of Chieti “G. d’Annunzio”, Via Polacchi, 66100 Chieti, Italy;
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology (IBPM) of the CNR, c/o “Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy;
| | - Luca Federici
- Center for Advanced Studies and Technology (CAST), University of Chieti “G. d’Annunzio”, Via Polacchi, 66100 Chieti, Italy;
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
28
|
Fujita M, Kamachi K, Yokoo M, Kidoguchi K, Kusaba K, Kizuka-Sano H, Yamaguchi K, Nishioka A, Yoshimura M, Kubota Y, Ando T, Kojima K, Kimura S. Accelerated Phase of Atypical Chronic Myeloid Leukemia with Severe Disseminated Intravascular Coagulation at Initial Presentation. Intern Med 2020; 59:1549-1553. [PMID: 32188810 PMCID: PMC7364244 DOI: 10.2169/internalmedicine.4265-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Patients with myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN) are often asymptomatic and thus can remain undiagnosed until they become symptomatic due to progression to the accelerated phase (AP) or transformation to acute leukemia (leukemic transformation; LT). We herein report the case of a previously healthy 38-year-old man who had hyperleukocytosis with dysplastic myeloid precursor cells and severe disseminated intravascular coagulation. Hematopoietic recovery with features of atypical chronic myeloid leukemia (aCML) after induction chemotherapy was a diagnostic clue. Although rare, this case highlights the limitation of the diagnostic approach for aCML with AP or LT at the initial presentation.
Collapse
MESH Headings
- Adult
- Antineoplastic Agents/therapeutic use
- Disseminated Intravascular Coagulation/complications
- Humans
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/complications
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/drug therapy
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/pathology
- Leukocytosis/complications
- Male
Collapse
Affiliation(s)
- Mai Fujita
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
| | - Kazuharu Kamachi
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
| | - Masako Yokoo
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
| | - Keisuke Kidoguchi
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
| | - Kana Kusaba
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
| | - Haruna Kizuka-Sano
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
| | - Kyosuke Yamaguchi
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
| | - Atsujiro Nishioka
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
| | - Mariko Yoshimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
| | - Yasushi Kubota
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
- Department of Transfusion Medicine, Saga University Hospital, Japan
| | - Toshihiko Ando
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
| | - Kensuke Kojima
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
- Department of Hematology, Kochi Medical School, Kochi University, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
| |
Collapse
|
29
|
Long L, Assaraf YG, Lei ZN, Peng H, Yang L, Chen ZS, Ren S. Genetic biomarkers of drug resistance: A compass of prognosis and targeted therapy in acute myeloid leukemia. Drug Resist Updat 2020; 52:100703. [PMID: 32599434 DOI: 10.1016/j.drup.2020.100703] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematological malignancy with complex heterogenous genetic and biological nature. Thus, prognostic prediction and targeted therapies might contribute to better chemotherapeutic response. However, the emergence of multidrug resistance (MDR) markedly impedes chemotherapeutic efficacy and dictates poor prognosis. Therefore, prior evaluation of chemoresistance is of great importance in therapeutic decision making and prognosis. In recent years, preclinical studies on chemoresistance have unveiled a compendium of underlying molecular basis, which facilitated the development of targetable small molecules. Furthermore, routing genomic sequencing has identified various genomic aberrations driving cellular response during the course of therapeutic treatment through adaptive mechanisms of drug resistance, some of which serve as prognostic biomarkers in risk stratification. However, the underlying mechanisms of MDR have challenged the certainty of the prognostic significance of some mutations. This review aims to provide a comprehensive understanding of the role of MDR in therapeutic decision making and prognostic prediction in AML. We present an updated genetic landscape of the predominant mechanisms of drug resistance with novel targeted therapies and potential prognostic biomarkers from preclinical and clinical chemoresistance studies in AML. We particularly highlight the unfolded protein response (UPR) that has emerged as a critical regulatory pathway in chemoresistance of AML with promising therapeutic horizon. Futhermore, we outline the most prevalent mutations associated with mechanisms of chemoresistance and delineate the future directions to improve the current prognostic tools. The molecular analysis of chemoresistance integrated with genetic profiling will facilitate decision making towards personalized prognostic prediction and enhanced therapeutic efficacy.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Disease-Free Survival
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Molecular Targeted Therapy/methods
- Mutation
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/prevention & control
- Precision Medicine/methods
- Prognosis
- Unfolded Protein Response/genetics
Collapse
Affiliation(s)
- Luyao Long
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China; Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Zi-Ning Lei
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA; School of Public Health, Guangzhou Medical University, Guangzhou, P.R. China
| | - Hongwei Peng
- Department of Pharmacy, First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Lin Yang
- Department of Hematology, the Second Hospital of Hebei Medical University, Shijiazhuang, P.R. China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Simei Ren
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China; Graduate School, Chinese Academy of Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
| |
Collapse
|
30
|
Pianigiani G, Betti C, Bigerna B, Rossi R, Brunetti L. PU.1 subcellular localization in acute myeloid leukaemia with mutated NPM1. Br J Haematol 2019; 188:184-187. [PMID: 31764996 DOI: 10.1111/bjh.16344] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Camilla Betti
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Barbara Bigerna
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Riccardo Rossi
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Lorenzo Brunetti
- Department of Medicine, University of Perugia, Perugia, Italy.,Hematology, Santa Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
31
|
Ji T, Chen Q, Tao S, Shi Y, Chen Y, Shen L, Wang C, Yu L. The research progress of circular RNAs in hematological malignancies. Hematology 2019; 24:727-731. [PMID: 31581903 DOI: 10.1080/16078454.2019.1669924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Tingting Ji
- Department of Hematology, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, People’s Republic of China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Qiuni Chen
- Department of Hematology, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, People’s Republic of China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shandong Tao
- Department of Hematology, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, People’s Republic of China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yuye Shi
- Department of Hematology, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, People’s Republic of China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yue Chen
- Department of Hematology, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, People’s Republic of China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Li Shen
- Department of Hematology, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, People’s Republic of China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Chunling Wang
- Department of Hematology, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, People’s Republic of China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Liang Yu
- Department of Hematology, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, People’s Republic of China
- Key Laboratory of Hematology of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
32
|
Paz JL, Levy D, Oliveira BA, de Melo TC, de Freitas FA, Reichert CO, Rodrigues A, Pereira J, Bydlowski SP. 7-Ketocholesterol Promotes Oxiapoptophagy in Bone Marrow Mesenchymal Stem Cell from Patients with Acute Myeloid Leukemia. Cells 2019; 8:E482. [PMID: 31117185 PMCID: PMC6562391 DOI: 10.3390/cells8050482] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
7-Ketocholesterol (7-KC) is a cholesterol oxidation product with several biological functions. 7-KC has the capacity to cause cell death depending on the concentration and specific cell type. Mesenchymal stem cells (MSCs) are multipotent cells with the ability to differentiate into various types of cells, such as osteoblasts and adipocytes, among others. MSCs contribute to the development of a suitable niche for hematopoietic stem cells, and are involved in the development of diseases, such as leukemia, to a yet unknown extent. Here, we describe the effect of 7-KC on the death of bone marrow MSCs from patients with acute myeloid leukemia (LMSCs). LMSCs were less susceptible to the death-promoting effect of 7-KC than other cell types. 7-KC exposure triggered the extrinsic pathway of apoptosis with an increase in activated caspase-8 and caspase-3 activity. Mechanisms other than caspase-dependent pathways were involved. 7-KC increased ROS generation by LMSCs, which was related to decreased cell viability. 7-KC also led to disruption of the cytoskeleton of LMSCs, increased the number of cells in S phase, and decreased the number of cells in the G1/S transition. Autophagosome accumulation was also observed. 7-KC downregulated the SHh protein in LMSCs but did not change the expression of SMO. In conclusion, oxiapoptophagy (OXIdative stress + APOPTOsis + autophagy) seems to be activated by 7-KC in LMSCs. More studies are needed to better understand the role of 7-KC in the death of LMSCs and the possible effects on the SHh pathway.
Collapse
Affiliation(s)
- Jessica Liliane Paz
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Debora Levy
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Beatriz Araujo Oliveira
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Thatiana Correia de Melo
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Fabio Alessandro de Freitas
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Cadiele Oliana Reichert
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Alessandro Rodrigues
- Departmento de Ciencias Exactas e da Terra, Universidade Federal de Sao Paulo, Diadema 09972-270, SP, Brazil.
| | - Juliana Pereira
- Center of Innovation and Translational Medicine, Department of Medicine, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
| | - Sergio Paulo Bydlowski
- Laboratory of Genetics and Molecular Hematology (LIM31), Department of Hematology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
- Center of Innovation and Translational Medicine, Department of Medicine, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05403-000, SP, Brazil.
- National Institute of Science and Technology for Regenerative Medicine (INCT Regenera), CNPq, Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|