1
|
Gernert M, Müller T, Schweiker L, Schmalzing M, Fröhlich M, Nagler LK, Strunz PP, Labinsky H, Schwaneck EC. Clonal T cell populations scarcely impair patients with rheumatic diseases: a prospective long-term follow up study. Arthritis Res Ther 2024; 26:210. [PMID: 39663523 PMCID: PMC11633000 DOI: 10.1186/s13075-024-03444-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Clonal T cell populations are frequently detected in patients with rheumatic diseases. The relevance of this finding is often uncertain, as the clinical spectrum can range from being asymptomatic to T cell leukemia. Former studies suggested that certain anti-rheumatic drugs might influence the course of the clonal T cell populations. METHODS A prospective long-term follow up study was performed including patients with rheumatic diseases and clonal T cell populations. Clinical features, adverse events, especially infections and cytopenias, and immunosuppressive medication were assessed. T cell populations were characterized by polymerase chain reaction, flow cytometry and stimulated cell cultures. RESULTS 28 Patients with rheumatoid arthritis, spondyloarthritis, or giant cell arteritis were prospectively followed for up to 7.6 years. Severe infections or cytopenias (10.7% autoimmune neutropenias) were rare. The clonal T cell populations mostly persisted over time, the tumor burden decreased in the long-term. The cytokine secretion in stimulated T cell cultures did not differ in the subgroup of RA patients with versus without clonal T cells. CONCLUSION Clonal T cell populations in patients with rheumatic diseases are common, but are rarely harmful. Feared neutropenia, infections or progression into T cell leukemia could not be detected in the long-term in our cohort.
Collapse
Affiliation(s)
- Michael Gernert
- Department of Medicine II, Rheumatology and Clinical Immunology, University Hospital of Würzburg, Oberdürrbacher Str. 6, D-97080, Würzburg, Germany.
| | - Tobias Müller
- Chair of Bioinformatics, University of Würzburg, Am Hubland, D-97074, Würzburg, Germany
| | - Lukas Schweiker
- Department of Medicine II, Rheumatology and Clinical Immunology, University Hospital of Würzburg, Oberdürrbacher Str. 6, D-97080, Würzburg, Germany
| | - Marc Schmalzing
- Department of Medicine II, Rheumatology and Clinical Immunology, University Hospital of Würzburg, Oberdürrbacher Str. 6, D-97080, Würzburg, Germany
| | - Matthias Fröhlich
- Department of Medicine II, Rheumatology and Clinical Immunology, University Hospital of Würzburg, Oberdürrbacher Str. 6, D-97080, Würzburg, Germany
| | - Lea-Kristin Nagler
- Department of Medicine II, Rheumatology and Clinical Immunology, University Hospital of Würzburg, Oberdürrbacher Str. 6, D-97080, Würzburg, Germany
| | - Patrick-Pascal Strunz
- Department of Medicine II, Rheumatology and Clinical Immunology, University Hospital of Würzburg, Oberdürrbacher Str. 6, D-97080, Würzburg, Germany
| | - Hannah Labinsky
- Department of Medicine II, Rheumatology and Clinical Immunology, University Hospital of Würzburg, Oberdürrbacher Str. 6, D-97080, Würzburg, Germany
| | - Eva Christina Schwaneck
- Medizinisches Versorgungszentrum Rheumatologie und Autoimmunmedizin Hamburg GmbH, Mönckebergstraße 27, D-20095, Hamburg, Germany
| |
Collapse
|
2
|
Brown A, Batra S. Rare Hematologic Malignancies and Pre-Leukemic Entities in Children and Adolescents Young Adults. Cancers (Basel) 2024; 16:997. [PMID: 38473358 DOI: 10.3390/cancers16050997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
There are a variety of rare hematologic malignancies and germline predispositions syndromes that occur in children and adolescent young adults (AYAs). These entities are important to recognize, as an accurate diagnosis is essential for risk assessment, prognostication, and treatment. This descriptive review summarizes rare hematologic malignancies, myelodysplastic neoplasms, and germline predispositions syndromes that occur in children and AYAs. We discuss the unique biology, characteristic genomic aberrations, rare presentations, diagnostic challenges, novel treatments, and outcomes associated with these rare entities.
Collapse
Affiliation(s)
- Amber Brown
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Riley Hospital for Children, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA
| | - Sandeep Batra
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Department of Pediatrics, Riley Hospital for Children, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Gaudio F, Masciopinto P, Bellitti E, Musto P, Arcuti E, Battisti O, Cazzato G, Solombrino A, Laddaga FE, Specchia G, Maiorano E, Ingravallo G. Molecular Features and Diagnostic Challenges in Alpha/Beta T-Cell Large Granular Lymphocyte Leukemia. Int J Mol Sci 2022; 23:13392. [PMID: 36362180 PMCID: PMC9657804 DOI: 10.3390/ijms232113392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Large granular lymphocyte leukemia is a rare chronic lymphoproliferative disease of cytotoxic lymphocytes. The diagnosis, according to the WHO, is based on a persistent (>6 months) increase in the number of LGL cells in the peripheral blood without an identifiable cause. A further distinction is made between T-LGL and NK-LGL leukemia. The molecular sign of LGL leukemia is the mutation of STAT3 and other genes associated with the JAK/STAT pathway. The most common clinical features are neutropenia, anemia, and thrombocytopenia, and it is often associated with various autoimmune conditions. It usually has an indolent course. Due to the rarity of the disease, no specific treatment has yet been identified. Immunosuppressive therapy is used and may allow for disease control and long-term survival, but not eradication of the leukemic clone. Here, we discuss the clinical presentation, diagnostic challenges, pathophysiology, and different treatment options available for alpha/beta T-LGL leukemia, which is the most common disease (85%), in order to better understand and manage this often misunderstood disease.
Collapse
Affiliation(s)
- Francesco Gaudio
- Hematology Section, Department of Emergency and Transplantation, University of Bari Medical School, 70124 Bari, Italy
| | - Pierluigi Masciopinto
- Hematology Section, Department of Emergency and Transplantation, University of Bari Medical School, 70124 Bari, Italy
| | - Emilio Bellitti
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Pellegrino Musto
- Hematology Section, Department of Emergency and Transplantation, University of Bari Medical School, 70124 Bari, Italy
| | - Elena Arcuti
- Hematology Section, Department of Emergency and Transplantation, University of Bari Medical School, 70124 Bari, Italy
| | - Olga Battisti
- Hematology Section, Department of Emergency and Transplantation, University of Bari Medical School, 70124 Bari, Italy
| | - Gerardo Cazzato
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Alessandra Solombrino
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| | | | - Giorgina Specchia
- School of Medicine, University of Bari “Aldo Moro”, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Eugenio Maiorano
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Giuseppe Ingravallo
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
4
|
Gorodetskiy V, Sidorova Y, Biderman B, Kupryshina N, Ryzhikova N, Sudarikov A. STAT3 mutations in "gray-zone" cases of T-cell large granular lymphocytic leukemia associated with autoimmune rheumatic diseases. Front Med (Lausanne) 2022; 9:1000265. [PMID: 36117975 PMCID: PMC9471006 DOI: 10.3389/fmed.2022.1000265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
Abstract
A persistently increased T-cell large granular lymphocyte (T-LGL) count in the blood of more than 2 × 109/L for at least 6 months is necessary for a reliable diagnosis of T-LGL leukemia. In cases with LGL counts of approximately 0.5-2 × 109/L, a diagnosis of T-LGL leukemia can be made if clonal rearrangement of T-cell receptor (TCR) genes is present and if the patient shows typical manifestations of T-LGL leukemia, such as cytopenia, splenomegaly, or concomitant autoimmune disease. However, in cases with LGL counts of less than 0.5 × 109/L, the diagnosis of T-LGL leukemia is questionable (termed as "gray-zone" cases). Although mutations in signal transducer and activator of transcription 3 (STAT3) gene are the molecular hallmark of T-LGL leukemia, their diagnostic value in the "gray-zone" cases of T-LGL leukemia has not been evaluated - our study has been aimed to examine the prevalence of STAT3 mutations in these cases. Herein, we describe 25 patients with autoimmune rheumatic diseases, neutropenia, clonal rearrangement of TCR genes, and circulating LGL count of less than 0.5 × 109/L. Splenomegaly was observed in 19 (76%) patients. Mutations in the STAT3 were detected in 56% of patients using next-generation sequencing. Importantly, in 3 patients, no involvement of the blood and bone marrow by malignant LGLs was noted, but examination of splenic tissue revealed infiltration by clonal cytotoxic T-lymphocytes within the red pulp, with greater prominence in the cords. We suggest using the term "splenic variant of T-LGL leukemia" for such cases.
Collapse
Affiliation(s)
- Vadim Gorodetskiy
- Department of Intensive Methods of Therapy, V.A. Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - Yulia Sidorova
- Laboratory of Molecular Hematology, National Medical Research Center for Hematology, Moscow, Russia
| | - Bella Biderman
- Laboratory of Molecular Hematology, National Medical Research Center for Hematology, Moscow, Russia
| | - Natalia Kupryshina
- Hematopoiesis Immunology Laboratory, Russian Cancer Research Center N.N. Blokhin, Moscow, Russia
| | - Natalya Ryzhikova
- Laboratory of Molecular Hematology, National Medical Research Center for Hematology, Moscow, Russia
| | - Andrey Sudarikov
- Laboratory of Molecular Hematology, National Medical Research Center for Hematology, Moscow, Russia
| |
Collapse
|
5
|
Persistent Large Granular Lymphocyte Clonal Expansions: “The Root of Many Evils”—And of Some Goodness. Cancers (Basel) 2022; 14:cancers14051340. [PMID: 35267648 PMCID: PMC8909662 DOI: 10.3390/cancers14051340] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Large granular lymphocyte leukemia (LGLL) is a chronic disorder of either mature T or NK lymphocytes. As clonal expansions of the immune system cells, difficulties in the distinction between a true neoplasia and a physiological reactive process have been common since its description. We review here the different conditions associated with persistent clonal LGL expansions and discuss their potential origin and whether they can modulate the clinical features. Abstract Large granular lymphocyte leukemia (LGLL) is a chronic disease of either mature phenotype cytotoxic CD3+ T lymphocytes or CD3- NK cells. LGLL diagnosis is hampered by the fact that reactive persistent clonal LGL expansions may fulfill the current criteria for LGLL diagnoses. In addition to the presence of characteristic clinical and hematological signs such as anemia or neutropenia, LGLL/LGL clonal expansions have been associated with an array of conditions/disorders. We review here the presence of these persistent clonal expansions in autoimmune, hematological disorders and solid neoplasms and after hematopoietic stem cell transplantation. These associations are a unique translational research framework to discern whether these persistently expanded LGL clones are causes or consequences of the concomitant clinical settings and, more importantly, when they should be targeted.
Collapse
|
6
|
Fattizzo B, Bellani V, Pasquale R, Giannotta JA, Barcellini W. Large Granular Lymphocyte Expansion in Myeloid Diseases and Bone Marrow Failure Syndromes: Whoever Seeks Finds. Front Oncol 2021; 11:748610. [PMID: 34660312 PMCID: PMC8517436 DOI: 10.3389/fonc.2021.748610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/17/2021] [Indexed: 11/29/2022] Open
Abstract
Large granular lymphocytes (LGL) are lymphoid cells characterized by either a T-cell or a natural killer phenotype whose expansion may be reactive to toxic, infectious, and neoplastic conditions, or result from clonal selection. Recently, the higher attention to LGL clones led to their detection in many clinical conditions including myeloid neoplasms and bone marrow failures. In these contexts, it is still unclear whether LGL cells actively contribute to anti-stem cell autoimmunity or are only a reaction to dysplastic/leukemic myelopoiesis. Moreover, some evidence exists about a common clonal origin of LGL and myeloid clones, including the detection of STAT3 mutations, typical of LGL, in myeloid precursors from myelodysplastic patients. In this article we reviewed available literature regarding the association of LGL clones with myeloid neoplasms (myelodysplastic syndromes, myeloproliferative neoplasms, and acute myeloid leukemias) and bone marrow failures (aplastic anemia and pure red cell aplasia, PRCA) focusing on evidence of pathogenic, clinical, and prognostic relevance. It emerged that LGL clones may be found in up to one third of patients, particularly those with PRCA, and are associated with a more cytopenic phenotype and good response to immunosuppression. Pathogenically, LGL clones seem to expand after myeloid therapies, whilst immunosuppression leading to LGL depletion may favor leukemic escape and thus requires caution.
Collapse
Affiliation(s)
- Bruno Fattizzo
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Bellani
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Raffaella Pasquale
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Wilma Barcellini
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
7
|
Schwaneck EC, Renner R, Tony HP, Weber A, Geissinger E, Gernert M, Fröhlich M, Schmalzing M, Gadeholt O. Clonal expansion of large granular lymphocytes in patients with spondyloarthritis and psoriatic arthritis treated with TNFα inhibitors. Rheumatol Int 2021; 41:1979-1986. [PMID: 33991197 DOI: 10.1007/s00296-021-04872-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/16/2021] [Indexed: 11/30/2022]
Abstract
To determine the prevalence of clonal T-large granular lymphocyte (T-LGL) cells in patients with spondyloarthritis (SpA) and psoriatic arthritis (PsA) and to define possible risk factors for this condition. We present a cross-sectional analysis with retrospective and prospective aspects. 115 SpA patients, 48 PsA patients and 51 controls were recruited between December 28, 2017 and January 23, 2019. Flow cytometry (FACS) was performed to screen for aberrant T-LGL cells. Molecular analysis was then employed to confirm the diagnosis in patients with suggestive FACS findings. Patients with clonal T-LGL populations were followed prospectively by FACS analysis. Electronic patient files were retrospectively analyzed to determine risk factors. Median age was 49 years for SpA, 55.5 years for PsA, and 54 years for controls. Median disease duration of SpA and PsA was 15 years and 11 years, respectively. 79.8% of patients had received biologics at some point, 75.5% had ever received tumor necrosis factor (TNF) inhibitors. 59.5% were treated with TNF inhibitors at the time of study inclusion. We identified clonal T-LGL expansions in 13 individuals equaling a prevalence of 6% (13/214). T-LGL patients were taking TNF inhibitors more frequently at the time of study inclusion (p = 0.022) and were more likely to have ever been treated with TNF inhibition (p = 0.046). Clonal T-LGL expansions can be detected in patients with SpA, PsA and also in healthy controls. Confirming earlier results, exposure to TNFα-blocking agents appears to increase the risk of developing clonal expansions of T-LGL cells.
Collapse
Affiliation(s)
- Eva C Schwaneck
- Schwerpunkt Rheumatologie/Klinische Immunologie, Medizinische Klinik Und Poliklinik II, Universität Würzburg, Würzburg, Germany. .,Sektion Rheumatologie Und Klinische Immunologie, Asklepios Klinik Altona, Paul-Ehrlich-Straße 1, 22763, Hamburg, Germany.
| | - Regina Renner
- Lehrstuhl Für Vergleichende Politikwissenschaft Und Systemlehre, Institut Für Politikwissenschaft Und Soziologie, Universität Würzburg, Würzburg, Germany
| | - Hans-Peter Tony
- Schwerpunkt Rheumatologie/Klinische Immunologie, Medizinische Klinik Und Poliklinik II, Universität Würzburg, Würzburg, Germany
| | - Alexander Weber
- Schwerpunkt Rheumatologie/Klinische Immunologie, Medizinische Klinik Und Poliklinik II, Universität Würzburg, Würzburg, Germany
| | - Eva Geissinger
- Institut Für Pathologie der Universität Würzburg, Würzburg, Germany
| | - Michael Gernert
- Schwerpunkt Rheumatologie/Klinische Immunologie, Medizinische Klinik Und Poliklinik II, Universität Würzburg, Würzburg, Germany
| | - Matthias Fröhlich
- Schwerpunkt Rheumatologie/Klinische Immunologie, Medizinische Klinik Und Poliklinik II, Universität Würzburg, Würzburg, Germany
| | - Marc Schmalzing
- Schwerpunkt Rheumatologie/Klinische Immunologie, Medizinische Klinik Und Poliklinik II, Universität Würzburg, Würzburg, Germany
| | - Ottar Gadeholt
- Schwerpunkt Rheumatologie/Klinische Immunologie, Medizinische Klinik Und Poliklinik II, Universität Würzburg, Würzburg, Germany.,Rheumatologische Schwerpunktpraxis Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Smyth LJ, Kilner J, Nair V, Liu H, Brennan E, Kerr K, Sandholm N, Cole J, Dahlström E, Syreeni A, Salem RM, Nelson RG, Looker HC, Wooster C, Anderson K, McKay GJ, Kee F, Young I, Andrews D, Forsblom C, Hirschhorn JN, Godson C, Groop PH, Maxwell AP, Susztak K, Kretzler M, Florez JC, McKnight AJ. Assessment of differentially methylated loci in individuals with end-stage kidney disease attributed to diabetic kidney disease: an exploratory study. Clin Epigenetics 2021; 13:99. [PMID: 33933144 PMCID: PMC8088646 DOI: 10.1186/s13148-021-01081-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND A subset of individuals with type 1 diabetes mellitus (T1DM) are predisposed to developing diabetic kidney disease (DKD), the most common cause globally of end-stage kidney disease (ESKD). Emerging evidence suggests epigenetic changes in DNA methylation may have a causal role in both T1DM and DKD. The aim of this exploratory investigation was to assess differences in blood-derived DNA methylation patterns between individuals with T1DM-ESKD and individuals with long-duration T1DM but no evidence of kidney disease upon repeated testing to identify potential blood-based biomarkers. Blood-derived DNA from individuals (107 cases, 253 controls and 14 experimental controls) were bisulphite treated before DNA methylation patterns from both groups were generated and analysed using Illumina's Infinium MethylationEPIC BeadChip arrays (n = 862,927 sites). Differentially methylated CpG sites (dmCpGs) were identified (false discovery rate adjusted p ≤ × 10-8 and fold change ± 2) by comparing methylation levels between ESKD cases and T1DM controls at single site resolution. Gene annotation and functionality was investigated to enrich and rank methylated regions associated with ESKD in T1DM. RESULTS Top-ranked genes within which several dmCpGs were located and supported by functional data with methylation look-ups in other cohorts include: AFF3, ARID5B, CUX1, ELMO1, FKBP5, HDAC4, ITGAL, LY9, PIM1, RUNX3, SEPTIN9 and UPF3A. Top-ranked enrichment pathways included pathways in cancer, TGF-β signalling and Th17 cell differentiation. CONCLUSIONS Epigenetic alterations provide a dynamic link between an individual's genetic background and their environmental exposures. This robust evaluation of DNA methylation in carefully phenotyped individuals has identified biomarkers associated with ESKD, revealing several genes and implicated key pathways associated with ESKD in individuals with T1DM.
Collapse
Affiliation(s)
- L J Smyth
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK.
| | - J Kilner
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - V Nair
- Internal Medicine, Department of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - H Liu
- Department of Department of Medicine/ Nephrology, Department of Genetics, Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - E Brennan
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - K Kerr
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - N Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J Cole
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - E Dahlström
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - A Syreeni
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - R M Salem
- Department of Family Medicine and Public Health, UC San Diego, San Diego, CA, USA
| | - R G Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - H C Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, AZ, USA
| | - C Wooster
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - K Anderson
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - G J McKay
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - F Kee
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - I Young
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - D Andrews
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - C Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - J N Hirschhorn
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - C Godson
- Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - P H Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - A P Maxwell
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
- Regional Nephrology Unit, Belfast City Hospital, Belfast, Northern Ireland, UK
| | - K Susztak
- Department of Department of Medicine/ Nephrology, Department of Genetics, Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - M Kretzler
- Internal Medicine, Department of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - J C Florez
- Programs in Metabolism and Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - A J McKnight
- Molecular Epidemiology Research Group, Centre for Public Health, Queen's University Belfast, Belfast, UK
| |
Collapse
|
9
|
Hemolytic Anemia as Presentation of T-Cell Large Granular Lymphocytic Leukemia After Kidney Transplantation: A Case Report. Transplant Proc 2020; 52:1617-1618. [PMID: 32505499 DOI: 10.1016/j.transproceed.2020.02.183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/05/2020] [Indexed: 11/22/2022]
Abstract
T-cell large granular lymphocytic (T-LGL) leukemia is a rare clonal proliferation presenting with cytopenia, splenomegaly, and autoimmune manifestations. It has rarely been described in recipients of solid organ transplants. We report the clinical case of a young kidney transplant recipient that developed T-LGL leukemia 3 years after kidney transplantation. The disorder manifested with a severe form of autoimmune hemolytic anemia in the absence of other laboratory abnormalities. The anemia was successfully treated with an intense course of corticosteroids ands witch of immunosuppressive therapy from a calcineurin inhibitor to sirolimus, a mammalian target of rapamycin inhibitor. Our case shows that autoimmune hemolytic anemia can be a life-threatening manifestation of T-LGL disease. The antiproliferative effects of sirolimus may be useful in the treatment of symptoms of T-LGL leukemia in kidney transplantation.
Collapse
|
10
|
Cheon H, Dziewulska KH, Moosic KB, Olson KC, Gru AA, Feith DJ, Loughran TP. Advances in the Diagnosis and Treatment of Large Granular Lymphocytic Leukemia. Curr Hematol Malig Rep 2020; 15:103-112. [PMID: 32062772 PMCID: PMC7234906 DOI: 10.1007/s11899-020-00565-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW The past decade in LGL leukemia research has seen increased pairing of clinical data with molecular markers, shedding new insights on LGL leukemia pathogenesis and heterogeneity. This review summarizes the current standard of care of LGL leukemia, updates from clinical trials, and our congruent improved understanding of LGL pathogenesis. RECENT FINDINGS Various clinical reports have identified associations between stem, bone marrow, and solid organ transplants and incidence of LGL leukemia. There is also a potential for underdiagnosis of LGL leukemia within the rheumatoid arthritis patient population, emphasizing our need for continued study. Preliminary results from the BNZ-1 clinical trial, which targets IL-15 along with IL-2 and IL-9 signaling pathways, show some evidence of clinical response. With advances in our understanding of LGL pathogenesis from both the bench and the clinic, exciting avenues for investigations lie ahead for LGL leukemia.
Collapse
Affiliation(s)
- HeeJin Cheon
- Department of Medicine, Division of Hematology & Oncology, University of Virginia Cancer Center, PO Box 800334, Charlottesville, VA, 22908-0334, USA
- Department of Biochemistry and Molecular Genetics, Charlottesville, VA, 22908, USA
- Medical Scientist Training Program, Charlottesville, VA, 22908, USA
| | - Karolina H Dziewulska
- Department of Medicine, Division of Hematology & Oncology, University of Virginia Cancer Center, PO Box 800334, Charlottesville, VA, 22908-0334, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Katharine B Moosic
- Department of Medicine, Division of Hematology & Oncology, University of Virginia Cancer Center, PO Box 800334, Charlottesville, VA, 22908-0334, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Kristine C Olson
- Department of Medicine, Division of Hematology & Oncology, University of Virginia Cancer Center, PO Box 800334, Charlottesville, VA, 22908-0334, USA
| | - Alejandro A Gru
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - David J Feith
- Department of Medicine, Division of Hematology & Oncology, University of Virginia Cancer Center, PO Box 800334, Charlottesville, VA, 22908-0334, USA
| | - Thomas P Loughran
- Department of Medicine, Division of Hematology & Oncology, University of Virginia Cancer Center, PO Box 800334, Charlottesville, VA, 22908-0334, USA.
| |
Collapse
|