1
|
Caroni F, Sammartano V, Pacelli P, Sicuranza A, Malchiodi M, Dragomir A, Ciofini S, Raspadori D, Bocchia M, Gozzetti A. Minimal Residual Disease Significance in Multiple Myeloma Patients Treated with Anti-CD38 Monoclonal Antibodies. Pharmaceuticals (Basel) 2025; 18:159. [PMID: 40005973 PMCID: PMC11858645 DOI: 10.3390/ph18020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Minimal residual disease (MRD) evaluation is a recognized endpoint in clinical trials. Both next-generation flow and sequencing could be used as complementary techniques to detect myeloma cells after therapy to measure the depth of response and novel drug efficacy. Anti-CD38 monoclonal antibodies combined with proteasome inhibitors and immunomodulatory drugs have increased the quality of response in myeloma patients, and MRD evaluation is also entering routine clinical practice in many hematological centers. This review analyzes updated results from recent clinical trials utilizing anti-CD38 monoclonal antibodies such as isatuximab and daratumumab in terms of their responses and MRD data. MRD-driven therapy appears promising for the future of MM patients, and emerging minimally invasive techniques to assess MRD are under investigation as novel potential methods to replace or integrate traditional MRD evaluation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alessandro Gozzetti
- AOUS Policlinico Le Scotte, University of Siena, 53100 Siena, Italy; (F.C.); (V.S.); (P.P.); (A.S.); (M.M.); (A.D.); (S.C.); (D.R.); (M.B.)
| |
Collapse
|
2
|
Wijnands C, Noori S, Donk NWCJVD, VanDuijn MM, Jacobs JFM. Advances in minimal residual disease monitoring in multiple myeloma. Crit Rev Clin Lab Sci 2023; 60:518-534. [PMID: 37232394 DOI: 10.1080/10408363.2023.2209652] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023]
Abstract
Multiple myeloma (MM) is characterized by the clonal expansion of plasma cells and the excretion of a monoclonal immunoglobulin (M-protein), or fragments thereof. This biomarker plays a key role in the diagnosis and monitoring of MM. Although there is currently no cure for MM, novel treatment modalities such as bispecific antibodies and CAR T-cell therapies have led to substantial improvement in survival. With the introduction of several classes of effective drugs, an increasing percentage of patients achieve a complete response. This poses new challenges to traditional electrophoretic and immunochemical M-protein diagnostics because these methods lack sensitivity to monitor minimal residual disease (MRD). In 2016, the International Myeloma Working Group (IMWG) expanded their disease response criteria with bone marrow-based MRD assessment using flow cytometry or next-generation sequencing in combination with imaging-based disease monitoring of extramedullary disease. MRD status is an important independent prognostic marker and its potential as a surrogate endpoint for progression-free survival is currently being studied. In addition, numerous clinical trials are investigating the added clinical value of MRD-guided therapy decisions in individual patients. Because of these novel clinical applications, repeated MRD evaluation is becoming common practice in clinical trials as well as in the management of patients outside clinical trials. In response to this, novel mass spectrometric methods that have been developed for blood-based MRD monitoring represent attractive minimally invasive alternatives to bone marrow-based MRD evaluation. This paves the way for dynamic MRD monitoring to allow the detection of early disease relapse, which may prove to be a crucial factor in facilitating future clinical implementation of MRD-guided therapy. This review provides an overview of state-of-the-art of MRD monitoring, describes new developments and applications of blood-based MRD monitoring, and suggests future directions for its successful integration into the clinical management of MM patients.
Collapse
Affiliation(s)
- Charissa Wijnands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Somayya Noori
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | | | - Martijn M VanDuijn
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, the Netherlands
| | - Joannes F M Jacobs
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
3
|
Abe Y, Sasaki M, Takezako N, Ito S, Suzuki K, Handa H, Chou T, Yoshida T, Mori I, Shinozaki T, Suzuki K. Efficacy and Safety of Ixazomib Plus Lenalidomide and Dexamethasone Following Injectable PI-Based Therapy in Relapsed/Refractory Multiple Myeloma. Ann Hematol 2023; 102:2493-2504. [PMID: 37341778 PMCID: PMC10444638 DOI: 10.1007/s00277-023-05212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/01/2023] [Indexed: 06/22/2023]
Abstract
This nationwide, multicenter, open-label, single-arm study evaluated the efficacy and safety of the oral proteasome inhibitor (PI), ixazomib plus lenalidomide (LEN) and dexamethasone (DEX) (IRd) following injectable PI-based therapy for relapsed/refractory multiple myeloma (RRMM). Of 45 patients enrolled, 36 patients received IRd after achieving at least a minor response to 3 cycles of bortezomib or carfilzomib plus LEN + DEX (VRd, n=6; KRd, n=30). At median follow-up of 20.8 months, the 12-month event-free survival rate (primary endpoint) was 49% (90% CI: 35.9-62.0), counting 11 events of progressive disease/death, 8 dropouts and 4 missing response data. The 12-month progression-free survival (PFS) rate by Kaplan-Meier analysis (dropouts as censoring) was 74% (95% CI: 56-86). Median PFS and time to next treatment (95% CI) were 29.0 (21.3-NE) and 32.3 (14.9-35.4) months, respectively; median OS was not evaluable. The overall response rate was 73%, and 42% of patients had a very good partial response or better. Frequent (≥10% incidence) grade ≥3 treatment emergent adverse events were decreased neutrophil and platelet counts (n=7 [16%] each). Two deaths occurred (one during KRd treatment and one during IRd treatment), both due to pneumonia. IRd following injectable PI-based therapy was tolerable and efficacious in RRMM patients. TRIAL REGISTRATION NUMBER: NCT03416374; Date of registration: January 31, 2018.
Collapse
Affiliation(s)
- Yu Abe
- Division of Haematology, Japanese Red Cross Medical Centre, 4 Chome-1-22 Hiroo, Shibuya City, Tokyo, 150-8935, Japan
| | - Makoto Sasaki
- Division of Haematology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Naoki Takezako
- Division of Haematology, Japan Association for Development of Community Medicine, Nerima Hikarigaoka Hospital, Tokyo, Japan
| | - Shigeki Ito
- Division of Haematology and Oncology, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| | - Kazuhito Suzuki
- Division of Clinical Oncology and Haematology, Department of Internal Medicine, The Jikei University Kashiwa Hospital, Chiba, Japan
| | - Hiroshi Handa
- Department of Haematology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Takaaki Chou
- Niigata Kenshin Plaza, General Incorporated Foundation, Health Medicine Prevention Association, Niigata, Japan
| | - Takahiro Yoshida
- Japan Medical Affairs, Japan Oncology Business Unit, Takeda Pharmaceutical Company Limited, Tokyo, Japan
| | - Ikuo Mori
- Japan Medical Affairs, Japan Oncology Business Unit, Takeda Pharmaceutical Company Limited, Tokyo, Japan
| | - Tomohiro Shinozaki
- Department of Information and Computer Technology, Faculty of Engineering, Tokyo University of Science, Tokyo, Japan
| | - Kenshi Suzuki
- Division of Haematology, Japanese Red Cross Medical Centre, 4 Chome-1-22 Hiroo, Shibuya City, Tokyo, 150-8935, Japan.
| |
Collapse
|
4
|
Wu Z, Wang H, Zheng Y, Fei H, Dong C, Wang Z, Ren W, Xu W, Bian T. Lumbar MR-based radiomics nomogram for detecting minimal residual disease in patients with multiple myeloma. Eur Radiol 2023; 33:5594-5605. [PMID: 36973432 DOI: 10.1007/s00330-023-09540-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/11/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVES Minimal residual disease (MRD) is a standard for assessing treatment response in multiple myeloma (MM). MRD negativity is considered to be the most powerful predictor of long-term good outcomes. This study aimed to develop and validate a radiomics nomogram based on magnetic resonance imaging (MRI) of the lumbar spine to detect MRD after MM treatment. METHODS A total of 130 MM patients (55 MRD negative and 75 MRD positive) who had undergone MRD testing through next-generation flow cytometry were divided into a training set (n = 90) and a test set (n = 40). Radiomics features were extracted from lumbar spinal MRI (T1-weighted images and fat-suppressed T2-weighted images) by means of the minimum redundancy maximum relevance method and the least absolute shrinkage and selection operator algorithm. A radiomics signature model was constructed. A clinical model was established using demographic features. A radiomics nomogram incorporating the radiomics signature and independent clinical factor was developed using multivariate logistic regression analysis. RESULTS Sixteen features were used to establish the radiomics signature. The radiomics nomogram included the radiomics signature and the independent clinical factor (free light chain ratio) and showed good performance in detecting the MRD status (area under the curve: 0.980 in the training set and 0.903 in the test set). CONCLUSIONS The lumbar MRI-based radiomics nomogram showed good performance in detecting MRD status in MM patients after treatment, and it is helpful for clinical decision-making. KEY POINTS • The presence or absence of minimal residual disease status has a strong predictive significance for the prognosis of patients with multiple myeloma. • A radiomics nomogram based on lumbar MRI is a potential and reliable tool for evaluating minimal residual disease status in MM.
Collapse
Affiliation(s)
- Zengjie Wu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Hexiang Wang
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yingmei Zheng
- Health Management Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Hairong Fei
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Cheng Dong
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Zhongjun Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Weifeng Ren
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Wenjian Xu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| | - Tiantian Bian
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
5
|
Ohmine K, Uchibori R. Novel immunotherapies in multiple myeloma. Int J Hematol 2022; 115:799-810. [PMID: 35583724 DOI: 10.1007/s12185-022-03365-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022]
Abstract
For a substantial period, options for the treatment of multiple myeloma (MM) were limited; however, the advent of novel therapies into clinical practice in the 1990s resulted in dramatic changes in the prognosis of the disease. Subsequently, new proteasome inhibitors and immunomodulators with innovations in efficacy and toxicity were introduced; yet there remains a spectrum of patients with poor outcomes with current treatment strategies. One of the causes of disease progression in MM is the loss of the ability of the dysfunctional immune environment to control virulent cell clones. In recent years, therapies to overcome the immunosuppressive tumor microenvironment and activate the host immune system have shown promise in MM, especially in relapsed and refractory disease. Clinical use of this approach has been approved for several immunotherapies, and a number of studies are currently underway in clinical trials. This review outlines three of the newest and most promising approaches being investigated to enhance the immune system against MM: (1) overcoming immunosuppression with checkpoint inhibitors, (2) boosting immunity against tumors with vaccines, and (3) enhancing immune effectors with adoptive cell therapy. Information on the latest clinical trials in each class will be provided, and further developments will be discussed.
Collapse
Affiliation(s)
- Ken Ohmine
- Division of Hematology, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
- Division of Immuno-Gene and Cell Therapy (Takara Bio), Jichi Medical University, Shimotsuke, Tochigi, Japan.
| | - Ryosuke Uchibori
- Division of Immuno-Gene and Cell Therapy (Takara Bio), Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
6
|
Soh KT, Wallace PK. Evaluation of measurable residual disease in multiple myeloma by multiparametric flow cytometry: Current paradigm, guidelines, and future applications. Int J Lab Hematol 2021; 43 Suppl 1:43-53. [PMID: 34288449 DOI: 10.1111/ijlh.13562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/22/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022]
Abstract
Multiple myeloma (MM) is a heterogeneous group of mature B-cell diseases that are typically characterized by the presence and accumulation of abnormal plasma cells (PCs), which results in the excess production of monoclonal immunoglobulin and/or light chain found in the serum and/or urine. Multiparametric flow cytometry (MFC) is an indispensable tool to supplement the diagnosis, classification and monitoring of the disease due to its high patient applicability, excellent sensitivity and encouraging results from various clinical trials. In this regard, minimal or, more appropriately, measurable residual disease (MRD) negativity by MFC has been recognized as a powerful predictor of favourable long-term outcomes. Before flow cytometry can be effectively implemented in the clinical setting for MM MRD testing, sample preparation, panel configuration, analysis and gating strategies must be optimized to ensure accurate results. This manuscript will discuss the current consensus guidelines for flow cytometric processing of samples and reporting of results for MM MRD testing. We also discuss alternative approaches to detect plasma cells in the presence of daratumumab treatment. Finally, there is a lack of information describing the subclonal distribution of myeloma cells based on their protein expression. The advent of high-dimensional analysis may assist in following the evolution of antigen expression patterns on abnormal plasma cells in patients with relapsed/refractory disease. This in turn can help identify clonal subtypes that are more aggressive for potential informed decision. An analysis using t-SNE to identify the emergence of PCs subclones by MFC, along with the analysis of their immunophenotypic profiles are presented as a future perspective.
Collapse
Affiliation(s)
- Kah Teong Soh
- Department of Flow and Image Cytometry, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Paul K Wallace
- Department of Flow and Image Cytometry, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
7
|
Hansen MH, Cédile O, Larsen TS, Abildgaard N, Nyvold CG. Perspective: sensitive detection of residual lymphoproliferative disease by NGS and clonal rearrangements-how low can you go? Exp Hematol 2021; 98:14-24. [PMID: 33823225 DOI: 10.1016/j.exphem.2021.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 01/12/2023]
Abstract
Malignant lymphoproliferative disorders collectively constitute a large fraction of the hematological cancers, ranging from indolent to highly aggressive neoplasms. Being a diagnostically important hallmark, clonal gene rearrangements of the immunoglobulins enable the detection of residual disease in the clinical course of patients down to a minute fraction of malignant cells. The introduction of next-generation sequencing (NGS) has provided unprecedented assay specificity, with a sensitivity matching that of polymerase chain reaction-based measurable residual disease (MRD) detection down to the 10-6 level. Although reaching 10-6 to 10-7 is theoretically feasible, employing a sufficient amount of DNA and sequencing coverage is placed in the perspective of the practical challenges when relying on clinical samples in contrast to controlled serial dilutions. As we discuss, the randomness of subsampling must be taken into account to accommodate the sensitivity threshold-in terms of both the required number of cells and sequencing coverage. As a substantial part of the reviewed studies do not state the depth of coverage or even amount of DNA in some cases, we call for increased transparency to enable critical assessment of the MRD assays for clinical implementation and feasibility.
Collapse
Affiliation(s)
- Marcus H Hansen
- Hematology-Pathology Research Laboratory, Research Unit for Hematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark; Department of Hematology, Odense University Hospital, Odense, Denmark.
| | - Oriane Cédile
- Hematology-Pathology Research Laboratory, Research Unit for Hematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark; Department of Hematology, Odense University Hospital, Odense, Denmark
| | - Thomas S Larsen
- Department of Hematology, Odense University Hospital, Odense, Denmark
| | - Niels Abildgaard
- Hematology-Pathology Research Laboratory, Research Unit for Hematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark; Department of Hematology, Odense University Hospital, Odense, Denmark
| | - Charlotte G Nyvold
- Hematology-Pathology Research Laboratory, Research Unit for Hematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark; Department of Hematology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
8
|
Treatment Strategies Considering Micro-Environment and Clonal Evolution in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13020215. [PMID: 33435539 PMCID: PMC7827913 DOI: 10.3390/cancers13020215] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Multiple myeloma is an uncurable hematological malignancy, although the prognosis of myeloma patients is getting better using proteasome inhibitors (PIs), immune modulatory drugs (IMiDs), monoclonal antibodies (MoAbs), and cytotoxic agents. Drug resistance makes myeloma difficult to treat and it can be subdivided into two broad categories: de novo and acquired. De novo drug resistance is associated with the bone marrow microenvironment including bone marrow stromal cells, the vascular niche and endosteal niche. Acquired drug resistance is related to clonal evolution and non-genetic diversity. The initial treatment plays the most important role considering de novo and acquired drug resistance and should contain PIs, IMIDs, MoAbs, and autologous stem cell transplantation because these treatments improve the bone marrow microenvironment and might prevent clonal evolution via sustained deep response including minimal residual disease negativity. Abstract Multiple myeloma is an uncurable hematological malignancy because of obtained drug resistance. Microenvironment and clonal evolution induce myeloma cells to develop de novo and acquired drug resistance, respectively. Cell adhesion-mediated drug resistance, which is induced by the interaction between myeloma and bone marrow stromal cells, and soluble factor-mediated drug resistance, which is induced by cytokines and growth factors, are two types of de novo drug resistance. The microenvironment, including conditions such as hypoxia, vascular and endosteal niches, contributes toward de novo drug resistance. Clonal evolution was associated with acquired drug resistance and classified as branching, linear, and neutral evolutions. The branching evolution is dependent on the microenvironment and escape of immunological surveillance while the linear and neutral evolution is independent of the microenvironment and associated with aggressive recurrence and poor prognosis. Proteasome inhibitors (PIs), immunomodulatory drugs (IMiDs), monoclonal antibody agents (MoAbs), and autologous stem cell transplantation (ASCT) have improved prognosis of myeloma via improvement of the microenvironment. The initial treatment plays the most important role considering de novo and acquired drug resistance and should contain PIs, IMIDs, MoAb and ASCT. This review summarizes the role of anti-myeloma agents for microenvironment and clonal evolution and treatment strategies to overcome drug resistance.
Collapse
|
9
|
Zuo X, Liu D. Progress in the application of minimal residual disease detection in multiple myeloma. J Hematop 2021. [DOI: 10.1007/s12308-020-00436-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|