1
|
Wang K, Xu M, Han X, Liu H, Han J, Sun W, Zhou H. Transcriptome analysis of muscle atrophy in Leizhou black goats: identification of key genes and insights into limb-girdle muscular dystrophy. BMC Genomics 2025; 26:80. [PMID: 39871147 PMCID: PMC11773938 DOI: 10.1186/s12864-025-11282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/23/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND The Leizhou Black Goat (LZBG), a prominent breed in tropical China's meat goat industry, frequently exhibits inherent muscle atrophy and malnutrition-related traits. Particularly, muscles critical for support, such as the legs, often display severe symptoms. This study aimed to investigate the differential genes and signaling pathways influencing muscle development and atrophy across various muscle locations in LZBG from a muscular atrophy-affected family. RESULTS Differential expression analysis revealed 536 mRNAs with significant differences across three muscle groups. Marked variations in mRNA expression patterns were observed between leg and back muscles versus abdominal muscles, reflecting characteristics similar to those found in limb-girdle muscular dystrophy. The analysis identified several key differentially expressed genes implicated in muscle development and atrophy, including PITX1, COLQ, ZIC1, SBK2, and TBX1, showed Significant difference expression levels and expression patterns with normal individuals. Functional annotation and protein interaction network analysis indicated enrichment of these genes in muscle-related pathways. Protein interaction network analysis identified five key clusters related to muscle function and development. CONCLUSION The mRNA expression patterns of the leg and back muscles in LZBG from a muscular atrophy-affected family differed significantly from those of the abdominal muscle, displaying typical characteristics of limb-girdle muscular dystrophy. Genes such as PITX1, TBX1, SBK2, TCAP, and COLQ were identified as key regulators of muscle development and contributors to muscle atrophy. These findings enhance our understanding of the mechanisms underlying muscular atrophy in LZBGs. The identification of key genes and pathways provides valuable insights for developing future breeding strategies aimed at improving meat production efficiency.
Collapse
Affiliation(s)
- Ke Wang
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China.
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China.
| | - Mengning Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaotao Han
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China
| | - Hu Liu
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China
| | - Jiancheng Han
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, 225009, China
| | - Hanlin Zhou
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China.
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China.
| |
Collapse
|
2
|
Sluzala ZB, Hamati A, Fort PE. Key Role of Phosphorylation in Small Heat Shock Protein Regulation via Oligomeric Disaggregation and Functional Activation. Cells 2025; 14:127. [PMID: 39851555 PMCID: PMC11764305 DOI: 10.3390/cells14020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Heat shock proteins (HSPs) are essential molecular chaperones that protect cells by aiding in protein folding and preventing aggregation under stress conditions. Small heat shock proteins (sHSPs), which include members from HSPB1 to HSPB10, are particularly important for cellular stress responses. These proteins share a conserved α-crystallin domain (ACD) critical for their chaperone function, with flexible N- and C-terminal extensions that facilitate oligomer formation. Phosphorylation, a key post-translational modification (PTM), plays a dynamic role in regulating sHSP structure, oligomeric state, stability, and chaperone function. Unlike other PTMs such as deamidation, oxidation, and glycation-which are often linked to protein destabilization-phosphorylation generally induces structural transitions that enhance sHSP activity. Specifically, phosphorylation promotes the disaggregation of sHSP oligomers into smaller, more active complexes, thereby increasing their efficiency. This disaggregation mechanism is crucial for protecting cells from stress-induced damage, including apoptosis, inflammation, and other forms of cellular dysfunction. This review explores the role of phosphorylation in modulating the function of sHSPs, particularly HSPB1, HSPB4, and HSPB5, and discusses how these modifications influence their protective functions in cellular stress responses.
Collapse
Affiliation(s)
- Zachary B. Sluzala
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (A.H.)
| | - Angelina Hamati
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (A.H.)
| | - Patrice E. Fort
- Department of Ophthalmology & Visual Sciences, The University of Michigan, Ann Arbor, MI 48109, USA; (Z.B.S.); (A.H.)
- Department of Molecular & Integrative Physiology, The University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Li Z, Li J, Cao Q, Shen T, Wang Y, He H, Tong M. Transcription factor TCF7L1 targeting HSPB6 is involved in EMT and PI3K/AKT/mTOR pathways in bladder cancer. J Biol Chem 2025; 301:108024. [PMID: 39608715 PMCID: PMC11728895 DOI: 10.1016/j.jbc.2024.108024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024] Open
Abstract
Bladder cancer is notorious for its high recurrence and costly treatment burden, prompting a search for novel therapeutic targets. Our study focuses on HSPB6, a small heat shock protein whose reduced expression in bladder cancer suggests a role in tumor biology. Using an integrative approach of bioinformatics, RNA sequencing, and cell-based assays, we show that HSPB6 upregulation inhibits cancer cell proliferation and metastasis while promoting apoptosis. Moreover, TCF7L1-mediated upregulation of HSPB6 leads to suppression of the PI3K/AKT/mTOR signaling pathway, a key driver of cancer progression. These results position HSPB6 as a compelling target for bladder cancer therapy, and its regulatory role in the PI3K/AKT/mTOR axis underscores its therapeutic potential. Our findings pave the way for future investigations into HSPB6-centered treatment strategies.
Collapse
Affiliation(s)
- Zizhi Li
- Department of Medicine, Soochow University, Soochow, Jiangsu, China; Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Junyi Li
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Qingfei Cao
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Tong Shen
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yingjie Wang
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Haoyang He
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ming Tong
- Department of Medicine, Soochow University, Soochow, Jiangsu, China; Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
4
|
Politiek FA, Turkenburg M, Henneman L, Ofman R, Waterham HR. Molecular and cellular consequences of mevalonate kinase deficiency. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167177. [PMID: 38636615 DOI: 10.1016/j.bbadis.2024.167177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/06/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Mevalonate kinase deficiency (MKD) is an autosomal recessive metabolic disorder associated with recurrent autoinflammatory episodes. The disorder is caused by bi-allelic loss-of-function variants in the MVK gene, which encodes mevalonate kinase (MK), an early enzyme in the isoprenoid biosynthesis pathway. To identify molecular and cellular consequences of MKD, we studied primary fibroblasts from severely affected patients with mevalonic aciduria (MKD-MA) and more mildly affected patients with hyper IgD and periodic fever syndrome (MKD-HIDS). As previous findings indicated that the deficient MK activity in MKD impacts protein prenylation in a temperature-sensitive manner, we compared the subcellular localization and activation of the small Rho GTPases RhoA, Rac1 and Cdc42 in control, MKD-HIDS and MKD-MA fibroblasts cultured at physiological and elevated temperatures. This revealed a temperature-induced altered subcellular localization and activation in the MKD cells. To study if and how the temperature-induced ectopic activation of these signalling proteins affects cellular processes, we performed comparative transcriptome analysis of control and MKD-MA fibroblasts cultured at 37 °C or 40 °C. This identified cell cycle and actin cytoskeleton organization as respectively most down- and upregulated gene clusters. Further studies confirmed that these processes were affected in fibroblasts from both patients with MKD-MA and MKD-HIDS. Finally, we found that, similar to immune cells, the MK deficiency causes metabolic reprogramming in MKD fibroblasts resulting in increased expression of genes involved in glycolysis and the PI3K/Akt/mTOR pathway. We postulate that the ectopic activation of small GTPases causes inappropriate signalling contributing to the molecular and cellular aberrations observed in MKD.
Collapse
Affiliation(s)
- Frouwkje A Politiek
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Marjolein Turkenburg
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, the Netherlands
| | - Linda Henneman
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, the Netherlands; Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Rob Ofman
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, the Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location Academic Medical Center, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Gao S, Zhang K, Zhou C, Song J, Gu Y, Cao F, Wang J, Xie E, Yu C, Qiu J. HSPB6 Deficiency Promotes the Development of Aortic Dissection and Rupture. J Transl Med 2024; 104:100326. [PMID: 38237739 DOI: 10.1016/j.labinv.2024.100326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/04/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
To better understand the pathogenesis of acute type A aortic dissection, high-sensitivity liquid chromatography-tandem mass spectrometry/mass spectrometry (LC-MS/MS)-based proteomics and phosphoproteomics approaches were used to identify differential proteins. Heat shock protein family B (small) member 6 (HSPB6) in aortic dissection was significantly reduced in human and mouse aortic dissection samples by real-time PCR, western blotting, and immunohistochemical staining techniques. Using an HSPB6-knockout mouse, we investigated the potential role of HSPB6 in β-aminopropionitrile monofumarate-induced aortic dissection. We found increased mortality and increased probability of ascending aortic dissection after HSPB6 knockout compared with wild-type mice. Mechanistically, our data suggest that HSPB6 deletion promoted vascular smooth muscle cell apoptosis. More importantly, HSPB6 deletion attenuated cofilin activity, leading to excessive smooth muscle cell stiffness and eventually resulting in the development of aortic dissection and rupture. Our data suggest that excessive stiffness of vascular smooth muscle cells caused by HSPB6 deficiency is a new pathogenetic mechanism leading to aortic dissection.
Collapse
Affiliation(s)
- Shiqi Gao
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Zhang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenyu Zhou
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Song
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, China
| | - Yuanrui Gu
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangfang Cao
- Department of Surgical Intensive Care Unit, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Ji Wang
- Department of Surgical Intensive Care Unit, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Enzehua Xie
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Cuntao Yu
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Juntao Qiu
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
6
|
Fang X, Ao X, Xiao D, Wang Y, Jia Y, Wang P, Li M, Wang J. Circular RNA-circPan3 attenuates cardiac hypertrophy via miR-320-3p/HSP20 axis. Cell Mol Biol Lett 2024; 29:3. [PMID: 38172650 PMCID: PMC10763352 DOI: 10.1186/s11658-023-00520-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Circular RNAs are enriched in cardiac tissue and play important roles in the pathogenesis of heart diseases. In this study, we aimed to investigate the regulatory mechanism of a conserved heart-enriched circRNA, circPan3, in cardiac hypertrophy. METHODS Cardiac hypertrophy was induced by isoproterenol. The progression of cardiomyocyte hypertrophy was assessed by sarcomere organization staining, cell surface area measurement, and expression levels of cardiac hypertrophy markers. RNA interactions were detected by RNA pull-down assays, and methylated RNA immunoprecipitation was used to detect m6A level. RESULTS The expression of circPan3 was downregulated in an isoproterenol-induced cardiac hypertrophy model. Forced expression of circPan3 attenuated cardiomyocyte hypertrophy, while inhibition of circPan3 aggravated cardiomyocyte hypertrophy. Mechanistically, circPan3 was an endogenous sponge of miR-320-3p without affecting miR-320-3p levels. It elevated the expression of HSP20 by endogenously interacting with miR-320-3p. In addition, circPan3 was N6-methylated. Stimulation by isoproterenol downregulated the m6A eraser ALKBH5, resulting in N6-methylation and destabilization of circPan3. CONCLUSIONS Our research is the first to report that circPan3 has an antihypertrophic effect in cardiomyocytes and revealed a novel circPan3-modulated signalling pathway involved in cardiac hypertrophy. CircPan3 inhibits cardiac hypertrophy by targeting the miR-320-3p/HSP20 axis and is regulated by ALKBH5-mediated N6-methylation. This pathway could provide potential therapeutic targets for cardiac hypertrophy.
Collapse
Affiliation(s)
- Xinyu Fang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiang Ao
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Dandan Xiao
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yu Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yi Jia
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Peiyan Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Mengyang Li
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
7
|
Wu Y, Zhao J, Tian Y, Jin H. Cellular functions of heat shock protein 20 (HSPB6) in cancer: A review. Cell Signal 2023; 112:110928. [PMID: 37844714 DOI: 10.1016/j.cellsig.2023.110928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Heat shock proteins (HSP) are a large family of peptide proteins that are widely found in cells. Studies have shown that the expression and function of HSPs in cells are very complex, and they can participate in cellular physiological and pathological processes through multiple pathways. Multiple heat shock proteins are associated with cancer cell growth, proliferation, metastasis, and resistance to anticancer drugs, and they play a key role in cancer development by ensuring the correct folding or degradation of proteins in cancer cells. As research hotspots, HSP90, HSP70 and HSP27 have been extensively studied in cancer so far. However, HSP20, also referred to as HSPB6, as a member of the small heat shock protein family, has been shown to play an important role in the cardiovascular system, but little research has been conducted on HSP20 in cancer. This review summarizes the current cellular functions of HSP20 in different cancer types, as well as its effects on cancer proliferation, progression, prognosis, and its other functions in cancer, to illustrate the close association between HSP20 and cancer. We show that, unlike most HSPs, HSP20 mainly plays an active anticancer role in cancer development, which is expected to provide new ideas and help for cancer diagnosis and treatment and research.
Collapse
Affiliation(s)
- Yifeng Wu
- Department of General Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China
| | - Jinjin Zhao
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, People's Republic of China
| | - Yun Tian
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, People's Republic of China.
| | - Hongdou Jin
- Department of General Surgery, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214000, People's Republic of China.
| |
Collapse
|
8
|
Early postmortem muscle proteome and metabolome of beef longissimus thoracis muscle classified by pH at 6 hours postmortem. J Proteomics 2023; 271:104756. [PMID: 36273510 DOI: 10.1016/j.jprot.2022.104756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
The objective was to identify metabolome and proteome differences at 1 h and 1 d postmortem between longissimus thoracis (LT) muscle classified based on 6 h pH values. Twenty beef LT rib sections were sorted based on 6 h postmortem pH values into low (LpH; pH < 5.55; n = 9) and high (HpH; pH > 5.84; n = 8) pH classifications. Warner-Bratzler shear force (WBSF), desmin degradation, and calpain-1 autolysis were measured. Two-dimensional difference in gel electrophoresis (3-10, 4-7, and 6-9 pH range) and Tandem mass tagging (TMT) protein analyses were employed to determine how the sarcoplasmic protein profile varied across pH classification. Non-targeted metabolomic analyses were conducted on extracts prepared at 1 h and 1 d postmortem. The LpH classification had a lower WBSF value at 1 d postmortem, which was explained by greater calpain-1 autolysis and desmin degradation at 1 d postmortem. Proteome and metabolome analysis revealed a phenotype that promotes more rapid energy metabolism in the LpH group. Proteome and metabolome analyses identified energy production, apoptotic, calcium homeostasis, and proteasome systems influencing pH classifications that could explain the observed pH, proteolysis, and beef tenderness differences. SIGNIFICANCE: This study is the first to identify proteomic and metabolomic variations early (1 h and 1 day) postmortem that are linked to differences in early (6 h) postmortem pH values and to tenderness differences at 1 day postmortem. This study integrates postmortem biochemical features (protein degradation, proteome, and metabolome variations) to postmortem pH decline and eating quality of beef steaks. Potential biomarkers of more rapid postmortem metabolism linked to earlier tenderization in beef are suggested. Identification of these biochemical features will assist in predicting the eating quality of beef products.
Collapse
|
9
|
Kumar R, Gupta ID, Verma A, Singh S, Kumari R, Verma N. Genetic polymorphism in HSPB6 gene and their association with heat tolerance traits in Indian Karan Fries ( Bos taurus x Bos indicus) cattle. Anim Biotechnol 2022; 33:1416-1427. [PMID: 33781169 DOI: 10.1080/10495398.2021.1899939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heat shock proteins (HSPs) act as a chaperone activity ensuring the folding, unfolding, and refolding of denatured proteins, which help in a protective role during thermal stress in dairy cattle. This study aimed to detect genetic variations of the HSPB6 gene and to determine their association with heat tolerance traits in Karan Fries cattle. Five single nucleotide polymorphisms (SNPs) (SNP 1-5) were reported in the Karan Fries cattle, which included three transitions viz. SNP1-g.161G > A, SNP2-g.436G > A, and SNP4-g.2152A > G and two transversions viz. SNP3-g.1743C > G, SNP5-g.2417A > T. The association analysis revealed that the three SNPs loci i.e., SNP1-g.161G > A, SNP2-g.436G > A, and SNP3-g.1743C > G were significantly (p < 0.01) associated with the respiration rate (RR) and rectal temperature (RT) (°C) traits. Furthermore, in the case of heat tolerance coefficient (HTC) trait was found significantly associated (p < 0.01) with SNPs loci i.e., SNP1-g.161G > A, SNP2-g.436G > A, and SNP3-g.1743C > G. The Hap 4 (GACAT) was found to more adaptable than cattle of other haplotypes as reflected by lower values of RR, RT and HTC. This study provides the first association analyses between the SNPs and haplotypes of HSPB6 gene and heat tolerance traits in Karan Fries cattle, which could be used as effective SNP markers in genetic selection for heat tolerance in cattle breeding program.
Collapse
Affiliation(s)
- Rakesh Kumar
- Division of Animal and Fishery Sciences, ICAR-Research Complex for NEH Region, Umiam, Meghalaya, India
| | - Ishwar Dayal Gupta
- Division of Dairy Cattle Breeding, ICAR-National Dairy Research Institute, Karnal, India
| | - Archana Verma
- Division of Dairy Cattle Breeding, ICAR-National Dairy Research Institute, Karnal, India
| | - Sohanvir Singh
- Division of Dairy Cattle Physiology, ICAR-National Dairy Research Institute, Karnal, India
| | - Ragini Kumari
- Block Animal Husbandry Officer, Ekangarsarai, Nalanda, India
| | - Nishant Verma
- Department of Animal Genetics and Breeding, Dr. G. C. Negi College of Veterinary and Animal Sciences, Palampur, India
| |
Collapse
|
10
|
KUMAR RAKESH, GUPTA ISHWARDAYAL, VERMA ARCHANA, KUMARI RAGINI, VERMA NISHANT, DEB RAJIB, DAS RAMENDRA, CHAUDHARI MV. Genetic polymorphism in HSPB6 gene and their association with heat tolerance in Sahiwal cattle. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2022. [DOI: 10.56093/ijans.v92i11.109992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Heat shock proteins (HSPs) are known to modulate cellular response during summer stress in dairy cattle. Among different classes of HSPs, heat shock protein 20 (HSPB6) is a member of the small HSP family protein, the role of which has not been fully characterized in the context of heat stress in cattle. This study identified single nucleotide polymorphisms (SNPs) in the HSPB6 gene in Sahiwal cattle and their associations with heat tolerance traits (RR, RT and HTC). Three SNPs (SNP 1-3) were reported, which included two transitions, viz. SNP1-g.436G>A (Intron 1) and SNP2-g.2152A>G (3′-UTR) and one transversion, viz. SNP3-g.2417A>T (3′-UTR). The association analysis revealed that SNPs loci, viz. SNP1-g.436G>A and SNP2-g.2152A>G were significantly associated with heat tolerance traits. The GG genotype of SNP2-g.2152A>G was significantly associated with heat tolerance traits in Sahiwal cattle. The association analysis of four available haplotypes, viz. Hap1 (GGA), Hap2 (AAA), Hap3 (GAA), and Hap4 (AAT) of HSPB6 gene with heat tolerance traits did not differ significantly with any haplotype in Sahiwal cattle. This study provides the first association analyses between the SNPs of HSPB6 gene and heat tolerance traits in Sahiwal cattle, which could be used as effective SNP markers in genetic selection for heat tolerance in cattle breeding programs.
Collapse
|
11
|
Muranova LK, Shatov VM, Gusev NB. Role of Small Heat Shock Proteins in the Remodeling of Actin Microfilaments. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:800-811. [PMID: 36171660 DOI: 10.1134/s0006297922080119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 06/16/2023]
Abstract
Small heat shock proteins (sHsps) play an important role in the maintenance of proteome stability and, particularly, in stabilization of the cytoskeleton and cell contractile apparatus. Cell exposure to different types of stress is accompanied by the translocation of sHsps onto actin filaments; therefore, it is commonly believed that the sHsps are true actin-binding proteins. Investigations of last years have shown that this assumption is incorrect. Stress-induced translocation of sHsp to actin filaments is not the result of direct interaction of these proteins with intact actin, but results from the chaperone-like activity of sHsps and their interaction with various actin-binding proteins. HspB1 and HspB5 interact with giant elastic proteins titin and filamin thus providing an integrity of the contractile apparatus and its proper localization in the cell. HspB6 binds to the universal adapter protein 14-3-3 and only indirectly affects the structure of actin filament. HspB7 interacts with filamin C and controls actin filament assembly. HspB8 forms tight complex with the universal regulatory and adapter protein Bag3 and participates in the chaperone-assisted selective autophagy (CASA) of actin-binding proteins (e.g., filamin), as well as in the actin-depending processes taking place in mitoses. Hence, the mechanisms of sHsp participation in the maintenance of the contractile apparatus and cytoskeleton are much more complicated and diverse than it has been postulated earlier and are not limited to direct interactions of sHsps with actin. The old hypothesis on the direct binding of sHsps to intact actin should be revised and further detailed investigation on the sHsp interaction with minor proteins participating in the formation and remodeling of actin filaments is required.
Collapse
Affiliation(s)
- Lydia K Muranova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladislav M Shatov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Nikolai B Gusev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
12
|
Huang C, Ijaz M, Chen L, Xiang C, Liang C, Li X, Blecker C, Wang Z, Zhang D. Effect of chilling rate on heat shock proteins abundance, myofibrils degradation and caspase‐3 activity in postmortem muscles. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Caiyan Huang
- Institute of Food Science and Technology Chinese Academy of Agriculture Sciences, Key Laboratory of Agro‐Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193 China
- University of Liège Gembloux Agro‐Bio Tech, Unit of Food Science and Formulation, Passage d es Déportés 2, Gembloux B‐5030 Belgium
| | - Muawuz Ijaz
- Department of Animal Sciences, CVAS‐Jhang 35200 University of Veterinary and Animal Sciences 54000 Lahore Pakistan
| | - Li Chen
- Institute of Food Science and Technology Chinese Academy of Agriculture Sciences, Key Laboratory of Agro‐Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193 China
| | - Can Xiang
- Institute of Food Science and Technology Chinese Academy of Agriculture Sciences, Key Laboratory of Agro‐Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193 China
| | - Ce Liang
- Institute of Food Science and Technology Chinese Academy of Agriculture Sciences, Key Laboratory of Agro‐Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193 China
| | - Xin Li
- Institute of Food Science and Technology Chinese Academy of Agriculture Sciences, Key Laboratory of Agro‐Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193 China
| | - Christophe Blecker
- University of Liège Gembloux Agro‐Bio Tech, Unit of Food Science and Formulation, Passage d es Déportés 2, Gembloux B‐5030 Belgium
| | - Zhenyu Wang
- Institute of Food Science and Technology Chinese Academy of Agriculture Sciences, Key Laboratory of Agro‐Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193 China
| | - Dequan Zhang
- Institute of Food Science and Technology Chinese Academy of Agriculture Sciences, Key Laboratory of Agro‐Products Quality & Safety Harvest, Storage, Transportation, Management and Control, Ministry of Agriculture and Rural Affairs, Beijing 100193 China
| |
Collapse
|
13
|
The influence of hypoxia on the cardiac transcriptomes of two estuarine species - C. variegatus and F. grandis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100837. [PMID: 33892309 DOI: 10.1016/j.cbd.2021.100837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/21/2021] [Accepted: 04/07/2021] [Indexed: 01/22/2023]
Abstract
Increased nutrient loading has led to eutrophication of coastal shelf waters which has resulted in increased prevalence of persistent hypoxic zones - areas in which the dissolved oxygen content of the water drops below 2 mg/L. The northern Gulf of Mexico, fed primarily by the Mississippi River watershed, undergoes annual establishment of one of the largest hypoxic zones in the world. Exposure to hypoxia can induce physiological impacts in fish cardiac systems that include bradycardia, changes in stroke volume, and altered cardiovascular vessel development. While these impacts have been addressed at the functional level, there is little information regarding the molecular basis for these changes. This study used transcriptomic analysis techniques to interrogate the effects of hypoxia exposure on the developing cardiovascular system in newly hatched larvae of two estuarine species that occupy the same ecological niche - the sheepshead minnow (Cyprinodon variegatus) and the Gulf killifish (Fundulus grandis). Results suggest that while differential gene expression is largely distinct between the two species, downstream impacts on pathways and functional responses such as reduced cardiac hypertrophy, modulation of blood pressure, and increased incidence of apoptosis appear to be conserved. Further, differences in the magnitude of these conserved responses may suggest that the length of embryonic development could impart a level of resiliency to hypoxic perturbation in early life stage fish.
Collapse
|
14
|
Development of a novel prognostic signature for predicting the overall survival of bladder cancer patients. Biosci Rep 2021; 40:224923. [PMID: 32441304 PMCID: PMC7286875 DOI: 10.1042/bsr20194432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Bladder cancer is one of the most common malignancies. So far, no effective biomarker for bladder cancer prognosis has been identified. Aberrant DNA methylation is frequently observed in the bladder cancer and holds considerable promise as a biomarker for predicting the overall survival (OS) of patients. Materials and methods: We downloaded the DNA methylation and transcriptome data for bladder cancer from The Cancer Genome Atlas (TCGA), a public database, screened hypo-methylated and up-regulated genes, similarly, hyper-methylation with low expression genes, then retrieved the relevant methylation sites. Cox regression analysis was used to identify a nine-methylation site signature of a training group. Predictive ability was validated in a test group by receiver operating characteristic (ROC) analysis. Results: We identified nine bladder cancer-specific methylation sites as potential prognostic biomarkers and established a risk score system based on the methylation site signature to evaluate the OS. The performance of the signature was accurate, with area under curve was 0.73 in the training group and 0.71 in the test group. Taking clinical features into consideration, we constructed a nomogram consisting of the nine-methylation site signature and patients’ clinical variables, and found that the signature was an independent risk factor. Conclusions: Overall, the significant nine methylation sites could be novel prediction biomarkers, which could aid in treatment and also predict the overall survival likelihoods of bladder cancer patients.
Collapse
|
15
|
Dusart P, Hallström BM, Renné T, Odeberg J, Uhlén M, Butler LM. A Systems-Based Map of Human Brain Cell-Type Enriched Genes and Malignancy-Associated Endothelial Changes. Cell Rep 2020; 29:1690-1706.e4. [PMID: 31693905 DOI: 10.1016/j.celrep.2019.09.088] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/09/2019] [Accepted: 09/27/2019] [Indexed: 02/02/2023] Open
Abstract
Changes in the endothelium of the cerebral vasculature can contribute to inflammatory, thrombotic, and malignant disorders. The importance of defining cell-type-specific genes and their modification in disease is increasingly recognized. Here, we develop a bioinformatics-based approach to identify normal brain cell-enriched genes, using bulk RNA sequencing (RNA-seq) data from 238 normal human cortex samples from 2 independent cohorts. We compare endothelial cell-enriched gene profiles with astrocyte, oligodendrocyte, neuron, and microglial cell profiles. Endothelial changes in malignant disease are explored using RNA-seq data from 516 lower-grade gliomas and 401 glioblastomas. Lower-grade gliomas appear to be an "endothelial intermediate" between normal brain and glioblastoma. We apply our method for the prediction of glioblastoma-specific endothelial biomarkers, providing potential diagnostic or therapeutic targets. In summary, we provide a roadmap of endothelial cell identity in normal and malignant brain, using a method developed to resolve bulk RNA-seq into constituent cell-type-enriched profiles.
Collapse
Affiliation(s)
- Philip Dusart
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden; K.G. Jebsen Thrombosis Research and Expertise Centre, Department of Clinical Medicine, The Arctic University of Norway, 9019 Tromsø, Norway
| | - Björn Mikael Hallström
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Thomas Renné
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jacob Odeberg
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden; K.G. Jebsen Thrombosis Research and Expertise Centre, Department of Clinical Medicine, The Arctic University of Norway, 9019 Tromsø, Norway; The University Hospital of North Norway (UNN), PB100, 9038 Tromsø, Norway; Department of Hematology, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Lynn Marie Butler
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden; K.G. Jebsen Thrombosis Research and Expertise Centre, Department of Clinical Medicine, The Arctic University of Norway, 9019 Tromsø, Norway; Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Clinical Chemistry and Blood Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden.
| |
Collapse
|
16
|
Gagaoua M, Bonnet M, Picard B. Protein Array-Based Approach to Evaluate Biomarkers of Beef Tenderness and Marbling in Cows: Understanding of the Underlying Mechanisms and Prediction. Foods 2020; 9:foods9091180. [PMID: 32858893 PMCID: PMC7554754 DOI: 10.3390/foods9091180] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
This study evaluated the potential of a panel of 20 protein biomarkers, quantified by Reverse Phase Protein Array (RPPA), to explain and predict two important meat quality traits, these being beef tenderness assessed by Warner-Bratzler shear force (WBSF) and the intramuscular fat (IMF) content (also termed marbling), in a large database of 188 Protected Designation of Origin (PDO) Maine-Anjou cows. Thus, the main objective was to move forward in the progression of biomarker-discovery for beef qualities by evaluating, at the same time for the two quality traits, a list of candidate proteins so far identified by proteomics and belonging to five interconnected biological pathways: (i) energy metabolic enzymes, (ii) heat shock proteins (HSPs), (iii) oxidative stress, (iv) structural proteins and (v) cell death and protein binding. Therefore, three statistical approaches were applied, these being Pearson correlations, unsupervised learning for the clustering of WBSF and IMF into quality classes, and Partial Least Squares regressions (PLS-R) to relate the phenotypes with the 20 biomarkers. Irrespective of the statistical method and quality trait, seven biomarkers were related with both WBSF and IMF, including three small HSPs (CRYAB, HSP20 and HSP27), two metabolic enzymes from the oxidative pathway (MDH1: Malate dehydrogenase and ALDH1A1: Retinal dehydrogenase 1), the structural protein MYH1 (Myosin heavy chain-IIx) and the multifunctional protein FHL1 (four and a half LIM domains 1). Further, three more proteins were retained for tenderness whatever the statistical method, among which two were structural proteins (MYL1: Myosin light chain 1/3 and TNNT1: Troponin T, slow skeletal muscle) and one was glycolytic enzyme (ENO3: β-enolase 3). For IMF, two proteins were, in this trial, specific for marbling whatever the statistical method: TRIM72 (Tripartite motif protein 72, negative) and PRDX6 (Peroxiredoxin 6, positive). From the 20 proteins, this trial allowed us to qualify 10 and 9 proteins respectively as strongly related with beef tenderness and marbling in PDO Maine-Anjou cows.
Collapse
|
17
|
Nava Ramírez T, Hansberg W. Características comunes de las chaperonas pequeñas y diméricas. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2020. [DOI: 10.22201/fesz.23958723e.2020.0.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Las chaperonas moleculares constituyen un mecanismo importante para evitar la muerte celular provocada por la agregación de proteínas. Las chaperonas independientes del ATP son un grupo de proteínas de bajo peso molecular que pueden proteger y ayudar a alcanzar la estructura nativa de las proteínas desplegadas o mal plegadas sin necesidad de un gasto energético. Hemos encontrado que el dominio C-terminal de las catalasas de subunidad grande tiene actividad de chaperona. Por ello, en esta revisión analizamos las características más comunes de las chaperonas pequeñas y más estudiadas como: αB-cristalina, Hsp20, Spy, Hsp33 y Hsp31. En particular, se examina la participación de los aminoácidos hidrofóbicos y de los aminoácidos con carga en el reconocimiento de las proteínas sustrato, así como el papel que tiene la forma dimérica y su oligomerización en la actividad de chaperona. En cada una de esas chaperonas revisaremos la estructura de la proteína, su función, localización celular e importancia para la célula.
Collapse
|
18
|
Collier MP, Benesch JLP. Small heat-shock proteins and their role in mechanical stress. Cell Stress Chaperones 2020; 25:601-613. [PMID: 32253742 PMCID: PMC7332611 DOI: 10.1007/s12192-020-01095-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
The ability of cells to respond to stress is central to health. Stress can damage folded proteins, which are vulnerable to even minor changes in cellular conditions. To maintain proteostasis, cells have developed an intricate network in which molecular chaperones are key players. The small heat-shock proteins (sHSPs) are a widespread family of molecular chaperones, and some sHSPs are prominent in muscle, where cells and proteins must withstand high levels of applied force. sHSPs have long been thought to act as general interceptors of protein aggregation. However, evidence is accumulating that points to a more specific role for sHSPs in protecting proteins from mechanical stress. Here, we briefly introduce the sHSPs and outline the evidence for their role in responses to mechanical stress. We suggest that sHSPs interact with mechanosensitive proteins to regulate physiological extension and contraction cycles. It is likely that further study of these interactions - enabled by the development of experimental methodologies that allow protein contacts to be studied under the application of mechanical force - will expand our understanding of the activity and functions of sHSPs, and of the roles played by chaperones in general.
Collapse
Affiliation(s)
- Miranda P Collier
- Department of Biology, Stanford University, 318 Campus Drive, Stanford, CA, 94305, USA
| | - Justin L P Benesch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
19
|
|
20
|
Muranova LK, Strelkov SV, Gusev NB. Effect of cataract-associated mutations in the N-terminal domain of αB-crystallin (HspB5). Exp Eye Res 2020; 197:108091. [PMID: 32533979 DOI: 10.1016/j.exer.2020.108091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/08/2020] [Accepted: 05/28/2020] [Indexed: 11/18/2022]
Abstract
Physico-chemical properties of three cataract-associated missense mutants of αB-crystallin (HspB5) (R11H, P20S, R56W) were analyzed. The oligomers formed by the R11H mutant were smaller, whereas the oligomers of the P20S and R56W mutants were larger than those of the wild-type protein. The P20S mutant possessed lower thermal stability than the wild-type HspB5 or two other HspB5 mutants. All HspB5 mutants were able to form heterooligomeric complexes with αA-crystallin (HspB4), a genuine component of eye lens. However, the P20S and R56W mutants were less effective in the formation of these complexes and properties of heterooligomeric complexes formed by these mutants and HspB4 and analyzed by ion-exchange chromatography were different from those formed by the wild-type HspB5 and HspB4. All HspB5 variants also heterooligomerized with another partner protein, HspB6. Specifically for the P20S mutant forming two distinct sizes of homooligomers, only the smaller homooligomer population was able to interact with HspB6. P20S and R56W mutants possessed lower chaperone-like activity than the wild-type HspB5 when UV-irradiated βL-crystallin was used as a model substrate. Importantly, all three mutations are localized in three earlier postulated short α-helical regions present in the N-terminal domain of αB-crystallin. These observations suggest an important structural and functional role of these regions. Correspondingly, therein localized mutations ultimately result in clinically relevant cataracts.
Collapse
Affiliation(s)
- Lydia K Muranova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991, Russian Federation
| | - Sergei V Strelkov
- Laboratory of Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, 3000, Belgium
| | - Nikolai B Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991, Russian Federation.
| |
Collapse
|
21
|
Shatov VM, Gusev NB. Physico-chemical properties of two point mutants of small heat shock protein HspB6 (Hsp20) with abrogated cardioprotection. Biochimie 2020; 174:126-135. [PMID: 32353387 DOI: 10.1016/j.biochi.2020.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
Abstract
Physico-chemical properties of HspB6 S10F and P20L mutants with abrogated cardioprotective activity and associated with different forms of cardiomyopathy were analyzed. Under normal conditions both the wild-type HspB6 and its mutants formed small size oligomers (dimers) with apparent molecular weight of 50-60 kDa. Under crowding conditions (0.5 M trimethylamine N-oxide, TMAO) the wild-type HspB6 remained predominantly dimeric or formed small molecular weight complexes, whereas both mutants tended to form high molecular weight complexes. Catalytic subunit of cAMP-dependent protein kinase phosphorylated the wild-type HspB6 and its S10F mutant with comparable rate. The rate of P20L mutant phosphorylation was higher than that of the wild-type HspB6. S10F and P20L mutations did not affect interaction of phosphorylated HspB6 with universal adapter proteins 14-3-3. The wild-type HspB6 was resistant to heat-induced denaturation and aggregation, whereas both its mutants were denatured and started to aggregate at temperature much lower than its wild-type counterpart. Titration with fluorescent probe bis-ANS was accompanied by larger increase of fluorescence in the case of both mutants than in the case of the wild-type HspB6. Both mutants possessed higher chaperone-like activity than the wild-type protein. It is concluded that both S10F and P20L mutations are accompanied by increase of hydrophobicity of the very N-terminal region of HspB6 leading to increased aggregation at elevated temperature, formation of large complexes under crowding conditions and increased chaperone-like activity measured in vitro. Increased hydrophobicity and self-association can affect substrate specificity and interaction with certain target proteins thus leading to decrease or complete abrogation of cardioprotective activity.
Collapse
Affiliation(s)
- Vladislav M Shatov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991, Russian Federation
| | - Nikolai B Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991, Russian Federation.
| |
Collapse
|
22
|
Effect of Arginine on Chaperone-Like Activity of HspB6 and Monomeric 14-3-3ζ. Int J Mol Sci 2020; 21:ijms21062039. [PMID: 32188159 PMCID: PMC7139691 DOI: 10.3390/ijms21062039] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/26/2022] Open
Abstract
The effect of protein chaperones HspB6 and the monomeric form of the protein 14-3-3ζ (14-3-3ζm) on a test system based on thermal aggregation of UV-irradiated glycogen phosphorylase b (UV-Phb) at 37 °C and a constant ionic strength (0.15 M) was studied using dynamic light scattering. A significant increase in the anti-aggregation activity of HspB6 and 14-3-3ζm was demonstrated in the presence of 0.1 M arginine (Arg). To compare the effects of these chaperones on UV-Phb aggregation, the values of initial stoichiometry of the chaperone-target protein complex (S0) were used. The analysis of the S0 values shows that in the presence of Arg fewer chaperone subunits are needed to completely prevent aggregation of the UV-Phb subunit. The changes in the structures of HspB6 and 14-3-3ζm induced by binding of Arg were evaluated by the fluorescence spectroscopy and differential scanning calorimetry. It was suggested that Arg caused conformational changes in chaperone molecules, which led to a decrease in the thermal stability of protein chaperones and their destabilization.
Collapse
|
23
|
Picard B, Gagaoua M. Meta-proteomics for the discovery of protein biomarkers of beef tenderness: An overview of integrated studies. Food Res Int 2020; 127:108739. [DOI: 10.1016/j.foodres.2019.108739] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/29/2019] [Accepted: 10/02/2019] [Indexed: 01/14/2023]
|
24
|
Llano-Diez M, Fury W, Okamoto H, Bai Y, Gromada J, Larsson L. RNA-sequencing reveals altered skeletal muscle contraction, E3 ligases, autophagy, apoptosis, and chaperone expression in patients with critical illness myopathy. Skelet Muscle 2019; 9:9. [PMID: 30992050 PMCID: PMC6466682 DOI: 10.1186/s13395-019-0194-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/31/2019] [Indexed: 12/17/2022] Open
Abstract
Background Critical illness myopathy (CIM) is associated with severe skeletal muscle wasting and impaired function in intensive care unit (ICU) patients. The mechanisms underlying CIM remain incompletely understood. To elucidate the biological activities occurring at the transcriptional level in the skeletal muscle of ICU patients with CIM, the gene expression profiles, potential upstream regulators, and enrichment pathways were characterized using RNA sequencing (RNA-seq). We also compared the skeletal muscle gene signatures in ICU patients with CIM and genes perturbed by mechanical loading in one leg of the ICU patients, with an aim of reducing the loss of muscle function. Methods RNA-seq was used to assess gene expression changes in tibialis anterior skeletal muscle samples from seven critically ill, immobilized, and mechanically ventilated ICU patients with CIM and matched control subjects. We also examined skeletal muscle gene expression for both legs of six ICU patients with CIM, where one leg was mechanically loaded for 10 h/day for an average of 9 days. Results In total, 6257 of 17,221 detected genes were differentially expressed (84% upregulated; p < 0.05 and fold change ≥ 1.5) in skeletal muscle from ICU patients with CIM when compared to control subjects. The differentially expressed genes were highly associated with gene changes identified in patients with myopathy, sepsis, long-term inactivity, polymyositis, tumor, and repeat exercise resistance. Upstream regulator analysis revealed that the CIM signature could be a result of the activation of MYOD1, p38 MAPK, or treatment with dexamethasone. Passive mechanical loading only reversed expression of 0.74% of the affected genes (46 of 6257 genes). Conclusions RNA-seq analysis revealed that the marked muscle atrophy and weakness observed in ICU patients with CIM were associated with the altered expression of genes involved in muscle contraction, newly identified E3 ligases, autophagy and calpain systems, apoptosis, and chaperone expression. In addition, MYOD1, p38 MAPK, and dexamethasone were identified as potential upstream regulators of skeletal muscle gene expression in ICU patients with CIM. Mechanical loading only marginally affected the skeletal muscle transcriptome profiling of ICU patients diagnosed with CIM. Electronic supplementary material The online version of this article (10.1186/s13395-019-0194-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monica Llano-Diez
- Department of Physiology and Pharmacology, Karolinska Institutet, Bioclinicum, J8:30, SE-171 77, Stockholm, Sweden
| | - Wen Fury
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Haruka Okamoto
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Yu Bai
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Jesper Gromada
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, 10591, USA
| | - Lars Larsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Bioclinicum, J8:30, SE-171 77, Stockholm, Sweden. .,Department of Clinical Neuroscience, Karolinska Institutet and Karolinska Hospital, Stockholm, Sweden.
| |
Collapse
|
25
|
Fuente-Garcia C, Aldai N, Sentandreu E, Oliván M, García-Torres S, Franco D, Zapata C, Sentandreu MA. Search for proteomic biomarkers related to bovine pre-slaughter stress using liquid isoelectric focusing (OFFGEL) and mass spectrometry. J Proteomics 2019; 198:59-65. [DOI: 10.1016/j.jprot.2018.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/23/2022]
|
26
|
Miskiewicz EI, MacPhee DJ. Lysis Buffer Choices Are Key Considerations to Ensure Effective Sample Solubilization for Protein Electrophoresis. Methods Mol Biol 2019; 1855:61-72. [PMID: 30426406 DOI: 10.1007/978-1-4939-8793-1_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The efficient extraction of proteins of interest from cells and tissues can be challenging. Here we demonstrate the differences in extraction of the focal adhesion protein Kindlin-2 and the transcriptional repressor Snail from choriocarcinoma cells using NP-40 and RIPA lysis buffer. We also show the use of a more denaturing urea/thiourea lysis buffer for solubilization, by comparing its effectiveness with the often utilized RIPA lysis buffer for solubilization of heat shock proteins (HSP) B1 and B5 and the cytoplasmic adapter protein integrin-linked kinase (ILK) from smooth muscle. Overall, the results demonstrate the importance of optimizing lysis buffers for specific protein solubilization prior to finalizing the experimental workflow.
Collapse
Affiliation(s)
- Ewa I Miskiewicz
- One Reproductive Health Research Group, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel J MacPhee
- One Reproductive Health Research Group, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
27
|
Heat Shock Proteins as Immunomodulants. Molecules 2018; 23:molecules23112846. [PMID: 30388847 PMCID: PMC6278532 DOI: 10.3390/molecules23112846] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 12/24/2022] Open
Abstract
Heat shock proteins (Hsps) are conserved molecules whose main role is to facilitate folding of other proteins. Most Hsps are generally stress-inducible as they play a particularly important cytoprotective role in cells exposed to stressful conditions. Initially, Hsps were generally thought to occur intracellulary. However, recent work has shown that some Hsps are secreted to the cell exterior particularly in response to stress. For this reason, they are generally regarded as danger signaling biomarkers. In this way, they prompt the immune system to react to prevailing adverse cellular conditions. For example, their enhanced secretion by cancer cells facilitate targeting of these cells by natural killer cells. Notably, Hsps are implicated in both pro-inflammatory and anti-inflammatory responses. Their effects on immune cells depends on a number of aspects such as concentration of the respective Hsp species. In addition, various Hsp species exert unique effects on immune cells. Because of their conservation, Hsps are implicated in auto-immune diseases. Here we discuss the various metabolic pathways in which various Hsps manifest immune modulation. In addition, we discuss possible experimental variations that may account for contradictory reports on the immunomodulatory function of some Hsps.
Collapse
|
28
|
Hocking KM, Evans BC, Komalavilas P, Cheung-Flynn J, Duvall CL, Brophy CM. Nanotechnology Enabled Modulation of Signaling Pathways Affects Physiologic Responses in Intact Vascular Tissue. Tissue Eng Part A 2018; 25:416-426. [PMID: 30132374 DOI: 10.1089/ten.tea.2018.0169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
IMPACT STATEMENT Subarachnoid hemorrhage (SAH) is associated with vasospasm that is refractory to traditional vasodilators, and inhibition of vasospasm after SAH remains a large unmet clinical need. SAH causes changes in the phosphorylation state of the small heat shock proteins (HSPs), HSP20 and HSP27, in the vasospastic vessels. In this study, the levels of HSP27 and HSP20 were manipulated using nanotechnology to mimic the intracellular phenotype of SAH-induced vasospasm, and the effect of this manipulation was tested on vasomotor responses in intact tissues. This work provides insight into potential therapeutic targets for the development of more effective treatments for SAH induced vasospasm.
Collapse
Affiliation(s)
- Kyle M Hocking
- 1 Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.,2 Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Brian C Evans
- 1 Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.,2 Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Padmini Komalavilas
- 1 Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.,3 VA Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Joyce Cheung-Flynn
- 1 Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Craig L Duvall
- 2 Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Colleen M Brophy
- 1 Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee.,3 VA Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
29
|
Liu GS, Gardner G, Adly G, Jiang M, Cai WF, Lam CK, Alogaili F, Robbins N, Rubinstein J, Kranias EG. A novel human S10F-Hsp20 mutation induces lethal peripartum cardiomyopathy. J Cell Mol Med 2018; 22:3911-3919. [PMID: 29761889 PMCID: PMC6050507 DOI: 10.1111/jcmm.13665] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/30/2018] [Indexed: 01/20/2023] Open
Abstract
Heat shock protein 20 (Hsp20) has been shown to be a critical regulator of cardiomyocyte survival upon cardiac stress. In this study, we investigated the functional significance of a novel human Hsp20 mutation (S10F) in peripartum cardiomyopathy. Previous findings showed that cardiac-specific overexpression of this mutant were associated with reduced autophagy, left ventricular dysfunction and early death in male mice. However, this study indicates that females have normal function with no alterations in autophagy but died within a week after 1-4 pregnancies. Further examination of mutant females revealed left ventricular chamber dilation and hypertrophic remodelling. Echocardiography demonstrated increases in left ventricular end-systolic volume and left ventricular end-diastolic volume, while ejection fraction and fractional shortening were depressed following pregnancy. Subsequent studies revealed that cardiomyocyte apoptosis was elevated in mutant female hearts after the third delivery, associated with decreases in the levels of Bcl-2/Bax and Akt phosphorylation. These results indicate that the human S10F mutant is associated with dysregulation of cell survival signalling, accelerated heart failure and early death post-partum.
Collapse
Affiliation(s)
- Guan-Sheng Liu
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - George Gardner
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - George Adly
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Min Jiang
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wen-Feng Cai
- Department of Pathology & Lab Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Chi Keung Lam
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fawzi Alogaili
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nathan Robbins
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jack Rubinstein
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Evangelia G Kranias
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Molecular Biology Division, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
30
|
Alteration of heat shock protein 20 expression in preeclamptic patients and its effect in vascular and coagulation function. Front Med 2018. [PMID: 29520693 DOI: 10.1007/s11684-017-0576-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Preeclampsia (PE) is a pregnancy-specific, multi-system disorder and the leading cause of maternal and perinatal morbidity and mortality in obstetrics worldwide. Excessive vasoconstriction and dysregulated coagulation function are closely associated with PE. Heat shock protein 20 (HSP20) is ubiquitously expressed under normal physiological conditions and has important roles in vascular dilatation and suppression of platelet aggregation. However, the role of HSP20 in the pathogenesis of PE remains unclear. In this study, we collected chorionic plate resistance arteries (CPAs) and serum from 118 healthy pregnant women and 80 women with PE and detected the levels of HSP20 and its phosphorylated form. Both HSP20 and phosphorylated HSP20 were downregulated in CPAs from women with PE. Comparison of the vasodilative ability of CPAs from the two groups showed impaired relaxation responses to acetyl choline in preeclamptic vessels. In addition to the reduced HSP20 in serum from women with PE, the platelet distribution width and mean platelet volume were also decreased, and the activated partial thromboplastin time and thromboplastin time were elevated.With regard to the vital roles of HSP20 in mediating vasorelaxation and coagulation function, the decreased HSP20 might contribute to the pathogenesis of PE.
Collapse
|
31
|
Jiang Q, Bao C, Yang Y, Liu A, Liu F, Huang H, Ye H. Transcriptome profiling of claw muscle of the mud crab (Scylla paramamosain) at different fattening stages. PLoS One 2017; 12:e0188067. [PMID: 29141033 PMCID: PMC5687733 DOI: 10.1371/journal.pone.0188067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/31/2017] [Indexed: 01/29/2023] Open
Abstract
In crustaceans, muscle growth and development is complicated, and to date substantial knowledge gaps exist. In this study, the claw muscle, hepatopancreas and nervous tissue of the mud crab (Scylla paramamosain) were collected at three fattening stages for sequence by the Illumina sequencing. A total of 127.87 Gb clean data with no less than 3.94 Gb generated for each sample and the cycleQ30 percentages were more than 86.13% for all samples. De Bruijn assembly of these clean data produced 94,853 unigenes, thereinto, 50,059 unigenes were found in claw muscle. A total of 121 differentially expressed genes (DEGs) were revealed in claw muscle from the three fattening stages with a Padj value < 0.01, including 63 genes with annotation. Functional annotation and enrichment analysis showed that the DEGs clusters represented the predominant gene catalog with roles in biochemical processes (glycolysis, phosphorylation and regulation of transcription), molecular function (ATP binding, 6-phosphofructokinase activity, and sequence-specific DNA binding) and cellular component (6-phosphofructokinase complex, plasma membrane, and integral component of membrane). qRT-PCR was employed to further validate certain DEGs. Single nucleotide polymorphism (SNP) analysis obtained 159,322, 125,963 and 166,279 potential SNPs from the muscle transcriptome at stage B, stage C and stage D, respectively. In addition, there were sixteen neuropeptide transcripts being predicted in the claw muscle. The present study provides a comprehensive transcriptome of claw muscle of S. paramamosain during fattening, providing a basis for screening the functional genes that may affect muscle growth of S. paramamosain.
Collapse
Affiliation(s)
- Qingling Jiang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Chenchang Bao
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ya’nan Yang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - An Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Fang Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Huiyang Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Haihui Ye
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- Collaborative Innovation Center for Development and Utilization of Marine Biological Resources, Xiamen, China
- * E-mail:
| |
Collapse
|
32
|
Loss of type 9 adenylyl cyclase triggers reduced phosphorylation of Hsp20 and diastolic dysfunction. Sci Rep 2017; 7:5522. [PMID: 28717248 PMCID: PMC5514062 DOI: 10.1038/s41598-017-05816-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/05/2017] [Indexed: 01/16/2023] Open
Abstract
Adenylyl cyclase type 9 (AC9) is found tightly associated with the scaffolding protein Yotiao and the IKs ion channel in heart. But apart from potential IKs regulation, physiological roles for AC9 are unknown. We show that loss of AC9 in mice reduces less than 3% of total AC activity in heart but eliminates Yotiao-associated AC activity. AC9−/− mice exhibit no structural abnormalities but show a significant bradycardia, consistent with AC9 expression in sinoatrial node. Global changes in PKA phosphorylation patterns are not altered in AC9−/− heart, however, basal phosphorylation of heat shock protein 20 (Hsp20) is significantly decreased. Hsp20 binds AC9 in a Yotiao-independent manner and deletion of AC9 decreases Hsp20-associated AC activity in heart. In addition, expression of catalytically inactive AC9 in neonatal cardiomyocytes decreases isoproterenol-stimulated Hsp20 phosphorylation, consistent with an AC9-Hsp20 complex. Phosphorylation of Hsp20 occurs largely in ventricles and is vital for the cardioprotective effects of Hsp20. Decreased Hsp20 phosphorylation suggests a potential baseline ventricular defect for AC9−/−. Doppler echocardiography of AC9−/− displays a decrease in the early ventricular filling velocity and ventricular filling ratio (E/A), indicative of grade 1 diastolic dysfunction and emphasizing the importance of local cAMP production in the context of macromolecular complexes.
Collapse
|
33
|
Charmpilas N, Kyriakakis E, Tavernarakis N. Small heat shock proteins in ageing and age-related diseases. Cell Stress Chaperones 2017; 22:481-492. [PMID: 28074336 PMCID: PMC5465026 DOI: 10.1007/s12192-016-0761-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022] Open
Abstract
Small heat shock proteins (sHSPs) are gatekeepers of cellular homeostasis across species, preserving proteome integrity under stressful conditions. Nonetheless, recent evidence suggests that sHSPs are more than molecular chaperones with merely auxiliary role. In contrast, sHSPs have emerged as central lifespan determinants, and their malfunction has been associated with the manifestation of neurological disorders, cardiovascular disease and cancer malignancies. In this review, we focus on the role of sHSPs in ageing and age-associated diseases and highlight the most prominent paradigms, where impairment of sHSP function has been implicated in human pathology.
Collapse
Affiliation(s)
- Nikolaos Charmpilas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece
- Department of Biology, University of Crete, 70013, Heraklion, Crete, Greece
| | - Emmanouil Kyriakakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece
- Department of Biomedicine, Laboratory for Signal Transduction, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Crete, Greece.
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 70013, Heraklion, Crete, Greece.
| |
Collapse
|
34
|
Banathy A, Cheung-Flynn J, Goleniewska K, Boyd KL, Newcomb DC, Peebles RS, Komalavilas P. Heat Shock-Related Protein 20 Peptide Decreases Human Airway Constriction Downstream of β2-Adrenergic Receptor. Am J Respir Cell Mol Biol 2017; 55:225-33. [PMID: 26909644 DOI: 10.1165/rcmb.2015-0139oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Severe bronchospasm refractory to β-agonists is a challenging aspect of asthma therapy, and novel therapeutics are needed. β-agonist-induced airway smooth muscle (ASM) relaxation is associated with increases in the phosphorylation of the small heat shock-related protein (HSP) 20. We hypothesized that a transducible phosphopeptide mimetic of HSP20 (P20 peptide) causes relaxation of human ASM (HASM) by interacting with target(s) downstream of the β2-adrenergic receptor (β2AR) pathway. The effect of the P20 peptide on ASM contractility was determined in human and porcine ASM using a muscle bath. The effect of the P20 peptide on filamentous actin dynamics and migration was examined in intact porcine ASM and cultured primary HASM cells. The efficacy of the P20 peptide in vivo on airway hyperresponsiveness (AHR) was determined in an ovalbumin (OVA) sensitization and challenge murine model of allergic airway inflammation. P20 peptide caused dose-dependent relaxation of carbachol-precontracted ASM and blocked carbachol-induced contraction. The β2AR inhibitor, (±)-1-[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethyl)amino]-2-butanol hydrochloride (ICI 118,551), abrogated isoproterenol but not P20 peptide-mediated relaxation. The P20 peptide decreased filamentous actin levels in intact ASM, disrupted stress fibers, and inhibited platelet-derived growth factor-induced migration of HASM cells. The P20 peptide treatment reduced methacholine-induced AHR in OVA mice without affecting the inflammatory response. These results suggest that the P20 peptide decreased airway constriction and disrupted stress fibers through regulation of the actin cytoskeleton downstream of β2AR. Thus, the P20 peptide may be a potential therapeutic for asthma refractory to β-agonists.
Collapse
Affiliation(s)
| | | | | | - Kelly L Boyd
- 3 Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | | | - R Stokes Peebles
- 2 Medicine, and.,4 Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Padmini Komalavilas
- Departments of 1 Surgery.,4 Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
35
|
Sluchanko NN, Gusev NB. Moonlighting chaperone‐like activity of the universal regulatory 14‐3‐3 proteins. FEBS J 2017; 284:1279-1295. [DOI: 10.1111/febs.13986] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/20/2016] [Accepted: 12/06/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Nikolai N. Sluchanko
- Laboratory of Structural Biochemistry of Proteins A. N. Bach Institute of Biochemistry Federal Research Center of Biotechnology of the Russian Academy of Sciences Moscow Russia
| | - Nikolai B. Gusev
- Department of Biochemistry School of Biology Moscow State University Russia
| |
Collapse
|
36
|
Nefedova VV, Muranova LK, Sudnitsyna MV, Ryzhavskaya AS, Gusev NB. Small Heat Shock Proteins and Distal Hereditary Neuropathies. BIOCHEMISTRY (MOSCOW) 2016; 80:1734-47. [PMID: 26878578 DOI: 10.1134/s000629791513009x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Classification of small heat shock proteins (sHsp) is presented and processes regulated by sHsp are described. Symptoms of hereditary distal neuropathy are described and the genes whose mutations are associated with development of this congenital disease are listed. The literature data and our own results concerning physicochemical properties of HspB1 mutants associated with Charcot-Marie-Tooth disease are analyzed. Mutations of HspB1, associated with hereditary motor neuron disease, can be accompanied by change of the size of HspB1 oligomers, by decreased stability under unfavorable conditions, by changes in the interaction with protein partners, and as a rule by decrease of chaperone-like activity. The largest part of these mutations is accompanied by change of oligomer stability (that can be either increased or decreased) or by change of intermonomer interaction inside an oligomer. Data on point mutation of HspB3 associated with axonal neuropathy are presented. Data concerning point mutations of Lys141 of HspB8 and those associated with hereditary neuropathy and different forms of Charcot-Marie-Tooth disease are analyzed. It is supposed that point mutations of sHsp associated with distal neuropathies lead either to loss of function (for instance, decrease of chaperone-like activity) or to gain of harmful functions (for instance, increase of interaction with certain protein partners).
Collapse
Affiliation(s)
- V V Nefedova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
37
|
Butler LM, Hallström BM, Fagerberg L, Pontén F, Uhlén M, Renné T, Odeberg J. Analysis of Body-wide Unfractionated Tissue Data to Identify a Core Human Endothelial Transcriptome. Cell Syst 2016; 3:287-301.e3. [PMID: 27641958 DOI: 10.1016/j.cels.2016.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/23/2016] [Accepted: 08/03/2016] [Indexed: 12/11/2022]
Abstract
Endothelial cells line blood vessels and regulate hemostasis, inflammation, and blood pressure. Proteins critical for these specialized functions tend to be predominantly expressed in endothelial cells across vascular beds. Here, we present a systems approach to identify a panel of human endothelial-enriched genes using global, body-wide transcriptomics data from 124 tissue samples from 32 organs. We identified known and unknown endothelial-enriched gene transcripts and used antibody-based profiling to confirm expression across vascular beds. The majority of identified transcripts could be detected in cultured endothelial cells from various vascular beds, and we observed maintenance of relative expression in early passage cells. In summary, we describe a widely applicable method to determine cell-type-specific transcriptome profiles in a whole-organism context, based on differential abundance across tissues. We identify potential vascular drug targets or endothelial biomarkers and highlight candidates for functional studies to increase understanding of the endothelium in health and disease.
Collapse
Affiliation(s)
- Lynn Marie Butler
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Clinical Chemistry and Blood Coagulation, Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden.
| | - Björn Mikael Hallström
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Linn Fagerberg
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Fredrik Pontén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 751 85 Uppsala, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden
| | - Thomas Renné
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; Clinical Chemistry and Blood Coagulation, Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Jacob Odeberg
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology (KTH), 171 21 Stockholm, Sweden; Coagulation Unit, Centre for Hematology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
38
|
Muranova LK, Perfilov MM, Serebryakova MV, Gusev NB. Effect of methylglyoxal modification on the structure and properties of human small heat shock protein HspB6 (Hsp20). Cell Stress Chaperones 2016; 21:617-29. [PMID: 27061807 PMCID: PMC4907992 DOI: 10.1007/s12192-016-0686-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/06/2016] [Accepted: 03/26/2016] [Indexed: 01/01/2023] Open
Abstract
Human small heat shock protein HspB6 (Hsp20) was modified by metabolic α-dicarbonyl compound methylglyoxal (MGO). At low MGO/HspB6 molar ratio, Arg13, Arg14, Arg27, and Arg102 were the primary sites of MGO modification. At high MGO/HspB6 ratio, practically, all Arg and Lys residues of HspB6 were modified. Both mild and extensive MGO modification decreased susceptibility of HspB6 to trypsinolysis and prevented its heat-induced aggregation. Modification by MGO was accompanied by formation of small quantities of chemically crosslinked dimers and did not dramatically affect quaternary structure of HspB6. Mild modification by MGO did not affect whereas extensive modification decreased interaction of HspB6 with HspB1. Phosphorylation of HspB6 by cyclic adenosine monophosphate (cAMP)-dependent protein kinase was inhibited after mild modification and completely prevented after extensive modification by MGO. Chaperone-like activity of HspB6 measured with subfragment 1 of skeletal myosin was enhanced after MGO modifications. It is concluded that Arg residues located in the N-terminal domain of HspB6 are easily accessible to MGO modification and that even mild modification by MGO affects susceptibility to trypsinolysis, phosphorylation by cAMP-dependent protein kinase, and chaperone-like activity of HspB6.
Collapse
Affiliation(s)
- Lydia K Muranova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991, Russian Federation
| | - Maxim M Perfilov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991, Russian Federation
| | - Marina V Serebryakova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russian Federation
| | - Nikolai B Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991, Russian Federation.
| |
Collapse
|
39
|
Khamis I, Chan DW, Shirriff CS, Campbell JH, Heikkila JJ. Expression and localization of the Xenopus laevis small heat shock protein, HSPB6 (HSP20), in A6 kidney epithelial cells. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:12-21. [PMID: 27354198 DOI: 10.1016/j.cbpa.2016.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/17/2016] [Accepted: 06/17/2016] [Indexed: 01/05/2023]
Abstract
Small heat shock proteins (sHSPs) are molecular chaperones that bind to unfolded protein, inhibit the formation of toxic aggregates and facilitate their refolding and/or degradation. Previously, the only sHSPs that have been studied in detail in the model frog system, Xenopus laevis, were members of the HSP30 family and HSPB1 (HSP27). We now report the analysis of X. laevis HSPB6, an ortholog of mammalian HSPB6. X. laevis HSPB6 cDNA encodes a 168 aa protein that contains an α-crystallin domain, a polar C-terminal extension and some possible phosphorylation sites. X. laevis HSPB6 shares 94% identity with a X. tropicalis HSPB6, 65% with turtle, 59% with humans, 49% with zebrafish and only 50% and 43% with X. laevis HSPB1 and HSP30C, respectively. Phylogenetic analysis revealed that X. laevis HSPB6 grouped more closely with mammalian and reptilian HSPB6s than with fish HSPB6. X. laevis recombinant HSPB6 displayed molecular chaperone properties since it had the ability to inhibit heat-induced aggregation of citrate synthase. Immunoblot analysis determined that HSPB6 was present constitutively in kidney epithelial cells and that heat shock treatment did not upregulate HSPB6 levels. While treatment with the proteasomal inhibitor, MG132, resulted in a 2-fold increase in HSPB6 levels, exposure to cadmium chloride produced a slight increase in HSPB6. These findings were in contrast to HSP70, which was enhanced in response to all three stressors. Finally, immunocytochemical analysis revealed that HSPB6 was present in the cytoplasm in the perinuclear region with some in the nucleus.
Collapse
Affiliation(s)
- Imran Khamis
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Daniel W Chan
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Cody S Shirriff
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - James H Campbell
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - John J Heikkila
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
40
|
Calcium Homeostasis and Muscle Energy Metabolism Are Modified in HspB1-Null Mice. Proteomes 2016; 4:proteomes4020017. [PMID: 28248227 PMCID: PMC5217347 DOI: 10.3390/proteomes4020017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 01/23/2023] Open
Abstract
Hsp27—encoded by HspB1—is a member of the small heat shock proteins (sHsp, 12–43 kDa (kilodalton)) family. This protein is constitutively present in a wide variety of tissues and in many cell lines. The abundance of Hsp27 is highest in skeletal muscle, indicating a crucial role for muscle physiology. The protein identified as a beef tenderness biomarker was found at a crucial hub in a functional network involved in beef tenderness. The aim of this study was to analyze the proteins impacted by the targeted invalidation of HspB1 in the Tibialis anterior muscle of the mouse. Comparative proteomics using two-dimensional gel electrophoresis revealed 22 spots that were differentially abundant between HspB1-null mice and their controls that could be identified by mass spectrometry. Eighteen spots were more abundant in the muscle of the mutant mice, and four were less abundant. The proteins impacted by the absence of Hsp27 belonged mainly to calcium homeostasis (Srl and Calsq1), contraction (TnnT3), energy metabolism (Tpi1, Mdh1, PdhB, Ckm, Pygm, ApoA1) and the Hsp proteins family (HspA9). These data suggest a crucial role for these proteins in meat tenderization. The information gained by this study could also be helpful to predict the side effects of Hsp27 depletion in muscle development and pathologies linked to small Hsps.
Collapse
|
41
|
Cruzen S, Pearce S, Baumgard L, Gabler N, Huff-Lonergan E, Lonergan S. Proteomic changes to the sarcoplasmic fraction of predominantly red or white muscle following acute heat stress. J Proteomics 2015; 128:141-53. [DOI: 10.1016/j.jprot.2015.07.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/10/2015] [Accepted: 07/28/2015] [Indexed: 01/08/2023]
|
42
|
Ju YT, Kwag SJ, Park HJ, Jung EJ, Jeong CY, Jeong SH, Lee YJ, Choi SK, Kang KR, Hah YS, Hong SC. Decreased expression of heat shock protein 20 in colorectal cancer and its implication in tumorigenesis. J Cell Biochem 2015; 116:277-86. [PMID: 25187324 DOI: 10.1002/jcb.24966] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/29/2014] [Indexed: 12/11/2022]
Abstract
Heat shock protein 20 (HSP20), which is a member of the small heat shock protein family, is known to participate in many pathological processes, such as asthma, intimal hyperplasia, and insulin resistance. However, the function of HSP20 in cancer development is not yet fully understood. In this study, we identified HSP20 as a down-regulated protein in 20 resected colorectal cancer (CRC) specimens compared with their paired normal tissues. Because HSP20 proteins were barely detectable in HCT-116 cells (a human colorectal cancer cell line), recombinant adenovirus encoding HSP20 (Ad-HSP20) was used to induce HSP20 overexpression in HCT-116 cells. Infection of Ad-HSP20, but not control adenovirus (Ad-GFP), reduced viability, and induced massive apoptosis in a time-dependent manner. The forced expression of HSP20 enhanced caspase-3/7 activity and down-regulated the anti-apoptotic Bcl-xL and Bcl-2 mRNA and protein levels. In addition, immunohistochemical analysis of 94 CRC specimens for HSP20 protein showed that reduced HSP20 expression was related to advanced TNM stage, lymph node metastasis, and tumor recurrence. Our study shows, for the first time, that expression of the HSP20 protein has a pro-death role in colorectal cancer cells. Therefore, HSP20 may have value as a prognostic tumor marker and its overexpression might be a novel strategy for CRC therapy.
Collapse
Affiliation(s)
- Young-Tae Ju
- Department of Surgery, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Apoptosis in muscle-to-meat aging process: The omic witness. J Proteomics 2015; 125:29-40. [DOI: 10.1016/j.jprot.2015.04.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/27/2015] [Accepted: 04/21/2015] [Indexed: 12/31/2022]
|
44
|
Abstract
The small HSP (heat-shock protein) HSP20 is a molecular chaperone that is transiently up-regulated in response to cellular stress/damage. Although ubiquitously expressed in various tissues, it is most highly expressed in skeletal, cardiac and smooth muscle. Phosphorylation at Ser16 by PKA (cAMP-dependent protein kinase) is essential for HSP20 to confer its protective qualities. HSP20 and its phosphorylation have been implicated in a variety of pathophysiological processes, but most prominently cardiovascular disease. A wealth of knowledge of the importance of HSP20 in contractile function and cardioprotection has been gained over the last decade. The present mini-review highlights more recent findings illustrating the cardioprotective properties of HSP20 and its potential as a therapeutic agent.
Collapse
|
45
|
Chronic nicotine treatment enhances vascular smooth muscle relaxation in rats. Acta Pharmacol Sin 2015; 36:429-39. [PMID: 25832423 DOI: 10.1038/aps.2015.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 01/06/2015] [Indexed: 12/11/2022]
Abstract
AIM To investigate the effect of chronic nicotine treatment on vascular function and to identify the underlying mechanisms. METHODS Adult rats were treated with nicotine (3 mg·kg(-1)·d(-1), sc) for 6 weeks. After the rats were sacrificed, aortic rings were prepared for detecting vascular reactivity, and thoracic aorta and periaortic fat samples were collected for histological and molecular biology studies. RESULTS Chronic nicotine treatment significantly reduced periaortic fat, and specifically enhanced smooth muscle relaxation without altering the aortic adventitial fat and endothelium function. Pretreatment with the soluble guanylyl cyclase inhibitor ODQ (3 μmol/L) or PKG inhibitor Rp-8-Br-PET-cGMP (30 μmol/L) abolished the nicotine-induced enhancement of smooth muscle relaxation, whereas the cGMP analogue 8-Br-cGMP could mimic the nicotine-induced enhancement of smooth muscle relaxation. However, the chronic nicotine treatment did not alter PKG protein expression and activity in aortic media. CONCLUSION Chronic nicotine treatment enhances vascular smooth muscle relaxation of rats via activation of PKG pathway.
Collapse
|
46
|
Peach M, Marsh N, Miskiewicz EI, MacPhee DJ. Solubilization of proteins: the importance of lysis buffer choice. Methods Mol Biol 2015; 1312:49-60. [PMID: 26043989 DOI: 10.1007/978-1-4939-2694-7_8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The efficient extraction of proteins of interest from cells and tissues is not always straightforward. Here we demonstrate the differences in extraction of the focal adhesion protein Kindlin-2 from choriocarcinoma cells using NP-40 and RIPA lysis buffer. Furthermore, we demonstrate the use of a more denaturing urea/thiourea lysis buffer for solubilization, by comparing its effectiveness for solubilization of small heat-shock proteins from smooth muscle with the often utilized RIPA lysis buffer. Overall, the results demonstrate the importance of establishing the optimal lysis buffer for specific protein solubilization within the experimental workflow.
Collapse
Affiliation(s)
- Mandy Peach
- Division of BioMedical Sciences, Health Sciences Centre, Rm 5335, 300 Prince Philip Drive, St. John's, NL, Canada, A1B 3V6
| | | | | | | |
Collapse
|
47
|
Everything but the ACD, Functional Conservation of the Non-conserved Terminal Regions in sHSPs. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
48
|
Haghighi K, Bidwell P, Kranias EG. Phospholamban interactome in cardiac contractility and survival: A new vision of an old friend. J Mol Cell Cardiol 2014; 77:160-7. [PMID: 25451386 PMCID: PMC4312245 DOI: 10.1016/j.yjmcc.2014.10.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/06/2014] [Accepted: 10/09/2014] [Indexed: 01/10/2023]
Abstract
Depressed sarcoplasmic reticulum (SR) calcium cycling, reflecting impaired SR Ca-transport and Ca-release, is a key and universal characteristic of human and experimental heart failure. These SR processes are regulated by multimeric protein complexes, including protein kinases and phosphatases as well as their anchoring and regulatory subunits that fine-tune Ca-handling in specific SR sub-compartments. SR Ca-transport is mediated by the SR Ca-ATPase (SERCA2a) and its regulatory phosphoprotein, phospholamban (PLN). Dephosphorylated PLN is an inhibitor of SERCA2a and phosphorylation by protein kinase A (PKA) or calcium-calmodulin-dependent protein kinases (CAMKII) relieves these inhibitory effects. Recent studies identified additional regulatory proteins, associated with PLN, that control SR Ca-transport. These include the inhibitor-1 (I-1) of protein phosphatase 1 (PP1), the small heat shock protein 20 (Hsp20) and the HS-1 associated protein X-1 (HAX1). In addition, the intra-luminal histidine-rich calcium binding protein (HRC) has been shown to interact with both SERCA2a and triadin. Notably, there is physical and direct interaction between these protein players, mediating a fine-cross talk between SR Ca-uptake, storage and release. Importantly, regulation of SR Ca-cycling by the PLN/SERCA interactome does not only impact cardiomyocyte contractility, but also survival and remodeling. Indeed, naturally occurring variants in these Ca-cycling genes modulate their activity and interactions with other protein partners, resulting in depressed contractility and accelerated remodeling. These genetic variants may serve as potential prognostic or diagnostic markers in cardiac pathophysiology.
Collapse
Affiliation(s)
- Kobra Haghighi
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Philip Bidwell
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Evangelia G Kranias
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
49
|
Sluchanko NN, Chebotareva NA, Gusev NB. Quaternary structure of human small heat shock protein HSPB6 (Hsp20) in crowded media modeled by trimethylamine N-oxide (TMAO): Effect of protein phosphorylation. Biochimie 2014; 108:68-75. [PMID: 25446653 DOI: 10.1016/j.biochi.2014.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 11/04/2014] [Indexed: 11/30/2022]
Abstract
Effect of trimethylamine N-oxide (TMAO), well-known osmolyte, widely used to imitate crowded intracellular conditions, on the quaternary structure of recombinant human small heat shock protein HspB6 (Hsp20) was analyzed by means of size-exclusion chromatography, chemical crosslinking and analytical ultracentrifugation. Consistent with previous reports, in the absence of TMAO unphosphorylated, pseudophosphorylated (S16D mutant) and phosphorylated HspB6 form only small oligomers (presumably dimers). Addition of TMAO to unphosphorylated HspB6 leads to formation of different large oligomers being in equilibrium with dimers. Pseudophosphorylation (S16D mutation) or phosphorylation partially or completely prevent TMAO-induced oligomerization of HspB6. Pseudophosphorylation affects bis-ANS binding suggesting decreased hydrophobicity of HspB6. According to size-exclusion chromatography, TMAO-induced changes of HspB6 oligomerization result in its altered interaction with HspB1 and this effect can be reversed by HspB6 phosphorylation. It is concluded that under conditions of molecular crowding, characteristic for intracellular environment, HspB6 undergoes reversible changes of its oligomeric state which can affect its physiologically important properties and can be delicately regulated by phosphorylation.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russian Federation
| | - Natalia A Chebotareva
- A. N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russian Federation
| | - Nikolai B Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991, Russian Federation.
| |
Collapse
|
50
|
Nagasawa T, Matsushima-Nishiwaki R, Yasuda E, Matsuura J, Toyoda H, Kaneoka Y, Kumada T, Kozawa O. Heat shock protein 20 (HSPB6) regulates TNF-α-induced intracellular signaling pathway in human hepatocellular carcinoma cells. Arch Biochem Biophys 2014; 565:1-8. [PMID: 25447820 DOI: 10.1016/j.abb.2014.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/02/2014] [Accepted: 10/20/2014] [Indexed: 12/19/2022]
Abstract
We previously demonstrated that the expression of HSP20, a small heat shock protein, is inversely correlated with the progression of HCC. Inflammation is associated with HCC, and numerous cytokines, including TNF-α, act as key mediators in the progression of HCC. In the present study, we investigated whether HSP20 is implicated in the TNF-α-stimulated intracellular signaling in HCC using human HCC-derived HuH7 cells in the presence of TNF-α. In HSP20-overexpressing HCC cells, the cell growth was retarded compared with that in the control cells under long-term exposure of TNF-α. Because NF-κB pathway is the main intracellular signaling system activated by TNF-α, we investigated the effects of HSP20-overexpression of this pathway. The protein levels of IKK-α, but not IKK-β, in the HSP20-overexpressing cells were decreased. Short-term exposure to TNF-α-induced phosphorylation and degradation of IκB, and the phosphorylation and transactivational activity of NF-κB were suppressed in the HSP20-overexpressing HCC cells. Furthermore, the increase in IKK-α levels was accompanied by a decrease in the HSP20 levels in human HCC tissues. These findings strongly suggest that HSP20 might decrease the IKK-α protein level and that it down-regulates the TNF-α-stimulated intracellular signaling in HCC, thus resulting in the suppression of HCC progression.
Collapse
Affiliation(s)
- Tomoaki Nagasawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | | | - Eisuke Yasuda
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Gifu 503-8502, Japan; Department of Radiological Technology, Suzuka University of Medical Science, Suzuka 513-8670, Japan
| | - Junya Matsuura
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Gifu 503-8502, Japan
| | - Yuji Kaneoka
- Department of Surgery, Ogaki Municipal Hospital, Ogaki, Gifu 503-8502, Japan
| | - Takashi Kumada
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Gifu 503-8502, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| |
Collapse
|