1
|
Muzenda FL, Stofberg ML, Mthembu W, Achilonu I, Strauss E, Zininga T. Characterization and Inhibition of the Chaperone Function of Plasmodium falciparum Glucose-Regulated Protein 94 kDa (Pf Grp94). Proteins 2025; 93:957-971. [PMID: 39670568 PMCID: PMC11968560 DOI: 10.1002/prot.26779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
Plasmodium falciparum expresses four heat shock protein 90 (Hsp90) members. Among these, one, glucose-regulated protein 94 (PfGrp94), is localized in the endoplasmic reticulum (ER). Both the cytosolic and ER-based Hsp90s are essential for parasite survival under all growth conditions. The cytosolic version has been extensively studied and has been targeted in several efforts through the repurposing of anticancer therapeutics as antimalarial drugs. However, PfGrp94 has not been fully characterized and some of its functions related to the ER stress response are not fully understood. Structural analysis of the recombinant full-length PfGrp94 protein showed a predominantly α-helical secondary structure and its thermal resilience was modulated by 5'-N-ethyl-carboxamide-adenosine (NECA) and nucleotides ATP/ADP. PfGrp94 exhibits ATPase activity and suppressed heat-induced aggregation of a model substrate, malate dehydrogenase, in a nucleotide-dependent manner. However, these PfGrp94 chaperone functions were abrogated by NECA. Molecular docking and molecular dynamics (MD) simulations showed that NECA interacted with unique residues on PfGrp94, which could be potentially exploited for selective drug design. Finally, using parasites maintained at the red blood stage, NECA exhibited moderate antiplasmodial activity (IC50 of 4.3, 7.4, and 10.0 μM) against three different P. falciparum strains. Findings from this study provide the first direct evidence for the correlation between in silico, biochemical, and in vitro data toward utilizing the ER-based chaperone, PfGrp94, as a drug target against the malaria parasites.
Collapse
Affiliation(s)
| | | | - Wendy Mthembu
- Department of BiochemistryStellenbosch UniversityStellenboschSouth Africa
| | - Ikechukwu Achilonu
- Protein Structure Function Research GroupUniversity of WitwatersrandJohannesburgSouth Africa
| | - Erick Strauss
- Department of BiochemistryStellenbosch UniversityStellenboschSouth Africa
| | - Tawanda Zininga
- Department of BiochemistryStellenbosch UniversityStellenboschSouth Africa
| |
Collapse
|
2
|
Mitra P, Deshmukh AS. Proteostasis is a key driver of the pathogenesis in Apicomplexa. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119824. [PMID: 39168412 DOI: 10.1016/j.bbamcr.2024.119824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Proteostasis, including protein folding mediated by molecular chaperones, protein degradation, and stress response pathways in organelles like ER (unfolded protein response: UPR), are responsible for cellular protein quality control. This is essential for cell survival as it regulates and reprograms cellular processes. Here, we underscore the role of the proteostasis pathway in Apicomplexan parasites with respect to their well-characterized roles as well as potential roles in many parasite functions, including survival, multiplication, persistence, and emerging drug resistance. In addition to the diverse physiological importance of proteostasis in Apicomplexa, we assess the potential of the pathway's components as chemotherapeutic targets.
Collapse
Affiliation(s)
- Pallabi Mitra
- BRIC-Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| | | |
Collapse
|
3
|
Guo R, Wang R, Zhang W, Li Y, Wang Y, Wang H, Li X, Song J. Mechanisms of Action of HSP110 and Its Cognate Family Members in Carcinogenesis. Onco Targets Ther 2024; 17:977-989. [PMID: 39553399 PMCID: PMC11568853 DOI: 10.2147/ott.s496403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
Tumors, as chronic malignant diseases that account for about 20% of all deaths worldwide, are the number one threat to human health. Until now there is no reliable treatment for most types of tumors. Tumorigenesis and cellular carcinogenesis remain difficult challenges due to their complex etiology and unknown mechanisms. As stress process regulating molecules and protein folding promoters, heat shock proteins (HSPs) play an important role in cancer development. Most studies have shown that HSPs are one of the major anticancer drug targets. HSPs are not only modulators of the cellular stress response, but are also closely associated with tumor initiation, progression, and drug resistance, so understanding the mechanism of the HSP family involved in cellular carcinogenesis is an important part of understanding tumorigenesis and enabling anticancer drug development. In this review, we discuss the functions and mechanisms of key members of the HSP family (HSP70, HSP90, and HSP110) in participating in the process of tumorigenesis and cell carcinogenesis, and look forward to the prospect of key members of the HSP family in targeted cancer therapy.
Collapse
Affiliation(s)
- Rongqi Guo
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
| | - Rui Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
| | - Weisong Zhang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
| | - Yangyang Li
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
| | - Yihao Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
| | - Hao Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
| | - Xia Li
- Department of General Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
| | - Jianxiang Song
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, 224000, People’s Republic of China
- Medical School of Nantong University, Nantong, 226007, People’s Republic of China
| |
Collapse
|
4
|
Chakafana G, Middlemiss CJ, Zininga T, Shonhai A. Swapping the linkers of canonical Hsp70 and Hsp110 chaperones compromises both self-association and client selection. Heliyon 2024; 10:e29690. [PMID: 38707424 PMCID: PMC11066147 DOI: 10.1016/j.heliyon.2024.e29690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 05/07/2024] Open
Abstract
Plasmodium falciparum heat shock protein 70-1 (PfHsp70-1) and PfHsp70-z are essential cytosol localised chaperones of the malaria parasite. The two chaperones functionally interact to drive folding of several parasite proteins. While PfHsp70-1 is regarded as a canonical Hsp70 chaperone, PfHsp70-z belongs to the Hsp110 subcluster. One of the distinctive features of PfHsp70-z is its unique linker segment which delineates it from canonical Hsp70. In the current study, we elucidated the role of the linker in regulating Hsp70 self-association and client selection. Using recombinant forms of PfHsp70-1, PfHsp70-z and E. coli Hsp70 (DnaK) and their respective linker switch mutants we investigated self-association of the chaperones using surface plasmon resonance (SPR) analysis. The effect of the changes on client selectivity was investigated on DnaK and its mutant through co-affinity chromatography coupled to LC-MS analysis. Our findings demonstrated that the linker is important for both Hsp70 self-association and client binding.
Collapse
Affiliation(s)
- Graham Chakafana
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
- Department of Chemistry and Biochemistry, Hampton University, 23668, Virginia, USA
| | - Caitlin J. Middlemiss
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| |
Collapse
|
5
|
Buthelezi MN, Tshililo VG, Kappo AP, Simelane MBC. Phytochemical evaluation of Ziziphus mucronata and Xysmalobium undulutum towards the discovery and development of anti-malarial drugs. Malar J 2024; 23:141. [PMID: 38734650 PMCID: PMC11088772 DOI: 10.1186/s12936-024-04976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND The development of resistance by Plasmodium falciparum is a burdening hazard that continues to undermine the strides made to alleviate malaria. As such, there is an increasing need to find new alternative strategies. This study evaluated and validated 2 medicinal plants used in traditional medicine to treat malaria. METHODS Inspired by their ethnobotanical reputation of being effective against malaria, Ziziphus mucronata and Xysmalobium undulutum were collected and sequentially extracted using hexane (HEX), ethyl acetate (ETA), Dichloromethane (DCM) and methanol (MTL). The resulting crude extracts were screened for their anti-malarial and cytotoxic potential using the parasite lactate dehydrogenase (pLDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, respectively. This was followed by isolating the active compounds from the DCM extract of Z. mucronata using silica gel chromatography and structural elucidation using spectroscopic techniques (NMR: 1H, 12C, and DEPT). The active compounds were then targeted against P. falciparum heat shock protein 70-1 (PfHsp70-1) using Autodock Vina, followed by in vitro validation assays using ultraviolet-visible (UV-VIS) spectroscopy and the malate dehydrogenase (MDH) chaperone activity assay. RESULTS The extracts except those of methanol displayed anti-malarial potential with varying IC50 values, Z. mucronata HEX (11.69 ± 3.84 µg/mL), ETA (7.25 ± 1.41 µg/mL), DCM (5.49 ± 0.03 µg/mL), and X. undulutum HEX (4.9 ± 0.037 µg/mL), ETA (17.46 ± 0.024 µg/mL) and DCM (19.27 ± 0.492 µg/mL). The extracts exhibited minimal cytotoxicity except for the ETA and DCM of Z. mucronata with CC50 values of 10.96 and 10.01 µg/mL, respectively. Isolation and structural characterization of the active compounds from the DCM extracts revealed that betulinic acid (19.95 ± 1.53 µg/mL) and lupeol (7.56 ± 2.03 µg/mL) were responsible for the anti-malarial activity and had no considerable cytotoxicity (CC50 > µg/mL). Molecular docking suggested strong binding between PfHsp70-1, betulinic acid (- 6.8 kcal/mol), and lupeol (- 6.9 kcal/mol). Meanwhile, the in vitro validation assays revealed the disruption of the protein structural elements and chaperone function. CONCLUSION This study proves that X undulutum and Z. mucronata have anti-malarial potential and that betulinic acid and lupeol are responsible for the activity seen on Z. mucronata. They also make a case for guided purification of new phytochemicals in the other extracts and support the notion of considering medicinal plants to discover new anti-malarials.
Collapse
Affiliation(s)
- Muzi N Buthelezi
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Vhahangwele G Tshililo
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Abidemi P Kappo
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa
| | - Mthokozisi B C Simelane
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, South Africa.
| |
Collapse
|
6
|
Ahmad T, Alhammadi BA, Almaazmi SY, Arafa S, Blatch GL, Dutta T, Gestwicki JE, Keyzers RA, Shonhai A, Singh H. Plasmodium falciparum heat shock proteins as antimalarial drug targets: An update. Cell Stress Chaperones 2024; 29:326-337. [PMID: 38518861 PMCID: PMC10990865 DOI: 10.1016/j.cstres.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/25/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024] Open
Abstract
Global efforts to eradicate malaria are threatened by multiple factors, particularly the emergence of antimalarial drug resistant strains of Plasmodium falciparum. Heat shock proteins (HSPs), particularly P. falciparum HSPs (PfHSPs), represent promising drug targets due to their essential roles in parasite survival and virulence across the various life cycle stages. Despite structural similarities between human and malarial HSPs posing challenges, there is substantial evidence for subtle differences that could be exploited for selective drug targeting. This review provides an update on the potential of targeting various PfHSP families (particularly PfHSP40, PfHSP70, and PfHSP90) and their interactions within PfHSP complexes as a strategy to develop new antimalarial drugs. In addition, the need for a deeper understanding of the role of HSP complexes at the host-parasite interface is highlighted, especially heterologous partnerships between human and malarial HSPs, as this opens novel opportunities for targeting protein-protein interactions crucial for malaria parasite survival and pathogenesis.
Collapse
Affiliation(s)
- Tanveer Ahmad
- Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Bushra A Alhammadi
- Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Shaikha Y Almaazmi
- Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Sahar Arafa
- Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| | - Gregory L Blatch
- Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates; Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa.
| | - Tanima Dutta
- Department of Diagnostic Genomics, Pathwest, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA, USA
| | - Robert A Keyzers
- Centre for Biodiscovery & School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, Punjab, India
| |
Collapse
|
7
|
Dongola TH, Chakafana G, Middlemiss C, Mafethe O, Mokoena F, Zininga T, Shonhai A. Insertion of GGMP repeat residues of Plasmodium falciparum Hsp70-1 in the lid of DnaK adversely impacts client recognition. Int J Biol Macromol 2024; 255:128070. [PMID: 37981279 DOI: 10.1016/j.ijbiomac.2023.128070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Although Hsp70 is a conserved molecular chaperone, it exhibits some degree of functional specialisation across species. Features of Hsp70 regulating its functional specialisation remain to be fully established. We previously demonstrated that E. coli Hsp70 (DnaK) exhibits functional features that distinguishes it from PfHsp70-1, a canonical cytosolic Hsp70 of Plasmodium falciparum. One of the defining features of PfHsp70-1 is that it possesses GGMP repeat residues located in its C-terminal lid segment, while DnaK lacks this motif. Previously, we demonstrated that the insertion of GGMP repeat residues of PfHsp70-1 into E. coli DnaK abrogates the chaperone activity of DnaK. However, the role of the GGMP motif in regulating Hsp70 function remains to be fully understood. To explore the function of this motif, we expressed recombinant forms of wild type DnaK and its GGMP insertion motif, DnaK-G and systematically characterised the structure-function features of the two proteins using in silico analysis, biophysical approaches and an in cellulo complementation assay. Our findings demonstrated that the GGMP inserted in DnaK compromised various functional features such as nucleotide binding, allostery, substrate binding affinity and cellular proteome client selectivity. These findings thus, highlight the GGMP motif of Hsp70 as an important functional module.
Collapse
Affiliation(s)
| | - Graham Chakafana
- Department of Biochemistry, University of Venda, Thohoyandou 0950, South Africa; Department of Chemistry and Biochemistry, Hampton University, VA 23668-0099, USA
| | - Caitlin Middlemiss
- Department of Chemistry and Biochemistry, Hampton University, VA 23668-0099, USA
| | - Ofentse Mafethe
- Department of Biochemistry, Faculty of Natural and Agricultural Science, North West University, Mmabatho 2790, South Africa
| | - Fortunate Mokoena
- Department of Biochemistry, Faculty of Natural and Agricultural Science, North West University, Mmabatho 2790, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, University of Venda, Thohoyandou 0950, South Africa; Department of Biochemistry, Stellenbosch University, 7602 Matieland, South Africa
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Thohoyandou 0950, South Africa.
| |
Collapse
|
8
|
Tripathi A, Del Galdo S, Chandramouli B, Kumar N. Distinct dynamical features of plasmodial and human HSP70-HSP110 highlight the divergence in their chaperone-assisted protein folding. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140942. [PMID: 37516289 DOI: 10.1016/j.bbapap.2023.140942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
HSP70 and its evolutionarily diverged co-chaperone HSP110, forms an important node in protein folding cascade. How these proteins maintain the aggregation-prone proteome of malaria parasite in functional state remains underexplored, in contrast to its human orthologs. In this study, we have probed into conformational dynamics of plasmodial HSP70 and HSP110 through multiple μs MD-simulations (ATP-state) and compared with their respective human counterparts. Simulations covered sampling of 3.4 and 2.8 μs for HSP70 and HSP110, respectively, for parasite and human orthologs. We provide a comprehensive description of the dynamic behaviors that characterize the systems and also introduce a parameter for quantifying protein rigidity. For HSP70, the interspecies comparison reveals enhanced flexibility in IA and IB subdomain within the conserved NBD, lesser solvent accessibility of the interdomain linker and distinct dynamics of the SBDβ of Pf HSP70 in comparison to Hs HSP70. In the case of HSP110, notable contrast in the dynamics of NBD, SBDβ and SBDα was observed between parasite and human ortholog. Although HSP70 and HSP110 are members of the same superfamily, we identified specific differences in the subdomain contacts in NBD, linker properties and interdomain movements in their human and parasite orthologs. Our study suggests that differences in conformational dynamics may translate into species-specific differences in the chaperoning activities of HSP70-HSP110 in the parasite and human, respectively. Dynamical features of Pf HSP70-HSP110 may contribute to the maintenance of proteostasis in the parasite during its intracellular survival in the host.
Collapse
Affiliation(s)
- Aradhya Tripathi
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector 10, Jankipuram Extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sara Del Galdo
- Science Department, University of Roma Tre, Via della Vasca Navale 84, Rome, Italy
| | | | - Niti Kumar
- Department of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector 10, Jankipuram Extension, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Ramatsui L, Dongola TH, Zininga T, Multhoff G, Shonhai A. Human granzyme B binds Plasmodium falciparum Hsp70-x and mediates antiplasmodial activity in vitro. Cell Stress Chaperones 2023; 28:321-331. [PMID: 37074531 PMCID: PMC10167072 DOI: 10.1007/s12192-023-01339-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/20/2023] Open
Abstract
Cell surface-bound human Hsp70 (hHsp70) sensitises tumour cells to the cytolytic attack of natural killer (NK) cells through the mediation of apoptosis-inducing serine protease, granzyme B (GrB). hHsp70 is thought to recruit NK cells to the immunological synapse via the extracellularly exposed 14 amino acid sequence, TKDNNLLGRFELSG, known as the TKD motif of Hsp70. Plasmodium falciparum-infected red blood cells (RBCs) habour both hHsp70 and an exported parasite Hsp70 termed PfHsp70-x. Both PfHsp70-x and hHsp70 share conserved TKD motifs. The role of PfHsp70-x in facilitating GrB uptake in malaria parasite-infected RBCs remains unknown, but hHsp70 enables a perforin-independent uptake of GrB into tumour cells. In the current study, we comparatively investigated the direct binding of GrB to either PfHsp70-x or hHsp70 in vitro. Using ELISA, slot blot assay and surface plasmon resonance (SPR) analysis, we demonstrated a direct interaction of GrB with hHsp70 and PfHsp70-x. SPR analysis revealed a higher affinity of GrB for PfHsp70-x than hHsp70. In addition, we established that the TKD motif of PfHsp70-x directly interacts with GrB. The data further suggest that the C-terminal EEVN motif of PfHsp70-x augments the affinity of PfHsp70-x for GrB but is not a prerequisite for the binding. A potent antiplasmodial activity (IC50 of 0.5 µM) of GrB could be demonstrated. These findings suggest that the uptake of GrB by parasite-infected RBCs might be mediated by both hHsp70 and PfHsp70-x. The combined activity of both proteins could account for the antiplasmodial activity of GrB at the blood stage.
Collapse
Affiliation(s)
- Lebogang Ramatsui
- Department of Biochemistry and Microbiology, Faculty of Science, University of Venda, Engineering & Agriculture, Thohoyandou, 0950, Limpopo, South Africa
| | - Tendamudzimu Harmfree Dongola
- Department of Biochemistry and Microbiology, Faculty of Science, University of Venda, Engineering & Agriculture, Thohoyandou, 0950, Limpopo, South Africa
| | - Tawanda Zininga
- Department of Biochemistry and Microbiology, Faculty of Science, University of Venda, Engineering & Agriculture, Thohoyandou, 0950, Limpopo, South Africa
- Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Gabriele Multhoff
- Klinik Und Poliklinik Für Strahlentherapie Und Radiologische Onkologie, Klinikum Rechts Der Isar and Central Institute for Translational Cancer Research TU München, TranslaTUM) Einsteinstr. 25, 81675, Munich, Germany
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, Faculty of Science, University of Venda, Engineering & Agriculture, Thohoyandou, 0950, Limpopo, South Africa.
| |
Collapse
|
10
|
Muthelo T, Mulaudzi V, Netshishivhe M, Dongola TH, Kok M, Makumire S, de Villiers M, Burger A, Zininga T, Shonhai A. Inhibition of Plasmodium falciparum Hsp70-Hop partnership by 2-phenylthynesulfonamide. Front Mol Biosci 2022; 9:947203. [PMID: 36177352 PMCID: PMC9513230 DOI: 10.3389/fmolb.2022.947203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum Hsp70-1 (PfHsp70-1; PF3D7_0818900) and PfHsp90 (PF3D7_0708400) are essential cytosol localized chaperones of the malaria parasite. The two chaperones form a functional complex via the adaptor protein, Hsp90-Hsp70 organizing protein (PfHop [PF3D7_1434300]), which modulates the interaction of PfHsp70-1 and PfHsp90 through its tetracopeptide repeat (TPR) domains in a nucleotide-dependent fashion. On the other hand, PfHsp70-1 and PfHsp90 possess C-terminal EEVD and MEEVD motifs, respectively, which are crucial for their interaction with PfHop. By coordinating the cooperation of these two chaperones, PfHop plays an important role in the survival of the malaria parasite. 2-Phenylthynesulfonamide (PES) is a known anti-cancer agent whose mode of action is to inhibit Hsp70 function. In the current study, we explored the antiplasmodial activity of PES and investigated its capability to target the functions of PfHsp70-1 and its co-chaperone, PfHop. PES exhibited modest antiplasmodial activity (IC50 of 38.7 ± 0.7 µM). Furthermore, using surface plasmon resonance (SPR) analysis, we demonstrated that PES was capable of binding recombinant forms of both PfHsp70-1 and PfHop. Using limited proteolysis and intrinsic fluorescence-based analysis, we showed that PES induces conformational changes in PfHsp70-1 and PfHop. In addition, we demonstrated that PES inhibits the chaperone function of PfHsp70-1. Consequently, PES abrogated the association of the two proteins in vitro. Our study findings contribute to the growing efforts to expand the arsenal of potential antimalarial compounds in the wake of growing parasite resistance against currently used drugs.
Collapse
Affiliation(s)
- Tshifhiwa Muthelo
- Department of Biochemistry & Microbiology, University of Venda, Thohoyandou, South Africa
| | - Vhahangwele Mulaudzi
- Department of Biochemistry & Microbiology, University of Venda, Thohoyandou, South Africa
| | - Munei Netshishivhe
- Department of Biochemistry & Microbiology, University of Venda, Thohoyandou, South Africa
| | | | - Michelle Kok
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| | - Stanley Makumire
- Department of Biochemistry & Microbiology, University of Venda, Thohoyandou, South Africa
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Adélle Burger
- Department of Biochemistry & Microbiology, University of Venda, Thohoyandou, South Africa
| | - Tawanda Zininga
- Department of Biochemistry & Microbiology, University of Venda, Thohoyandou, South Africa
- Department of Biochemistry, Stellenbosch University, Matieland, South Africa
| | - Addmore Shonhai
- Department of Biochemistry & Microbiology, University of Venda, Thohoyandou, South Africa
| |
Collapse
|
11
|
Barth J, Schach T, Przyborski JM. HSP70 and their co-chaperones in the human malaria parasite P. falciparum and their potential as drug targets. Front Mol Biosci 2022; 9:968248. [PMID: 35992276 PMCID: PMC9388776 DOI: 10.3389/fmolb.2022.968248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
As part of their life-cycle, malaria parasites undergo rapid cell multiplication and division, with one parasite giving rise to over 20 new parasites within the course of 48 h. To support this, the parasite has an extremely high metabolic rate and level of protein biosynthesis. Underpinning these activities, the parasite encodes a number of chaperone/heat shock proteins, belonging to various families. Research over the past decade has revealed that these proteins are involved in a number of essential processes within the parasite, or within the infected host cell. Due to this, these proteins are now being viewed as potential targets for drug development, and we have begun to characterize their properties in more detail. In this article we summarize the current state of knowledge about one particular chaperone family, that of the HSP70, and highlight their importance, function, and potential co-chaperone interactions. This is then discussed with regard to the suitability of these proteins and interactions for drug development.
Collapse
|
12
|
Blatch GL. Plasmodium falciparum Molecular Chaperones: Guardians of the Malaria Parasite Proteome and Renovators of the Host Proteome. Front Cell Dev Biol 2022; 10:921739. [PMID: 35652103 PMCID: PMC9149364 DOI: 10.3389/fcell.2022.921739] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum is a unicellular protozoan parasite and causative agent of the most severe form of malaria in humans. The malaria parasite has had to develop sophisticated mechanisms to preserve its proteome under the changing stressful conditions it confronts, particularly when it invades host erythrocytes. Heat shock proteins, especially those that function as molecular chaperones, play a key role in protein homeostasis (proteostasis) of P. falciparum. Soon after invading erythrocytes, the malaria parasite exports a large number of proteins including chaperones, which are responsible for remodeling the infected erythrocyte to enable its survival and pathogenesis. The infected host cell has parasite-resident and erythrocyte-resident chaperones, which appear to play a vital role in the folding and functioning of P. falciparum proteins and potentially host proteins. This review critiques the current understanding of how the major chaperones, particularly the Hsp70 and Hsp40 (or J domain proteins, JDPs) families, contribute to proteostasis of the malaria parasite-infected erythrocytes.
Collapse
Affiliation(s)
- Gregory L Blatch
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia.,Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa.,Biomedical Research and Drug Discovery Research Group, Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates
| |
Collapse
|
13
|
Daniyan MO. Heat Shock Proteins as Targets for Novel Antimalarial Drug Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:205-236. [PMID: 34569027 DOI: 10.1007/978-3-030-78397-6_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Plasmodium falciparum, the parasitic agent that is responsible for a severe and dangerous form of human malaria, has a history of long years of cohabitation with human beings with attendant negative consequences. While there have been some gains in the fight against malaria through the application of various control measures and the use of chemotherapeutic agents, and despite the global decline in malaria cases and associated deaths, the continual search for new and effective therapeutic agents is key to achieving sustainable development goals. An important parasite survival strategy, which is also of serious concern to the scientific community, is the rate at which the parasites continually develop resistance to drugs. Among the key players in the parasite's ability to develop resistance, maintain cellular integrity, and survives within an unusual environment of the red blood cells are the molecular chaperones of the heat shock proteins (HSP) family. HSPs constitute a novel avenue for antimalarial drug discovery and by exploring their ubiquitous nature and multifunctional activities, they may be suitable targets for the discovery of multi-targets antimalarial drugs, needed to fight incessant drug resistance. In this chapter, features of selected families of plasmodial HSPs that can be exploited in drug discovery are presented. Also, known applications of HSPs in small molecule screening, their potential usefulness in high throughput drug screening, as well as possible challenges are highlighted.
Collapse
Affiliation(s)
- Michael Oluwatoyin Daniyan
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.
| |
Collapse
|
14
|
The Role of Hsp70s in the Development and Pathogenicity of Plasmodium falciparum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 34569021 DOI: 10.1007/978-3-030-78397-6_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The main agent of human malaria, the protozoa, Plasmodium falciparum is known to infect liver cells, subsequently invading the host erythrocyte, leading to the manifestation of clinical outcomes of the disease. As part of its survival in the human host, P. falciparum employs several heat shock protein (Hsp) families whose primary purpose is to ensure cytoprotection through their molecular chaperone role. The parasite expresses six Hsp70s that localise to various subcellular organelles of the parasite, with one, PfHsp70-x, being exported to the infected human erythrocyte. The role of these Hsp70s in the survival and pathogenicity of malaria has received immense research attention. Several studies have reported on their structure-function features, network partnerships, and elucidation of their potential substrates. Apart from their role in cytoprotection and pathogenicity, Hsp70s are implicated in antimalarial drug resistance. As such, they are deemed potential antimalarial drug candidates, especially suited for co-targeting in combination therapies. In addition, Hsp70 is implicated in host immune modulation. The current report highlights the various structure-function features of these proteins, their roles in the development of malaria, current and prospective efforts being employed towards targeting them in malaria intervention efforts.
Collapse
|
15
|
Introductory Chapter: The Importance of Heat Shock Proteins in Survival and Pathogenesis of the Malaria Parasite Plasmodium falciparum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 34569019 DOI: 10.1007/978-3-030-78397-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
Abstract
Malaria did not die with the end of the age of western colonization but is still a major public health issue in large parts of the world. Despite repeated and concerted efforts to eradicate this disease, it has proved remarkably resilient, and constant vigilance and continuous research are required to discover new chinks in the parasite's armor and alleviate the suffering at both the individual and societal levels. A deeper understanding of the fundamental processes underlying parasite survival, propagation, virulence, and ability to cause disease is the key to the development of desperately needed new therapies and prophylactic drugs. Malaria parasites, by the nature of their lifecycle, are subject to a number of environmental and cellular stresses which they must overcome to survive. To this end, they express a number of heat shock proteins (HSPs), molecules specialized on buffering the effects of external stimuli, but which are also essential for normal cellular biochemistry. In this introductory chapter, I give a brief overview of the diversity of structure, function, and importance of these HSPs, and highlight some of the current and future research questions in this field. Additionally, this chapter acts as a bridge to the other chapters in this book. These chapters, I think you will agree, demonstrate that with regard to HSPs malaria parasites, as in so many things, obey the adage "Same same, but different."
Collapse
|
16
|
Chakafana G, Mudau PT, Zininga T, Shonhai A. Supporting data on characterisation of linker switch mutants of Plasmodium falciparum heat shock protein 110 and canonical Hsp70. Data Brief 2021; 37:107177. [PMID: 34141839 PMCID: PMC8188256 DOI: 10.1016/j.dib.2021.107177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/26/2021] [Indexed: 10/27/2022] Open
Abstract
Here, we present data on characterisation of the linker of Plasmodium falciparum Hsp110 (PfHsp70-z) relative to the linker of canonical Hsp70s in support of a co-published article [1]. The linker of PfHsp70-z was switched with that of canonical Hsp70s, represented by PfHsp70-1 (cytosolic counterpart of PfHsp70-z) and E. coli Hsp70/DnaK. The datasets represent comparative analyses of PfHsp70-z, PfHsp70-1, and E. coli DnaK, relative to their linker switch mutants; PfHsp70-zLS, PfHsp70-1LS, DnaKLS, respectively. Intrinsic and extrinsic fluorescence spectroscopic analyses were employed to elucidate effects of the mutations on the structural features of the proteins. The structural conformations of the proteins were analysed in the absence as well as presence of nucleotides. In addition, stability of the proteins to stress (pH changes and urea) was also determined. Surface plasmon resonance (SPR) was employed to determine affinity of the proteins for ATP. The relative affinities of PfHsp70-z and PfHsp70-1 for the parasite cytosol localised, J domain co-chaperone, PfHsp40, was determined by SPR analysis. The effect of the linker of PfHsp70-z on the interaction of DnaKLS with DnaJ (a co-chaperone of DnaK), was similarly determined. These data could be used for future investigations involving protein-protein/ligand interactions as described in [1]. The raw data obtained using the various techniques here described are hosted in the Mendeley Data repository at [2].
Collapse
Affiliation(s)
- Graham Chakafana
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.,Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Pertunia T Mudau
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.,Department of Biochemistry, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| |
Collapse
|
17
|
Abstract
It gives me great pleasure to have the opportunity to introduce myself to the readers of Biophysical Reviews as part of the 'meet the editors' series. What follows is a mini-autobiography of my life as it relates to my scientific career and research.
Collapse
Affiliation(s)
- Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou, 0950 South Africa
| |
Collapse
|
18
|
Chakafana G, Mudau PT, Zininga T, Shonhai A. Characterisation of a unique linker segment of the Plasmodium falciparum cytosol localised Hsp110 chaperone. Int J Biol Macromol 2021; 180:272-285. [PMID: 33741370 DOI: 10.1016/j.ijbiomac.2021.03.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/26/2021] [Accepted: 03/11/2021] [Indexed: 11/30/2022]
Abstract
Plasmodium falciparum expresses two essential cytosol localised chaperones; PfHsp70-1 and PfHsp70-z. PfHsp70-z (Hsp110 homologue) is thought to facilitate nucleotide exchange function of PfHsp70-1. PfHsp70-1 is a refoldase, while PfHsp70-z is restricted to holdase chaperone function. The structural features delineating functional specialisation of these chaperones remain unknown. Notably, PfHsp70-z possesses a unique linker segment which could account for its distinct functions. Using recombinant forms of PfHsp70-1, PfHsp70-z and E. coli Hsp70 (DnaK) as well as their linker switch mutant forms, we explored the effects of the linker mutations by conducting several assays such as circular dichroism, intrinsic and extrinsic fluorescence coupled to biochemical and in cellular analyses. Our findings demonstrate that the linker of PfHsp70-z modulates global conformation of the chaperone, regulating several functions such as client protein binding, chaperone- and ATPase activities. In addition, as opposed to the flexible linker of PfHsp70-1, the PfHsp70-z linker is rigid, thus regulating its notable thermal stability, making it an effective stress buffer. Our findings suggest a crucial role for the linker in streamlining the functions of these two chaperones. The findings further explain how these distinct chaperones cooperate to ensure survival of P. falciparum particularly under the stressful human host environment.
Collapse
Affiliation(s)
- Graham Chakafana
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa; Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Pertunia T Mudau
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa; Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.
| |
Collapse
|
19
|
Makumire S, Dongola TH, Chakafana G, Tshikonwane L, Chauke CT, Maharaj T, Zininga T, Shonhai A. Mutation of GGMP Repeat Segments of Plasmodium falciparum Hsp70-1 Compromises Chaperone Function and Hop Co-Chaperone Binding. Int J Mol Sci 2021; 22:ijms22042226. [PMID: 33672387 PMCID: PMC7926355 DOI: 10.3390/ijms22042226] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Parasitic organisms especially those of the Apicomplexan phylum, harbour a cytosol localised canonical Hsp70 chaperone. One of the defining features of this protein is the presence of GGMP repeat residues sandwiched between α-helical lid and C-terminal EEVD motif. The role of the GGMP repeats of Hsp70s remains unknown. In the current study, we introduced GGMP mutations in the cytosol localised Hsp70-1 of Plasmodium falciparum (PfHsp70-1) and a chimeric protein (KPf), constituted by the ATPase domain of E. coli DnaK fused to the C-terminal substrate binding domain of PfHsp70-1. A complementation assay conducted using E. coli dnaK756 cells demonstrated that the GGMP motif was essential for chaperone function of the chimeric protein, KPf. Interestingly, insertion of GGMP motif of PfHsp70-1 into DnaK led to a lethal phenotype in E. coli dnaK756 cells exposed to elevated growth temperature. Using biochemical and biophysical assays, we established that the GGMP motif accounts for the elevated basal ATPase activity of PfHsp70-1. Furthermore, we demonstrated that this motif is important for interaction of the chaperone with peptide substrate and a co-chaperone, PfHop. Our findings suggest that the GGMP may account for both the specialised chaperone function and reportedly high catalytic efficiency of PfHsp70-1.
Collapse
Affiliation(s)
- Stanley Makumire
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Tendamudzimu Harmfree Dongola
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
| | - Graham Chakafana
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
- Department of Medicine, University of Cape Town, Faculty of Health Sciences, Observatory, Cape Town 7925, South Africa
| | - Lufuno Tshikonwane
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
| | - Cecilia Tshikani Chauke
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
| | - Tarushai Maharaj
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - Tawanda Zininga
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa;
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.M.); (T.H.D.); (G.C.); (L.T.); (C.T.C.); (T.Z.)
- Correspondence: ; Tel.: +27-15962-8723
| |
Collapse
|
20
|
Chakafana G, Shonhai A. The Role of Non-Canonical Hsp70s (Hsp110/Grp170) in Cancer. Cells 2021; 10:254. [PMID: 33525518 PMCID: PMC7911927 DOI: 10.3390/cells10020254] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Although cancers account for over 16% of all global deaths annually, at present, no reliable therapies exist for most types of the disease. As protein folding facilitators, heat shock proteins (Hsps) play an important role in cancer development. Not surprisingly, Hsps are among leading anticancer drug targets. Generally, Hsp70s are divided into two main subtypes: canonical Hsp70 (Escherichia coli Hsp70/DnaK homologues) and the non-canonical (Hsp110 and Grp170) members. These two main Hsp70 groups are delineated from each other by distinct structural and functional specifications. Non-canonical Hsp70s are considered as holdase chaperones, while canonical Hsp70s are refoldases. This unique characteristic feature is mirrored by the distinct structural features of these two groups of chaperones. Hsp110/Grp170 members are larger as they possess an extended acidic insertion in their substrate binding domains. While the role of canonical Hsp70s in cancer has received a fair share of attention, the roles of non-canonical Hsp70s in cancer development has received less attention in comparison. In the current review, we discuss the structure-function features of non-canonical Hsp70s members and how these features impact their role in cancer development. We further mapped out their interactome and discussed the prospects of targeting these proteins in cancer therapy.
Collapse
Affiliation(s)
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa
| |
Collapse
|
21
|
Shonhai A, Blatch GL. Heat Shock Proteins of Malaria: Highlights and Future Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:237-246. [PMID: 34569028 DOI: 10.1007/978-3-030-78397-6_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The deadliest malaria parasite of humans, Plasmodium falciparum, is an obligate parasite that has had to develop mechanisms for survival under the unfavourable conditions it confronts within host cells. The chapters in the book "Heat Shock Proteins of Malaria" provide a critique of the evidence that heat shock proteins (Hsps) play a key role in the survival of P. falciparum in host cells. The role of the plasmodial Hsp arsenal is not limited to the protection of the parasite cell (largely through their role as molecular chaperones), as some of these proteins also promote the pathological development of malaria. This is largely due to the export of a large number of these proteins into the infected erythrocyte cytosol. Although P. falciparum erythrocyte membrane protein 1 (PfEMP1) is the main virulence factor for the malaria parasite, some of the exported plasmodial Hsps appear to augment parasite virulence. While this book largely delves into experimentally validated information on the role of Hsps in the development and pathogenicity of malaria, some of the information is based on hypotheses yet to be fully tested. Therefore, here we highlight what we know to be definite roles of plasmodial Hsps. Furthermore, we distill information that could provide practical insights on the options available for future research directions, including interventions against malaria that may target the role of Hsps in the development of the disease.
Collapse
Affiliation(s)
- Addmore Shonhai
- Department of Biochemistry, University of Venda, Thohoyandou, South Africa.
| | - Gregory L Blatch
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia. .,Biomedical Biotechnology Research Unit, Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa. .,The Institute of Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia. .,Faculty of Health Sciences, Higher Colleges of Technology, Sharjah, United Arab Emirates.
| |
Collapse
|
22
|
Edkins AL, Boshoff A. General Structural and Functional Features of Molecular Chaperones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:11-73. [PMID: 34569020 DOI: 10.1007/978-3-030-78397-6_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular chaperones are a group of structurally diverse and highly conserved ubiquitous proteins. They play crucial roles in facilitating the correct folding of proteins in vivo by preventing protein aggregation or facilitating the appropriate folding and assembly of proteins. Heat shock proteins form the major class of molecular chaperones that are responsible for protein folding events in the cell. This is achieved by ATP-dependent (folding machines) or ATP-independent mechanisms (holders). Heat shock proteins are induced by a variety of stresses, besides heat shock. The large and varied heat shock protein class is categorised into several subfamilies based on their sizes in kDa namely, small Hsps (HSPB), J domain proteins (Hsp40/DNAJ), Hsp60 (HSPD/E; Chaperonins), Hsp70 (HSPA), Hsp90 (HSPC), and Hsp100. Heat shock proteins are localised to different compartments in the cell to carry out tasks specific to their environment. Most heat shock proteins form large oligomeric structures, and their functions are usually regulated by a variety of cochaperones and cofactors. Heat shock proteins do not function in isolation but are rather part of the chaperone network in the cell. The general structural and functional features of the major heat shock protein families are discussed, including their roles in human disease. Their function is particularly important in disease due to increased stress in the cell. Vector-borne parasites affecting human health encounter stress during transmission between invertebrate vectors and mammalian hosts. Members of the main classes of heat shock proteins are all represented in Plasmodium falciparum, the causative agent of cerebral malaria, and they play specific functions in differentiation, cytoprotection, signal transduction, and virulence.
Collapse
Affiliation(s)
- Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
- Rhodes University, Makhanda/Grahamstown, South Africa.
| | - Aileen Boshoff
- Rhodes University, Makhanda/Grahamstown, South Africa.
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
23
|
Rajapandi T. Chaperoning of asparagine repeat-containing proteins in Plasmodium falciparum. J Parasit Dis 2020; 44:687-693. [PMID: 33184535 DOI: 10.1007/s12639-020-01251-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/18/2020] [Indexed: 01/03/2023] Open
Abstract
Plasmodium falciparum has the most adenine (A)- and thymine (T)-rich genome known to date, and 24-30% of the P. falciparum proteome contains asparagine (N) and glutamine (Q) residues. In general, asparagine repeats in proteins increase the propensity for aggregation, especially at elevated temperatures, which occur routinely in P. falciparum parasites during exoerythrocytic and erythrocytic developmental stages in a vertebrate host. The P. falciparum exported chaperone machinery is comprised of an exported PfHsp70-x protein and its co-chaperone PfHsp40-x1 in the host erythrocyte compartment, and PfHsp70-z and its co-chaperones in the parasite cytoplasm have been identified. In vitro assays reveal that these chaperone partners function in refolding of asparagine-rich polypeptides. The identification and chaperoning of exported poly-asparagine-containing proteins, and the biological roles and the protection mechanisms of P. falciparum during febrile conditions by the exported chaperone machinery are discussed.
Collapse
Affiliation(s)
- Thavamani Rajapandi
- Department of Natural Sciences, Science and Technology Center, Coppin State University, 2500 West North Avenue, Baltimore, MD 21216-3698 USA
| |
Collapse
|
24
|
Lebepe CM, Matambanadzo PR, Makhoba XH, Achilonu I, Zininga T, Shonhai A. Comparative Characterization of Plasmodium falciparum Hsp70-1 Relative to E. coli DnaK Reveals the Functional Specificity of the Parasite Chaperone. Biomolecules 2020; 10:biom10060856. [PMID: 32512819 PMCID: PMC7356358 DOI: 10.3390/biom10060856] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/20/2022] Open
Abstract
Hsp70 is a conserved molecular chaperone. How Hsp70 exhibits specialized functions across species remains to be understood. Plasmodium falciparum Hsp70-1 (PfHsp70-1) and Escherichia coli DnaK are cytosol localized molecular chaperones that are important for the survival of these two organisms. In the current study, we investigated comparative structure-function features of PfHsp70-1 relative to DnaK and a chimeric protein, KPf, constituted by the ATPase domain of DnaK and the substrate binding domain (SBD) of PfHsp70-1. Recombinant forms of the three Hsp70s exhibited similar secondary and tertiary structural folds. However, compared to DnaK, both KPf and PfHsp70-1 were more stable to heat stress and exhibited higher basal ATPase activity. In addition, PfHsp70-1 preferentially bound to asparagine rich peptide substrates, as opposed to DnaK. Recombinant P. falciparum adenosylmethionine decarboxylase (PfAdoMetDC) co-expressed in E. coli with either KPf or PfHsp70-1 was produced as a fully folded product. Co-expression of PfAdoMetDC with heterologous DnaK in E. coli did not promote folding of the former. However, a combination of supplementary GroEL plus DnaK improved folding of PfAdoMetDC. These findings demonstrated that the SBD of PfHsp70-1 regulates several functional features of the protein and that this molecular chaperone is tailored to facilitate folding of plasmodial proteins.
Collapse
Affiliation(s)
- Charity Mekgwa Lebepe
- Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, Thohoyandou 0950, South Africa; (C.M.L.); (P.R.M.); (T.Z.)
| | - Pearl Rutendo Matambanadzo
- Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, Thohoyandou 0950, South Africa; (C.M.L.); (P.R.M.); (T.Z.)
| | - Xolani Henry Makhoba
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa;
| | - Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2050, South Africa;
| | - Tawanda Zininga
- Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, Thohoyandou 0950, South Africa; (C.M.L.); (P.R.M.); (T.Z.)
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7602, South Africa
| | - Addmore Shonhai
- Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, Thohoyandou 0950, South Africa; (C.M.L.); (P.R.M.); (T.Z.)
- Correspondence:
| |
Collapse
|
25
|
Makumire S, Zininga T, Vahokoski J, Kursula I, Shonhai A. Biophysical analysis of Plasmodium falciparum Hsp70-Hsp90 organising protein (PfHop) reveals a monomer that is characterised by folded segments connected by flexible linkers. PLoS One 2020; 15:e0226657. [PMID: 32343703 PMCID: PMC7188212 DOI: 10.1371/journal.pone.0226657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
Plasmodium falciparum causes the most lethal form of malaria. The cooperation of heat shock protein (Hsp) 70 and 90 is thought to facilitate folding of select group of cellular proteins that are crucial for cyto-protection and development of the parasites. Hsp70 and Hsp90 are brought into a functional complex that allows substrate exchange by stress inducible protein 1 (STI1), also known as Hsp70-Hsp90 organising protein (Hop). P. falciparum Hop (PfHop) co-localises and occurs in complex with the parasite cytosolic chaperones, PfHsp70-1 and PfHsp90. Here, we characterised the structure of recombinant PfHop using synchrotron radiation circular dichroism (SRCD) and small-angle X-ray scattering. Structurally, PfHop is a monomeric, elongated but folded protein, in agreement with its predicted TPR domain structure. Using SRCD, we established that PfHop is unstable at temperatures higher than 40°C. This suggests that PfHop is less stable at elevated temperatures compared to its functional partner, PfHsp70-1, that is reportedly stable at temperatures as high as 80°C. These findings contribute towards our understanding of the role of the Hop-mediated functional partnership between Hsp70 and Hsp90.
Collapse
Affiliation(s)
- Stanley Makumire
- Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, Thohoyandou, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, Thohoyandou, South Africa
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Juha Vahokoski
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Inari Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Addmore Shonhai
- Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, Thohoyandou, South Africa
- * E-mail:
| |
Collapse
|
26
|
Zininga T, Shonhai A. Small Molecule Inhibitors Targeting the Heat Shock Protein System of Human Obligate Protozoan Parasites. Int J Mol Sci 2019; 20:E5930. [PMID: 31775392 PMCID: PMC6929125 DOI: 10.3390/ijms20235930] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Obligate protozoan parasites of the kinetoplastids and apicomplexa infect human cells to complete their life cycles. Some of the members of these groups of parasites develop in at least two systems, the human host and the insect vector. Survival under the varied physiological conditions associated with the human host and in the arthropod vectors requires the parasites to modulate their metabolic complement in order to meet the prevailing conditions. One of the key features of these parasites essential for their survival and host infectivity is timely expression of various proteins. Even more importantly is the need to keep their proteome functional by maintaining its functional capabilities in the wake of physiological changes and host immune responses. For this reason, molecular chaperones (also called heat shock proteins)-whose role is to facilitate proteostasis-play an important role in the survival of these parasites. Heat shock protein 90 (Hsp90) and Hsp70 are prominent molecular chaperones that are generally induced in response to physiological stress. Both Hsp90 and Hsp70 members are functionally regulated by nucleotides. In addition, Hsp70 and Hsp90 cooperate to facilitate folding of some key proteins implicated in cellular development. In addition, Hsp90 and Hsp70 individually interact with other accessory proteins (co-chaperones) that regulate their functions. The dependency of these proteins on nucleotide for their chaperone function presents an Achille's heel, as inhibitors that mimic ATP are amongst potential therapeutic agents targeting their function in obligate intracellular human parasites. Most of the promising small molecule inhibitors of parasitic heat shock proteins are either antibiotics or anticancer agents, whose repurposing against parasitic infections holds prospects. Both cancer cells and obligate human parasites depend upon a robust protein quality control system to ensure their survival, and hence, both employ a competent heat shock machinery to this end. Furthermore, some inhibitors that target chaperone and co-chaperone networks also offer promising prospects as antiparasitic agents. The current review highlights the progress made so far in design and application of small molecule inhibitors against obligate intracellular human parasites of the kinetoplastida and apicomplexan kingdoms.
Collapse
Affiliation(s)
| | - Addmore Shonhai
- Department of Biochemistry, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou 0950, South Africa;
| |
Collapse
|
27
|
Chen L, Guo T, Yu Y, Sun Y, Yu G, Cheng L. Heat shock cognate protein 70 promotes the differentiation of C2C12 myoblast and targets Yin Yang 1. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:551. [PMID: 31807532 DOI: 10.21037/atm.2019.09.88] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Heat shock cognate protein 70 (HSC70) is a constitutively expressed molecular chaperone protein which can maintain the structure and function of the protein. HSC70 is engaged in a variety of physiological processes, yet its role during skeletal muscle differentiation is still unclear. Methods C2C12 cells were obtained and cultured. During differentiation, the expression of HSC70 was evaluated by RT-PCR. To determine the function of HSC70 during C2C12 myoblast differentiation, myotube transfection of siR-HSC70 was performed with Lipofectamine 2000 Reagent. Western blot was used to measure the expression of Yin Yang 1 (YY1) after down-regulating HSC70. To further assess if YY1 mediates the pro-differentiation effect of HSC70, a plasmid of YY1 overexpression was used to increase the expression of YY1 in the presence of siR-HSC70-2. The formation of myotubes was visualized by immunofluorescent staining, while the expression levels of MyoD and MyoG were evaluated by RT-PCR. Results In this study, we found that HSC70 was up-regulated during C2C12 myoblast differentiation. Knockdown of HSC70 not only inhibited the C2C12 myoblast differentiation but also reduced the expression of MyoD and MyoG. When YY1 protein was over-expressed, it could restore the differentiation in cells with HSC70 knockdown or inhibition. Conclusions Collectively, this study demonstrates that HSC70 is involved in the regulation of C2C12 myoblast differentiation via YY1 and may serve as a potential target for a therapeutic strategy to prevent muscle atrophy.
Collapse
Affiliation(s)
- Lei Chen
- Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Tao Guo
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Yan Yu
- Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yeqing Sun
- Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Guangrong Yu
- Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Liming Cheng
- Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education of the People's Republic of China, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
28
|
The Link That Binds: The Linker of Hsp70 as a Helm of the Protein's Function. Biomolecules 2019; 9:biom9100543. [PMID: 31569820 PMCID: PMC6843406 DOI: 10.3390/biom9100543] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/13/2019] [Accepted: 09/21/2019] [Indexed: 12/26/2022] Open
Abstract
The heat shock 70 (Hsp70) family of molecular chaperones plays a central role in maintaining cellular proteostasis. Structurally, Hsp70s are composed of an N-terminal nucleotide binding domain (NBD) which exhibits ATPase activity, and a C-terminal substrate binding domain (SBD). The binding of ATP at the NBD and its subsequent hydrolysis influences the substrate binding affinity of the SBD through allostery. Similarly, peptide binding at the C-terminal SBD stimulates ATP hydrolysis by the N-terminal NBD. Interdomain communication between the NBD and SBD is facilitated by a conserved linker segment. Hsp70s form two main subgroups. Canonical Hsp70 members generally suppress protein aggregation and are also capable of refolding misfolded proteins. Hsp110 members are characterized by an extended lid segment and their function tends to be largely restricted to suppression of protein aggregation. In addition, the latter serve as nucleotide exchange factors (NEFs) of canonical Hsp70s. The linker of the Hsp110 family is less conserved compared to that of the canonical Hsp70 group. In addition, the linker plays a crucial role in defining the functional features of these two groups of Hsp70. Generally, the linker of Hsp70 is quite small and varies in size from seven to thirteen residues. Due to its small size, any sequence variation that Hsp70 exhibits in this motif has a major and unique influence on the function of the protein. Based on sequence data, we observed that canonical Hsp70s possess a linker that is distinct from similar segments present in Hsp110 proteins. In addition, Hsp110 linker motifs from various genera are distinct suggesting that their unique features regulate the flexibility with which the NBD and SBD of these proteins communicate via allostery. The Hsp70 linker modulates various structure-function features of Hsp70 such as its global conformation, affinity for peptide substrate and interaction with co-chaperones. The current review discusses how the unique features of the Hsp70 linker accounts for the functional specialization of this group of molecular chaperones.
Collapse
|
29
|
Daniyan MO, Przyborski JM, Shonhai A. Partners in Mischief: Functional Networks of Heat Shock Proteins of Plasmodium falciparum and Their Influence on Parasite Virulence. Biomolecules 2019; 9:E295. [PMID: 31340488 PMCID: PMC6681276 DOI: 10.3390/biom9070295] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
The survival of the human malaria parasite Plasmodium falciparum under the physiologically distinct environments associated with their development in the cold-blooded invertebrate mosquito vectors and the warm-blooded vertebrate human host requires a genome that caters to adaptability. To this end, a robust stress response system coupled to an efficient protein quality control system are essential features of the parasite. Heat shock proteins constitute the main molecular chaperone system of the cell, accounting for approximately two percent of the malaria genome. Some heat shock proteins of parasites constitute a large part (5%) of the 'exportome' (parasite proteins that are exported to the infected host erythrocyte) that modify the host cell, promoting its cyto-adherence. In light of their importance in protein folding and refolding, and thus the survival of the parasite, heat shock proteins of P. falciparum have been a major subject of study. Emerging evidence points to their role not only being cyto-protection of the parasite, as they are also implicated in regulating parasite virulence. In undertaking their roles, heat shock proteins operate in networks that involve not only partners of parasite origin, but also potentially functionally associate with human proteins to facilitate parasite survival and pathogenicity. This review seeks to highlight these interplays and their roles in parasite pathogenicity. We further discuss the prospects of targeting the parasite heat shock protein network towards the developments of alternative antimalarial chemotherapies.
Collapse
Affiliation(s)
- Michael O Daniyan
- Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State 220005, Nigeria.
| | - Jude M Przyborski
- Center of Infectious Diseases, Parasitology, University of Heidelberg Medical School, INF324, 69120 Heidelberg, Germany
| | - Addmore Shonhai
- Department of Biochemistry, School of Mathematical & Natural Sciences, University of Venda, P. Bag X5050, Thohoyandou 0950, South Africa.
| |
Collapse
|
30
|
Chakafana G, Zininga T, Shonhai A. Comparative structure-function features of Hsp70s of Plasmodium falciparum and human origins. Biophys Rev 2019; 11:591-602. [PMID: 31280465 PMCID: PMC6682331 DOI: 10.1007/s12551-019-00563-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/20/2019] [Indexed: 01/18/2023] Open
Abstract
The heat shock protein 70 (Hsp70) family of molecular chaperones are crucial for the survival and pathogenicity of the main agent of malaria, Plasmodium falciparum. Hsp70 is central to cellular proteostasis and some of its isoforms are essential for survival of the malaria parasite. In addition, they are also implicated in the development of antimalarial drug resistance. For these reasons, they are thought to be potential drug targets, especially in antimalarial combination therapies. However, their high sequence conservation across species presents a hurdle with respect to their selective targeting. The human genome encodes 17 Hsp70 isoforms while P. falciparum encodes for only 6. The structural architecture of Hsp70s is typically characterized by a highly conserved N-terminal nucleotide-binding domain (NBD) and a less conserved C-terminal substrate-binding domain (SBD). The two domains are connected by a highly conserved linker. In spite of their fairly high sequence conservation, Hsp70s from various species possess unique signature motifs that appear to uniquely influence their function. In addition, their cooperation with co-chaperones further regulates their functional specificity. In the current review, bioinformatics tools were used to identify conserved and unique signature motifs in Hsp70s of P. falciparum versus their human counterparts. We discuss the common and distinctive structure-function features of these proteins. This information is important towards elucidating the prospects of selective targeting of parasite heat shock proteins as part of antimalarial design efforts.
Collapse
Affiliation(s)
- Graham Chakafana
- Department of Biochemistry, University of Venda, Private Bags X5050, Thohoyandou, 0950, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, University of Venda, Private Bags X5050, Thohoyandou, 0950, South Africa
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bags X5050, Thohoyandou, 0950, South Africa.
| |
Collapse
|
31
|
Engel JA, Norris EL, Gilson P, Przyborski J, Shonhai A, Blatch GL, Skinner-Adams TS, Gorman J, Headlam M, Andrews KT. Proteomic analysis of Plasmodium falciparum histone deacetylase 1 complex proteins. Exp Parasitol 2019; 198:7-16. [PMID: 30682336 DOI: 10.1016/j.exppara.2019.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/01/2018] [Accepted: 01/20/2019] [Indexed: 01/12/2023]
Abstract
Plasmodium falciparum histone deacetylases (PfHDACs) are an important class of epigenetic regulators that alter protein lysine acetylation, contributing to regulation of gene expression and normal parasite growth and development. PfHDACs are therefore under investigation as drug targets for malaria. Despite this, our understanding of the biological roles of these enzymes is only just beginning to emerge. In higher eukaryotes, HDACs function as part of multi-protein complexes and act on both histone and non-histone substrates. Here, we present a proteomics analysis of PfHDAC1 immunoprecipitates, identifying 26 putative P. falciparum complex proteins in trophozoite-stage asexual intraerythrocytic parasites. The co-migration of two of these (P. falciparum heat shock proteins 70-1 and 90) with PfHDAC1 was validated using Blue Native PAGE combined with Western blot. These data provide a snapshot of possible PfHDAC1 interactions and a starting point for future studies focused on elucidating the broader function of PfHDACs in Plasmodium parasites.
Collapse
Affiliation(s)
- Jessica A Engel
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Emma L Norris
- QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Paul Gilson
- Burnet Institute, Monash University, Victoria, Australia
| | - Jude Przyborski
- Centre of Infectious Diseases, Parasitology, University Hospital Heidelberg, Germany
| | - Addmore Shonhai
- Biochemistry Department, University of Venda, Thohoyandou, South Africa
| | - Gregory L Blatch
- The Vice Chancellery, The University of Notre Dame Australia, Fremantle, WA, Australia
| | - Tina S Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Jeffrey Gorman
- QIMR Berghofer Medical Research Institute, Queensland, Australia
| | | | - Katherine T Andrews
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia.
| |
Collapse
|
32
|
Batista FA, Dores-Silva PR, Borges JC. Molecular Chaperones Involved in Protein Recovery from Aggregates are Present in Protozoa Causative of Malaria and Leishmaniasis. CURR PROTEOMICS 2018. [DOI: 10.2174/1570164615666180626123823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular chaperones have several critical functions in protein metabolism. Among them,
some are involved in processes that culminate in the extraction of entangled polypeptides from protein
aggregates, releasing unfolded structures prone to be refolded or directed to degradation. This action
avoids the effect of toxic aggregates on cells and tissues. Molecular chaperones belonging to the
Hsp100 family are widely distributed from unicellular and sessile organisms up to fungi and plants,
exerting key functions related to the reduction of the effects caused by different forms of stress. The
Hsp100 proteins belong to the AAA+ (ATPases Associated with diverse cellular Activities) family and
form multichaperone systems with Hsp70 and small Hsp chaperones families. However, Hsp100 are
absent in metazoan, where protein disaggregation action is performed by a system involving the Hsp70
family, including Hsp110 and J-protein co-chaperones. Here, the structural and functional aspects of
these protein disaggregation systems will be reviewed and discussed in the perspective of the Hsp100
system absent in the metazoan kingdom. This feature focuses on Hsp100 as a hot spot for drug discovery
against human infectious diseases such as leishmaniasis and malaria, as Hsp100 is critical for microorganisms.
The current data available for Hsp100 in Leishmania spp. and Plasmodium spp. are also
reviewed.
Collapse
Affiliation(s)
- Fernanda A.H. Batista
- Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, SP, Brazil
| | - Paulo R. Dores-Silva
- Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, SP, Brazil
| | - Júlio C. Borges
- Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos, SP, Brazil
| |
Collapse
|
33
|
Mabate B, Zininga T, Ramatsui L, Makumire S, Achilonu I, Dirr HW, Shonhai A. Structural and biochemical characterization of Plasmodium falciparum Hsp70-x reveals functional versatility of its C-terminal EEVN motif. Proteins 2018; 86:1189-1201. [PMID: 30183110 PMCID: PMC6282620 DOI: 10.1002/prot.25600] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 01/12/2023]
Abstract
Plasmodium falciparum, the main agent of malaria expresses six members of the heat shock protein 70 (Hsp70) family. Hsp70s serve as protein folding facilitators in the cell. Amongst the six Hsp70 species that P. falciparum expresses, Hsp70-x (PfHsp70-x), is partially exported to the host red blood cell where it is implicated in host cell remodeling. Nearly 500 proteins of parasitic origin are exported to the parasite-infected red blood cell (RBC) along with PfHsp70-x. The role of PfHsp70-x in the infected human RBC remains largely unclear. One of the defining features of PfHsp70-x is the presence of EEVN residues at its C-terminus. In this regard, PfHsp70-x resembles canonical eukaryotic cytosol-localized Hsp70s which possess EEVD residues at their C-termini in place of the EEVN residues associated with PfHsp70-x. The EEVD residues of eukaryotic Hsp70s facilitate their interaction with co-chaperones. Characterization of the role of the EEVN residues of PfHsp70-x could provide insights into the function of this protein. In the current study, we expressed and purified recombinant PfHsp70-x (full length) and its EEVN minus form (PfHsp70-xT ). We then conducted structure- function assays towards establishing the role of the EEVN motif of PfHsp70-x. Our findings suggest that the EEVN residues of PfHsp70-x are important for its ATPase activity and chaperone function. Furthermore, the EEVN residues are crucial for the direct interaction between PfHsp70-x and human Hsp70-Hsp90 organizing protein (hHop) in vitro. Hop facilitates functional cooperation between Hsp70 and Hsp90. However, it remains to be established if PfHsp70-x and hHsp90 cooperate in vivo.
Collapse
Affiliation(s)
| | | | | | | | - Ikechukwu Achilonu
- Protein Structure‐Function Research UnitSchool of Molecular & Cell Biology, University of the WitwatersrandJohannesburgSouth Africa
| | - Heini W. Dirr
- Protein Structure‐Function Research UnitSchool of Molecular & Cell Biology, University of the WitwatersrandJohannesburgSouth Africa
| | | |
Collapse
|
34
|
Garcia CH, Depoix D, Queiroz RM, Souza JM, Fontes W, de Sousa MV, Santos MD, Carvalho PC, Grellier P, Charneau S. Dynamic molecular events associated to Plasmodium berghei gametogenesis through proteomic approach. J Proteomics 2018; 180:88-98. [DOI: 10.1016/j.jprot.2017.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
|
35
|
(-)-Epigallocatechin-3-Gallate Inhibits the Chaperone Activity of Plasmodium falciparum Hsp70 Chaperones and Abrogates Their Association with Functional Partners. Molecules 2017; 22:molecules22122139. [PMID: 29206141 PMCID: PMC6149709 DOI: 10.3390/molecules22122139] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/30/2017] [Accepted: 12/01/2017] [Indexed: 11/17/2022] Open
Abstract
Heat shock proteins (Hsps), amongst them, Hsp70 and Hsp90 families, serve mainly as facilitators of protein folding (molecular chaperones) of the cell. The Hsp70 family of proteins represents one of the most important molecular chaperones in the cell. Plasmodium falciparum, the main agent of malaria, expresses six Hsp70 isoforms. Two (PfHsp70-1 and PfHsp70-z) of these localize to the parasite cytosol. PHsp70-1 is known to occur in a functional complex with another chaperone, PfHsp90 via a co-chaperone, P. falciparum Hsp70-Hsp90 organising protein (PfHop). (-)-Epigallocatechin-3-gallate (EGCG) is a green tea constituent that is thought to possess antiplasmodial activity. However, the mechanism by which EGCG exhibits antiplasmodial activity is not fully understood. A previous study proposed that EGCG binds to the N-terminal ATPase domain of Hsp70. In the current study, we overexpressed and purified recombinant forms of two P. falciparum cytosol localized Hsp70s (PfHsp70-1 and PfHsp70-z), and PfHop, a co-chaperone of PfHsp70-1. Using the surface plasmon resonance approach, we demonstrated that EGCG directly binds to the two Hsp70s. We further observed that binding of EGCG to the two proteins resulted in secondary and tertiary conformational changes. In addition, EGCG inhibited the ATPase and chaperone function of the two proteins. Furthermore, EGCG abrogated association of the two Hsp70s with their functional partners. Using parasites cultured in vitro at the blood stages, we observed that 2.9 µM EGCG suppressed 50% P. falciparum parasite growth (IC50). Our findings demonstrate that EGCG directly binds to PfHsp70-1 and PfHsp70-z to inhibit both the ATPase and chaperone functions of the proteins. Our study constitutes the first direct evidence suggesting that the antiplasmodial activity of EGCG is at least in part accounted for by its inhibition of Hsp70 function.
Collapse
|
36
|
Zininga T, Pooe OJ, Makhado PB, Ramatsui L, Prinsloo E, Achilonu I, Dirr H, Shonhai A. Polymyxin B inhibits the chaperone activity of Plasmodium falciparum Hsp70. Cell Stress Chaperones 2017; 22:707-715. [PMID: 28455613 PMCID: PMC5573689 DOI: 10.1007/s12192-017-0797-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/26/2022] Open
Abstract
Heat shock protein 70 (Hsp70) is a molecular chaperone that plays an important role in cellular proteostasis. Hsp70s are also implicated in the survival and pathogenicity of malaria parasites. The main agent of malaria, Plasmodium falciparum, expresses six Hsp70s. Of these, two (PfHsp70-1 and PfHsp70-z) localize to the parasite cytosol. Previously conducted gene knockout studies suggested that PfHsp70-z is essential, and it has been demonstrated that small-molecule inhibitors targeting PfHsp70-1 cause parasite death. For this reason, both PfHsp70-1 and PfHsp70-z are potential antimalarial targets. Two cyclic lipopeptides, colistin and polymyxin B (PMB), have been shown to bind another heat shock protein, Hsp90, inhibiting its chaperone function. In the current study, we investigated the effect of PMB on the structure-function features of PfHsp70-1 and PfHsp70-z. Using surface plasmon resonance analysis, we observed that PMB directly interacts with both PfHsp70-1 and PfHsp70-z. In addition, using circular dichroism spectrometric analysis combined with tryptophan fluorescence measurements, we observed that PMB modulated the secondary and tertiary structures of Hsp70. Furthermore, PMB inhibited the basal ATPase activity and chaperone function of the two Hsp70s. Our findings suggest that PMB associates with Hsp70 to inhibit its function. In light of the central role of Hsp70 in cellular proteostasis and its essential role in the development of malaria parasites in particular, our findings expand the library of small-molecule inhibitors that target this medically important class of molecular chaperones.
Collapse
Affiliation(s)
- Tawanda Zininga
- Department of Biochemistry, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, South Africa
| | - Ofentse J Pooe
- Department of Biochemistry, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Pertunia B Makhado
- Department of Biochemistry, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, South Africa
| | - Lebogang Ramatsui
- Department of Biochemistry, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, South Africa
| | - Earl Prinsloo
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, 6140, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular & Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Heinrich Dirr
- Protein Structure-Function Research Unit, School of Molecular & Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Addmore Shonhai
- Department of Biochemistry, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, South Africa.
| |
Collapse
|
37
|
Zininga T, Anokwuru CP, Sigidi MT, Tshisikhawe MP, Ramaite IID, Traoré AN, Hoppe H, Shonhai A, Potgieter N. Extracts Obtained from Pterocarpus angolensis DC and Ziziphus mucronata Exhibit Antiplasmodial Activity and Inhibit Heat Shock Protein 70 (Hsp70) Function. Molecules 2017; 22:molecules22081224. [PMID: 28788073 PMCID: PMC6152082 DOI: 10.3390/molecules22081224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 11/23/2022] Open
Abstract
Malaria parasites are increasingly becoming resistant to currently used antimalarial therapies, therefore there is an urgent need to expand the arsenal of alternative antimalarial drugs. In addition, it is also important to identify novel antimalarial drug targets. In the current study, extracts of two plants, Pterocarpus angolensis and Ziziphus mucronata were obtained and their antimalarial functions were investigated. Furthermore, we explored the capability of the extracts to inhibit Plasmodium falciparum heat shock protein 70 (Hsp70) function. Heat shock protein 70 (Hsp70) are molecular chaperones whose function is to facilitate protein folding. Plasmodium falciparum the main agent of malaria, expresses two cytosol-localized Hsp70s: PfHsp70-1 and PfHsp70-z. The PfHsp70-z has been reported to be essential for parasite survival, while inhibition of PfHsp70-1 function leads to parasite death. Hence both PfHsp70-1 and PfHsp70-z are potential antimalarial drug targets. Extracts of P. angolensis and Z. mucronata inhibited the basal ATPase and chaperone functions of the two parasite Hsp70s. Furthermore, fractions of P. angolensis and Z. mucronata inhibited P. falciparum 3D7 parasite growth in vitro. The extracts obtained in the current study exhibited antiplasmodial activity as they killed P. falciparum parasites maintained in vitro. In addition, the findings further suggest that some of the compounds in P. angolensis and Z. mucronata may target parasite Hsp70 function.
Collapse
Affiliation(s)
- Tawanda Zininga
- Biochemistry Department, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa.
| | - Chinedu P Anokwuru
- Chemistry Department, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa.
| | - Muendi T Sigidi
- Microbiology Department, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa.
| | - Milingoni P Tshisikhawe
- Botany Department, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa.
| | - Isaiah I D Ramaite
- Chemistry Department, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa.
| | - Afsatou N Traoré
- Microbiology Department, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa.
| | - Heinrich Hoppe
- Department of Biochemistry and Microbiology, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa.
| | - Addmore Shonhai
- Biochemistry Department, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa.
| | - Natasha Potgieter
- Microbiology Department, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa.
- School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa.
| |
Collapse
|
38
|
Extracts Obtained from Pterocarpus angolensis DC and Ziziphus mucronata Exhibit Antiplasmodial Activity and Inhibit Heat Shock Protein 70 (Hsp70) Function. Molecules 2017. [DOI: 10.3390/molecules22071224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
39
|
Ciechanover A, Kwon YT. Protein Quality Control by Molecular Chaperones in Neurodegeneration. Front Neurosci 2017; 11:185. [PMID: 28428740 PMCID: PMC5382173 DOI: 10.3389/fnins.2017.00185] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/20/2017] [Indexed: 12/14/2022] Open
Abstract
Protein homeostasis (proteostasis) requires the timely degradation of misfolded proteins and their aggregates by protein quality control (PQC), of which molecular chaperones are an essential component. Compared with other cell types, PQC in neurons is particularly challenging because they have a unique cellular structure with long extensions. Making it worse, neurons are postmitotic, i.e., cannot dilute toxic substances by division, and, thus, are highly sensitive to misfolded proteins, especially as they age. Failure in PQC is often associated with neurodegenerative diseases, such as Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD), and prion disease. In fact, many neurodegenerative diseases are considered to be protein misfolding disorders. To prevent the accumulation of disease-causing aggregates, neurons utilize a repertoire of chaperones that recognize misfolded proteins through exposed hydrophobic surfaces and assist their refolding. If such an effort fails, chaperones can facilitate the degradation of terminally misfolded proteins through either the ubiquitin (Ub)-proteasome system (UPS) or the autophagy-lysosome system (hereafter autophagy). If soluble, the substrates associated with chaperones, such as Hsp70, are ubiquitinated by Ub ligases and degraded through the proteasome complex. Some misfolded proteins carrying the KFERQ motif are recognized by the chaperone Hsc70 and delivered to the lysosomal lumen through a process called, chaperone-mediated autophagy (CMA). Aggregation-prone misfolded proteins that remain unprocessed are directed to macroautophagy in which cargoes are collected by adaptors, such as p62/SQSTM-1/Sequestosome-1, and delivered to the autophagosome for lysosomal degradation. The aggregates that have survived all these refolding/degradative processes can still be directly dissolved, i.e., disaggregated by chaperones. Studies have shown that molecular chaperones alleviate the pathogenic symptoms by neurodegeneration-causing protein aggregates. Chaperone-inducing drugs and anti-aggregation drugs are actively exploited for beneficial effects on symptoms of disease. Here, we discuss how chaperones protect misfolded proteins from aggregation and mediate the degradation of terminally misfolded proteins in collaboration with cellular degradative machinery. The topics also include therapeutic approaches to improve the expression and turnover of molecular chaperones and to develop anti-aggregation drugs.
Collapse
Affiliation(s)
- Aaron Ciechanover
- Department of Biomedical Sciences, Protein Metabolism Medical Research Center, College of Medicine, Seoul National UniversitySeoul, South Korea.,Technion Integrated Cancer Center, Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of TechnologyHaifa, Israel
| | - Yong Tae Kwon
- Department of Biomedical Sciences, Protein Metabolism Medical Research Center, College of Medicine, Seoul National UniversitySeoul, South Korea.,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National UniversitySeoul, South Korea
| |
Collapse
|
40
|
Sharma SK, Priya S. Expanding role of molecular chaperones in regulating α-synuclein misfolding; implications in Parkinson's disease. Cell Mol Life Sci 2017; 74:617-629. [PMID: 27522545 PMCID: PMC11107554 DOI: 10.1007/s00018-016-2340-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/19/2022]
Abstract
Protein misfolding under stressful environmental conditions cause several cellular problems owing to the disturbed cellular protein homeostasis, which may further lead to neurological disorders like Parkinson's disease (PD), Alzheimer's disease (AD), Amyloid lateral sclerosis and Huntington disease (HD). The presence of cellular defense mechanisms like molecular chaperones and proteasomal degradation systems prevent protein misfolding and aggregation. Molecular chaperones plays primary role in preventing protein misfolding by mediating proper native folding, unfolding and refolding of the polypeptides along with vast number of cellular functions. In past few years, the understanding of molecular chaperone mechanisms has been expanded enormously although implementation to prevent protein aggregation diseases is still deficient. We in this review evaluated major classes of molecular chaperones and their mechanisms relevant for preventing protein aggregation, specific case of α-synuclein aggregation. We also evaluate the molecular chaperone function as a novel therapeutic approach and the chaperone inhibitors or activators as small molecular drug targets.
Collapse
Affiliation(s)
- Sandeep K Sharma
- Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India
- Nanotherapeutics and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India
| | - Smriti Priya
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|