1
|
Bi F, Gao C, Guo H. Epigenetic regulation of cardiovascular diseases induced by behavioral and environmental risk factors: Mechanistic, diagnostic, and therapeutic insights. FASEB Bioadv 2024; 6:477-502. [PMID: 39512842 PMCID: PMC11539034 DOI: 10.1096/fba.2024-00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 11/15/2024] Open
Abstract
Behavioral and environmental risk factors are critical in the development and progression of cardiovascular disease (CVD). Understanding the molecular mechanisms underlying these risk factors will offer valuable insights for targeted preventive and therapeutic strategies. Epigenetic modifications, including DNA methylation, histone modifications, chromatin remodeling, noncoding RNA (ncRNA) expression, and epitranscriptomic modifications, have emerged as key mediators connecting behavioral and environmental risk factors to CVD risk and progression. These epigenetic alterations can profoundly impact on cardiovascular health and susceptibility to CVD by influencing cellular processes, development, and disease risk over an individual's lifetime and potentially across generations. This review examines how behavioral and environmental risk factors affect CVD risk and health outcomes through epigenetic regulation. We review the epigenetic effects of major behavioral risk factors (such as smoking, alcohol consumption, physical inactivity, unhealthy diet, and obesity) and environmental risk factors (including air and noise pollution) in the context of CVD pathogenesis. Additionally, we explore epigenetic biomarkers, considering their role as causal or surrogate indicators, and discuss epigenetic therapeutics targeting the mechanisms through which these risk factors contribute to CVD. We also address future research directions and challenges in leveraging epigenetic insights to reduce the burden of CVD related to behavioral and environmental factors and improve public health outcomes. This review aims to provide a comprehensive understanding of behavioral and environmental epigenetics in CVD and offer valuable strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Feifei Bi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake CityUtahUSA
- Division of Cardiothoracic Surgery, Department of SurgerySchool of Medicine, University of UtahSalt Lake CityUtahUSA
| | - Chen Gao
- Department of Pharmacology and Systems PhysiologyUniversity of CincinnatiCincinnatiOhioUSA
| | - Hongchao Guo
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake CityUtahUSA
- Division of Cardiothoracic Surgery, Department of SurgerySchool of Medicine, University of UtahSalt Lake CityUtahUSA
| |
Collapse
|
2
|
Ai W, Casey CA, Mishra PK, Alnouti Y, Daria S, Saraswathi V. Blockade of thromboxane A2 signaling attenuates ethanol-induced myocardial inflammatory response in mice. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1529-1540. [PMID: 39030742 DOI: 10.1111/acer.15391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Alcohol-associated cardiomyopathy (ACM) is a cardiac muscle disease characterized by inflammation and oxidative stress. Thromboxane-prostanoid receptor (TP-R) plays an important role in the pathogenesis of cardiovascular disease. Herein, we hypothesize that TP-R mediates alcohol-induced early cardiac injury. METHODS Eight-week-old male C57BL/6 wild-type mice were fed a chronic ethanol (ET) or control diet (CON) for 10 days followed by a single binge of ethanol or maltose-dextrin through oral gavage. A cohort of ethanol-fed mice received SQ 29,548 (SQ), a TP-R antagonist. RNA sequencing, real-time PCR, and western blot analysis were performed on left ventricle to investigate alterations in genes and/or proteins mediating oxidative stress, inflammation, and cardiac remodeling. Sirius Red staining was performed to measure myocardial fibrosis. RESULTS RNA-sequencing analysis of myocardium from CON and ET groups identified 142 genes that were significantly altered between the two groups. In particular, the gene expression of thioredoxin-interacting protein (TXNIP), a component of NLR family pyrin domain containing 3 (NLRP3) signaling, which mediates oxidative stress and inflammatory response, was upregulated in response to ethanol exposure. The myocardial protein levels of TP-R and thromboxane A2 synthase were increased upon alcohol exposure. Ethanol increased the levels of 4-hydroxynonenal, a marker of oxidative stress, with a concomitant increase in the protein levels of TXNIP and NLRP3, and administration of SQ attenuated these effects. Additionally, ethanol increased the protein levels of pro-inflammatory mediators, including tumor necrosis factor alpha and the NLRP3 downstream product, secretory interleukin 1 beta, and SQ blunted these effects. Finally, the Sirius red staining of the myocardium revealed an increase in collagen deposition in ethanol-fed mice which was attenuated by TP-R antagonism. CONCLUSION This study demonstrates that ethanol promotes the NLRP3 signaling pathway within the myocardium, leading to a pro-inflammatory milieu that potentially initiates early myocardial remodeling, and TP-R antagonism attenuates this effect.
Collapse
Affiliation(s)
- Weilun Ai
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, Nebraska, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Carol A Casey
- VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Paras Kumar Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Yazen Alnouti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sohel Daria
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Viswanathan Saraswathi
- Department of Internal Medicine, Division of Diabetes, Endocrinology, and Metabolism, University of Nebraska Medical Center, Omaha, Nebraska, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| |
Collapse
|
3
|
Meng Y, Hu Z, Zhang C, Bai H, Li Z, Guo X, Chen L. miR-92a-3p regulates ethanol-induced apoptosis in H9c2 cardiomyocytes. Cell Stress Chaperones 2024; 29:381-391. [PMID: 38582327 PMCID: PMC11035041 DOI: 10.1016/j.cstres.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/02/2024] [Accepted: 03/25/2024] [Indexed: 04/08/2024] Open
Abstract
The role of miR-92a-3p in the ethanol-induced apoptosis of H9c2 cardiomyocytes remains unclear. In this study, we explored the role of miR-92a-3p in the ethanol-induced apoptosis of H9c2 cardiomyocytes and identified its target genes and signaling pathways. H9c2 cells were cultured with or without 100 mM ethanol for 24 h. The differential expression of miR-92a-3p was verified in H9c2 cells through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). To manipulate the expression of miR-92a-3p, both a mimic and an inhibitor were transfected into H9c2 cells. An Annexin V-fluorescein isothiocyanate/propidium iodide apoptosis detection kit and apoptosis-related antibodies were used for apoptosis detection through flow cytometry and Western blotting, respectively. Target genes were verified through RT-qPCR, Western blotting, and double luciferase reporter gene assays. miR-92a-3p was significantly overexpressed in ethanol-stimulated H9c2 cardiomyocytes (P < 0.001). After ethanol stimulation, H9c2 myocardial cells exhibited increased apoptosis. The apoptosis rate was higher in the miR-92a-3p mimic group than in the control group. However, the apoptosis rate was lower in the miR-92a-3p inhibitor group than in the control group, indicating that miR-92a-3p promotes the ethanol-induced apoptosis of H9c2 myocardial cells. RT-qPCR and Western blotting revealed that the miR-92a-3p mimic and inhibitor significantly regulated the mRNA and protein expression levels of mitogen- and stress-activated protein kinase 2 and cyclic AMP-responsive element-binding protein 3-like protein 2 (CREB3L2), suggesting that miR-92a-3p promotes the apoptosis of H9c2 cardiomyocytes by inhibiting the MSK2/CREB/Bcl-2 pathway. Therefore, the apoptosis of H9c2 cardiomyocytes increases after ethanol stimulation, and miR-92a-3p can directly target MSK2 and CREB3L2, thereby promoting the ethanol-induced apoptosis of H9c2 myocardial cells.
Collapse
Affiliation(s)
- Yan Meng
- Department of Nutrition, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhenzhen Hu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Nutrition, Qilu Hospital of Shandong University, Jinan, China
| | - Chenyi Zhang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Nutrition, Qilu Hospital of Shandong University, Jinan, China
| | - Hao Bai
- Department of Nutrition, Qilu Hospital of Shandong University, Jinan, China
| | - Zhaoping Li
- Department of Nutrition, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xinru Guo
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Nutrition, Qilu Hospital of Shandong University, Jinan, China
| | - Liyong Chen
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Nutrition, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
4
|
Li K, Ma L, Lu Z, Yan L, Chen W, Wang B, Xu H, Asemi Z. Apoptosis and heart failure: The role of non-coding RNAs and exosomal non-coding RNAs. Pathol Res Pract 2023; 248:154669. [PMID: 37422971 DOI: 10.1016/j.prp.2023.154669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Heart failure is a condition that affects the cardio vascular system and occurs if the heart cannot adequately pump the oxygen and blood to the body. Myocardial infarction, reperfusion injury, and this disease is the only a few examples of the numerous cardiovascular illnesses that are impacted by the closely controlled cell deletion process known as apoptosis. Attention has been paid to the creation of alternative diagnostic and treatment modalities for the condition. Recent evidences have shown that some non-coding RNAs (ncRNAs) influence the stability of proteins, control of transcription factors, and HF apoptosis through a variety of methods. Exosomes make a significant paracrine contribution to the regulation of illnesses as well as to the communication between nearby and distant organs. However, it has not yet been determined whether exosomes regulate the cardiomyocyte-tumor cell interaction in ischemia HF to limit the vulnerability of malignancy to ferroptosis. Here, we list the numerous ncRNAs in HF that are connected to apoptosis. In addition, we emphasize the significance of exosomal ncRNAs in the HF.
Collapse
Affiliation(s)
- Ketao Li
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Liping Ma
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Zhiwei Lu
- Hangzhou Heyunjia Hospital, Hangzhou, Zhe'jiang 310000, China
| | - Laixing Yan
- Department of cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang 310022, China
| | - Wan Chen
- Department of Cardiology, Jiulongpo First People's Hospital, Chongqing 400051, China
| | - Bing Wang
- Department of cardiology, Zouping People's Hospital, Zouping, Shandong 256299, China
| | - Huiju Xu
- Department of cardiology, Hangzhou Mingzhou Hospital, Hangzhou, Zhe'jiang 311215, China.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| |
Collapse
|
5
|
ALDH2 deficiency increases susceptibility to binge alcohol-induced gut leakiness, endotoxemia, and acute liver injury in mice through the gut-liver axis. Redox Biol 2022; 59:102577. [PMID: 36528936 PMCID: PMC9792909 DOI: 10.1016/j.redox.2022.102577] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is the major enzyme responsible for metabolizing toxic acetaldehyde to acetate and acts as a protective or defensive protein against various disease states associated with alcohol use disorder (AUD), including alcohol-related liver disease (ARLD). We hypothesized that Aldh2-knockout (KO) mice are more susceptible to binge alcohol-mediated liver injury than wild-type (WT) mice through increased oxidative stress, gut leakiness and endotoxemia. Therefore, this study aimed to investigate the protective role of ALDH2 in binge alcohol-induced gut permeability, endotoxemia, and acute inflammatory liver injury by exposing Aldh2-KO or WT mice to a single oral dose of binge alcohol 3.5, 4.0, or 5.0 g/kg. Our findings showed for the first time that ALDH2 deficiency in Aldh2-KO mice increases their sensitivity to binge alcohol-induced oxidative and nitrative stress, enterocyte apoptosis, and nitration of gut tight junction (TJ) and adherent junction (AJ) proteins, leading to their degradation. These resulted in gut leakiness and endotoxemia in Aldh2-KO mice after exposure to a single dose of ethanol even at 3.5 g/kg, while no changes were observed in the corresponding WT mice. The elevated serum endotoxin (lipopolysaccharide, LPS) and bacterial translocation contributed to systemic inflammation, hepatocyte apoptosis, and subsequently acute liver injury through the gut-liver axis. Treatment with Daidzin, an ALDH2 inhibitor, exacerbated ethanol-induced cell permeability and reduced TJ/AJ proteins in T84 human colon cells. These changes were reversed by Alda-1, an ALDH2 activator. Furthermore, CRISPR/Cas9-mediated knockout of ALDH2 in T84 cells increased alcohol-mediated cell damage and paracellular permeability. All these findings demonstrate the critical role of ALDH2 in alcohol-induced epithelial barrier dysfunction and suggest that ALDH2 deficiency or gene mutation in humans is a risk factor for alcohol-mediated gut and liver injury, and that ALDH2 could be an important therapeutic target against alcohol-associated tissue or organ damage.
Collapse
|
6
|
Wu L, Zhang Y, Ren J. Epigenetic modification in alcohol use disorder and alcoholic cardiomyopathy: From pathophysiology to therapeutic opportunities. Metabolism 2021; 125:154909. [PMID: 34627873 DOI: 10.1016/j.metabol.2021.154909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023]
Abstract
Alcohol consumption prompts detrimental psychological, pathophysiological and health issues, representing one of the major causes of death worldwide. Alcohol use disorder (AUD), which is characterized by compulsive alcohol intake and loss of control over alcohol usage, arises from a complex interplay between genetic and environmental factors. More importantly, long-term abuse of alcohol is often tied with unfavorable cardiac remodeling and contractile alterations, a cadre of cardiac responses collectively known as alcoholic cardiomyopathy (ACM). Recent evidence has denoted a pivotal role for ethanol-triggered epigenetic modifications, the interface between genome and environmental cues, in the organismal and cellular responses to ethanol exposure. To-date, three major epigenetic mechanisms (DNA methylation, histone modifications, and RNA-based mechanisms) have been identified for the onset and development of AUD and ACM. Importantly, these epigenetic changes induced by alcohol may be detectable in the blood, thus offering diagnostic, therapeutic, and prognostic promises of epigenetic markers for AUD and alcoholic complications. In addition, several epigenetic drugs have shown efficacies in the management of alcohol abuse, loss of control for alcohol usage, relapse, drinking-related anxiety and behavior in withdrawal. In this context, medications targeting epigenetic modifications may hold promises for pharmaceutical management of AUD and ACM.
Collapse
Affiliation(s)
- Lin Wu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai 200032, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
Ethnic Differences in Serum Levels of microRNAs Potentially Regulating Alcohol Dehydrogenase 1B and Aldehyde Dehydrogenase 2. J Clin Med 2021; 10:jcm10163678. [PMID: 34441974 PMCID: PMC8397147 DOI: 10.3390/jcm10163678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/27/2022] Open
Abstract
Ethnic difference is known in genetic polymorphisms of aldehyde dehydrogenase 2 (ALDH2) and alcohol dehydrogenase 1B (ADH1B), which cause Asian flushing by blood vessel dilation due to accumulation of acetaldehyde. We investigated ethnic differences in microRNAs (miRNAs) related to ALDH2 and ADH1B. miRNA levels in serum were totally analyzed by using miRNA oligo chip arrays and compared in Austrian and Japanese middle-aged men. There were no ALDH2- and ADH1B-related miRNAs that had previously been reported in humans and that showed significantly different serum levels between Austrian and Japanese men. With the use of miRNA prediction tools, we identified four and five miRNAs that were predicted to target ALDH2 and ADH1B, respectively, and they had expression levels high enough for comparison. Among the ADH1B-related miRNAs, miR-150-3p, -3127-5p and -4314 were significantly higher and miR-3151-5p was significantly lower in Austrian compared with Japanese men, while no significant difference was found for miR-449b-3p. miR-150-3p and miR-4314 showed relatively high fold changes (1.5 or higher). The levels of ALDH2-related miRNAs (miR-30d-5p, -6127, -6130 and -6133) were not significantly different between the countries. miR-150-3p and miR-4314 are candidates of miRNAs that may be involved in the ethnic difference in sensitivity to alcohol through modifying the expression of ADH1B.
Collapse
|
8
|
Luo J, Hou Y, Ma W, Xie M, Jin Y, Xu L, Li C, Wang Y, Chen J, Chen W, Zheng Y, Yu D. A novel mechanism underlying alcohol dehydrogenase expression: hsa-miR-148a-3p promotes ADH4 expression via an AGO1-dependent manner in control and ethanol-exposed hepatic cells. Biochem Pharmacol 2021; 189:114458. [PMID: 33556337 DOI: 10.1016/j.bcp.2021.114458] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
The alcohol dehydrogenases (ADHs) and aldehyde dehydrogenases (ALDHs) play critical roles in alcoholism development and alcohol toxicology; however, few studies have focused on the miRNA-mediated mechanisms underlying the expressions of alcohol-metabolizing enzymes. In the present study, we showed the expression changes of each alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in the liver samples of alcoholic hepatitis (AH) patients, and predicted the miRNAs targeting the dysregulated alcohol-metabolizing genes by a systematic in silico analysis. 13 miRNAs were predicted to regulate the expressions of ADH1A, ADH4, and ALDH2, respectively, with hsa-miR-148a-3p (miR-148a) showing the most significant down-regulation in AH patients. Following experimental evidence using HepG2 cells proved that miR-148a promoted ADH4 expression by directly binding to the coding sequence of ADH4 and increasing the mRNA stability via an AGO1-dependent manner. Additional assays showed that secondary structure of ADH4 transcript affected the target accessibility and binding of miR-148a-3p. In sum, our results suggest that the expressions of key alcohol-metabolizing enzymes are repressed in AH patients, and the non-canonical positive regulation of miR-148a on ADH4 reveals a new regulationary mechanism for ADH genes.
Collapse
Affiliation(s)
- Jiao Luo
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yufei Hou
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Wanli Ma
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Mengyue Xie
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Lin Xu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Ying Wang
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Jing Chen
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Wendi Chen
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- Department of Toxicology, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
9
|
Gao W, Zhou X, Lin R. miR-378a-5p and miR-630 induce lens epithelial cell apoptosis in cataract via suppression of E2F3. ACTA ACUST UNITED AC 2020; 53:e9608. [PMID: 32348429 PMCID: PMC7197652 DOI: 10.1590/1414-431x20209608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 12/16/2022]
Abstract
Cataract, an eye disease that threatens the health of millions of people, brings about severe economic burden for patients and society. MicroRNA (miR)-378a-5p and miR-630 were recognized as essential regulators in multiple cancers. However, the exact functions of miR-378a-5p and miR-630 in cataract are still unclear. The expression of miR-378a-5p, miR-630, and E2F transcription factor 3 (E2F3) in tissues and cells was measured by quantitative real-time polymerase chain reaction. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay was used to evaluate cell viability. Flow cytometry was conducted to analyze cell apoptosis. The interaction between E2F3 and miR-378a-5p or miR-630 was confirmed by dual-luciferase reporter assay. The expression of proteins E2F3, B cell lymphoma (Bcl-2), Bcl-2 associated X (Bax), and cleaved caspase 3 was detected by western blot assay. The expression of miR-378a-5p and miR-630 was up-regulated whereas E2F3 was down-regulated in human cataract lens tissues compared with normal lens tissues. Depletion of miR-378a-5p or miR-630 enhanced proliferation and reduced apoptosis of human lens epithelial cells. Interestingly, up-regulation of E2F3 exhibited the same trend. Next, dual-luciferase reporter assay validated the interaction between E2F3 and miR-378a-5p or miR-630. The rescue experiments further revealed that E2F3 knockdown could recover miR-378a-5p, and miR-630 inhibitor induced promotion of cell proliferation and inhibition of apoptosis in cataract. miR-378a-5p and miR-630 repressed proliferation and induced apoptosis of lens epithelial cells by targeting E2F3 in cataract, representing a prospective alternative therapy for cataract.
Collapse
Affiliation(s)
- Weiwei Gao
- Department of Ophthalmology, People's Hospital of Zhaoyuan City, Zhaoyuan, Shandong, China
| | - Xiaoqing Zhou
- Department of Ophthalmology, Shanghai Changzheng Hospital, China Naval Medical University, Shanghai, China
| | - Ruihua Lin
- Department of Ophthalmology, People's Hospital of Zhaoyuan City, Zhaoyuan, Shandong, China
| |
Collapse
|
10
|
Fernández-Solà J. The Effects of Ethanol on the Heart: Alcoholic Cardiomyopathy. Nutrients 2020; 12:E572. [PMID: 32098364 PMCID: PMC7071520 DOI: 10.3390/nu12020572] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Alcoholic-dilated Cardiomyopathy (ACM) is the most prevalent form of ethanol-induced heart damage. Ethanol induces ACM in a dose-dependent manner, independently of nutrition, vitamin, or electrolyte disturbances. It has synergistic effects with other heart risk factors. ACM produces a progressive reduction in myocardial contractility and heart chamber dilatation, leading to heart failure episodes and arrhythmias. Pathologically, ethanol induces myocytolysis, apoptosis, and necrosis of myocytes, with repair mechanisms causing hypertrophy and interstitial fibrosis. Myocyte ethanol targets include changes in membrane composition, receptors, ion channels, intracellular [Ca2+] transients, and structural proteins, and disrupt sarcomere contractility. Cardiac remodeling tries to compensate for this damage, establishing a balance between aggression and defense mechanisms. The final process of ACM is the result of dosage and individual predisposition. The ACM prognosis depends on the degree of persistent ethanol intake. Abstinence is the preferred goal, although controlled drinking may still improve cardiac function. New strategies are addressed to decrease myocyte hypertrophy and interstitial fibrosis and try to improve myocyte regeneration, minimizing ethanol-related cardiac damage. Growth factors and cardiomyokines are relevant molecules that may modify this process. Cardiac transplantation is the final measure in end-stage ACM but is limited to those subjects able to achieve abstinence.
Collapse
Affiliation(s)
- Joaquim Fernández-Solà
- Alcohol Unit, Internal Medicine Department, Hospital Clínic, Institut de Recerca August Pi i Sunyer (IDIBAPS), University of Barcelona, 08007 Catalunya, Spain;
- Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
11
|
Calderon-Dominguez M, Belmonte T, Quezada-Feijoo M, Ramos-Sánchez M, Fernández-Armenta J, Pérez-Navarro A, Cesar S, Peña-Peña L, Vea À, Llorente-Cortés V, Mangas A, de Gonzalo-Calvo D, Toro R. Emerging role of microRNAs in dilated cardiomyopathy: evidence regarding etiology. Transl Res 2020; 215:86-101. [PMID: 31505160 DOI: 10.1016/j.trsl.2019.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 02/08/2023]
Abstract
Dilated cardiomyopathy (DCM) is a heart muscle disease characterized by ventricular dilation and systolic dysfunction in the absence of abnormal loading conditions or coronary artery disease. This cardiac disorder is a major health problem due to its high prevalence, morbidity, and mortality. DCM is a complex disease with a common phenotype but heterogeneous pathological mechanisms. Early etiological diagnosis and prognosis stratification is crucial for the clinical management of the patient. Advances in imaging technology and genetic tests have provided useful tools for clinical practice. Nevertheless, the assessment of the disease remains challenging. Novel noninvasive indicators are still needed to assist in decision-making. microRNAs (miRNAs), a group of small noncoding RNAs, have been identified as key mediators of cell biology. They are found in a stable form in body fluids and their concentration is altered in response to stress. Previous research has suggested that the miRNA signature constitutes a novel source of noninvasive biomarkers for a wide array of cardiovascular diseases. Specifically, several studies have reported the potential role of miRNAs as clinical indicators among the etiologies of DCM. However, this field has not been reviewed in detail. Here, we summarize the evidence of intracellular and circulating miRNAs in DCM and their usefulness in the development of novel diagnostic, prognostic and therapeutic approaches, with a focus on DCM etiology. Although the findings are still preliminary, due to methodological and technical limitations and the lack of robust population-based studies, miRNAs constitute a promising tool to assist in the clinical management of DCM.
Collapse
Affiliation(s)
- Maria Calderon-Dominguez
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Thalía Belmonte
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Maribel Quezada-Feijoo
- Department of Cardiology, Cruz Roja Central Hospital, Madrid, Spain; Alfonso X University (UAX), Madrid, Spain
| | - Monica Ramos-Sánchez
- Department of Cardiology, Cruz Roja Central Hospital, Madrid, Spain; Alfonso X University (UAX), Madrid, Spain
| | - Juan Fernández-Armenta
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain; Department of Cardiology, Puerta del Mar Universitary Hospital, Cádiz, Spain
| | - Amparo Pérez-Navarro
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Sergi Cesar
- Department of Pediatric Cardiology, Sant Joan de Déu Hospital, Barcelona, Spain
| | - Luisa Peña-Peña
- Department of Cardiology, Virgen del Rocio Universitary Hospital, Sevilla, Spain
| | - Àngela Vea
- Institute of Biomedical Research of Barcelona (IIBB) - Spanish National Research Council (CSIC), Barcelona, Spain
| | - Vicenta Llorente-Cortés
- Institute of Biomedical Research of Barcelona (IIBB) - Spanish National Research Council (CSIC), Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERCV, Institute of Health Carlos III, Madrid, Spain
| | - Alipio Mangas
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain; Department of Internal Medicine, Puerta del Mar Universitary Hospital, Cádiz, Spain; Department of Medicine, School of Medicine, University of Cádiz, Cádiz, Spain
| | - David de Gonzalo-Calvo
- Institute of Biomedical Research of Barcelona (IIBB) - Spanish National Research Council (CSIC), Barcelona, Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; CIBERCV, Institute of Health Carlos III, Madrid, Spain.
| | - Rocio Toro
- Research Unit, Biomedical Research and Innovation Institute of Cádiz (INiBICA), Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain; Department of Internal Medicine, Puerta del Mar Universitary Hospital, Cádiz, Spain; Department of Medicine, School of Medicine, University of Cádiz, Cádiz, Spain.
| |
Collapse
|
12
|
Liu S, Yang Y, Jiang S, Xu H, Tang N, Lobo A, Zhang R, Liu S, Yu T, Xin H. MiR-378a-5p Regulates Proliferation and Migration in Vascular Smooth Muscle Cell by Targeting CDK1. Front Genet 2019; 10:22. [PMID: 30838018 PMCID: PMC6389607 DOI: 10.3389/fgene.2019.00022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/15/2019] [Indexed: 12/14/2022] Open
Abstract
Objective: Abnormal proliferation or migration of vascular smooth muscle cells (VSMCs) can lead to vessel lesions, resulting in atherosclerosis and in stent-restenosis (IRS). The purpose of our study was to establish the role of miR-378a-5p and its targets in regulating VSMCs function and IRS. Methods: EdU assays and Cell Counting Kit-8 (CCK-8) assays were applied to evaluate VSMCs proliferation, wound healing assays and transwell assays were applied to assess cells migration. Furthermore, quantitative reverse transcription–polymerase chain reaction (qRT-PCR) was performed to investigate the expression level of miR-378a-5p IRS patients and healthy individuals. Target genes were predicted using Target Scan and miRanda software, and biological functions of candidate genes were explored through bioinformatics analysis. Moreover, RNA-binding protein immunoprecipitation (RIP) was carried out to analyze the miRNAs interactions with proteins. We also used Immunofluorescence (IF) and fluorescence microscopy to determine the binding properties, localization and expression of miR-378a-5p with downstream target CDK1. Results: The expression of miR-378a-5p was increased in the group with stent restenosis compared with healthy people, as well as in the group which VSMCs stimulated by platelet-derived growth factor-BB (PDGF-BB) compared with NCs. MiR-378a-5p over-expression had significantly promoted proliferative and migratory effects, while miR-378a-5p inhibitor suppressed VSMC proliferation and migration. CDK1 was proved to be the functional target of miR-378a-5p in VSMCs. Encouragingly, the expression of miR-378a-5p was increased in patients with stent restenosis compared with healthy people, as well as in PDGF-BB-stimulated VSMCs compared with control cells. Furthermore, co-transfection experiments demonstrated that miR-378a-5p over-expression promoted proliferation and migration of VSMCs specifically by reducing CDK1 gene expression levels. Conclusion: In this investigatory, we concluded that miR-378a-5p is a critical mediator in regulating VSMC proliferation and migration by targeting CDK1/p21 signaling pathway. Thereby, interventions aimed at miR-378a-5p may be of therapeutic application in the prevention and treatment of stent restenosis.
Collapse
Affiliation(s)
- Shaoyan Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanyan Yang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Shaoyan Jiang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Xu
- Department of Orthodontic, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ningning Tang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Amara Lobo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Rui Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Song Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Yu
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Liu Y, Yu B. MicroRNA‑186‑5p is expressed highly in ethanol‑induced cardiomyocytes and regulates apoptosis via the target gene XIAP. Mol Med Rep 2019; 19:3179-3189. [PMID: 30816481 PMCID: PMC6423630 DOI: 10.3892/mmr.2019.9953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 02/11/2019] [Indexed: 12/16/2022] Open
Abstract
Ethanol has a toxic effect on the heart, resulting in cardiomyocyte damage. Long-term high intake of ethanol leads to a non-ischemic dilated cardiomyopathy termed alcoholic cardiomyopathy (ACM). However, the pathogenesis of alcoholic cardiomyopathy remains unclear. The apoptosis of cardiomyocytes serves an important role in the pathogenesis of ACM. X-linked inhibitor of apoptosis protein (XIAP) is an important anti-apoptotic protein in human tissue cells. To the best of our knowledge, no studies have reported on its function in ethanol-induced cardiomyopathy. Previous works have screened the ACM-associated differentially expressed microRNAs (miRs), including miR-186-5p and miR-488-3p. TargetScan bioinformatics software was used to predict 949 target genes associated with miR-186-5p, and XIAP was demonstrated to be a target of miR-186-5p. The present study firstly analyzed the levels of apoptosis in ethanol-treated cardiomyocytes using flow cytometry. Alterations in the expression levels of miR-186-5p and XIAP were subsequently evaluated in ethanol-treated AC16 cardiomyocytes to assess the specific molecular mechanisms of ethanol-induced cardiomyocyte apoptosis. The levels of apoptosis in AC16 cardiomyocytes increased following ethanol treatment, and further increased with the rise in concentration and action time of ethanol. The expression levels of miR-186-5p were upregulated, and the expression levels of XIAP were downregulated in ethanol-treated cardiomyocytes. miR-186-5p may regulate ethanol-induced apoptosis in cardiomyocytes using XIAP as the direct target gene. This study provides a novel therapeutic target for the prevention and treatment of ACM.
Collapse
Affiliation(s)
- Ye Liu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Bo Yu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
14
|
Kulagina TP, Gritsyna YV, Aripovsky AV, Zhalimov VK, Vikhlyantsev IM. Fatty Acid Levels in Striated Muscles of Chronic Alcohol-Fed Rats. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918050135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
15
|
Wang S, Ren J. Role of autophagy and regulatory mechanisms in alcoholic cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2003-2009. [PMID: 29555210 DOI: 10.1016/j.bbadis.2018.03.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/11/2018] [Accepted: 03/14/2018] [Indexed: 12/11/2022]
Abstract
Alcoholism is accompanied with a high incidence of cardiac morbidity and mortality due to the development of alcoholic cardiomyopathy, manifested as dilation of one or both ventricles, reduced ventricular wall thickness, myofibrillary disarray, interstitial fibrosis, hypertrophy and contractile dysfunction. Several theories have been postulated for the etiology of alcoholic cardiomyopathy including ethanol/acetaldehyde toxicity, mitochondrial production of reactive oxygen species, oxidative injury, apoptosis, impaired myofilament Ca2+ sensitivity and protein synthesis, altered fatty acid extraction and deposition, as well as accelerated protein catabolism. In particular, buildup of long-lived or dysfunctional organelles has been reported to contribute to cardiac structural and functional damage following alcoholism. Removal of cell debris and defective organelles by autophagy is essential to the maintenance of cardiac homeostasis in physiological and pathological conditions. However, insufficient understanding is currently available with regards to the involvement of autophagy in the pathogenesis of alcoholic cardiomyopathy. This review summarizes the recent findings on the pathophysiological role of dysregulated autophagy in one set and development of alcoholic cardiomyopathy. A thorough understanding of how autophagy is affected in alcoholism, and subsequently, contributes to the pathogenesis of alcoholic heart injury, will offer therapeutic guidance towards the management of alcoholic cardiomyopathy.
Collapse
Affiliation(s)
- Shuyi Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Center for Cardiovascular Research and Alternative Medicine, Biomedical Science Graduate Program, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Center for Cardiovascular Research and Alternative Medicine, Biomedical Science Graduate Program, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA.
| |
Collapse
|
16
|
Steiner JL, Lang CH. Etiology of alcoholic cardiomyopathy: Mitochondria, oxidative stress and apoptosis. Int J Biochem Cell Biol 2017; 89:125-135. [PMID: 28606389 DOI: 10.1016/j.biocel.2017.06.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 12/16/2022]
Abstract
Putative mechanisms leading to the development of alcoholic cardiomyopathy (ACM) include the interrelated cellular processes of mitochondria metabolism, oxidative stress and apoptosis. As mitochondria fuel the constant energy demands of this continually contracting tissue, it is not surprising that alcohol-induced molecular changes in this organelle contribute to cardiac dysfunction and ACM. As the causal relationship of these processes with ACM has already been established, the primary objective of this review is to provide an update of the experimental findings to more completely understand the aforementioned mechanisms. Accordingly, recent data indicate that alcohol impairs mitochondria function assessed by membrane potential and respiratory chain activity. Indictors of oxidative stress including superoxide dismutase, glutathione metabolites and malondialdehyde are also adversely affected by alcohol oftentimes in a sex-dependent manner. Additionally, myocardial apoptosis is increased based on assessment of TUNEL staining and caspase activity. Recent work has also emerged linking alcohol-induced oxidative stress with apoptosis providing new insight on the codependence of these interrelated mechanisms in ACM. Attention is also given to methodological differences including the dose of alcohol, experimental model system and the use of males versus females to highlight inconsistencies and areas that would benefit from establishment of a consistent model.
Collapse
Affiliation(s)
- Jennifer L Steiner
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, United States.
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA 17033, United States.
| |
Collapse
|