1
|
Duarte FCK, Funabashi M, Starmer D, Partata WA. Preliminary insights into the effects of spinal manipulation therapy of different force magnitudes on blood biomarkers of oxidative stress and pro-resolution of inflammation mediators. Chiropr Man Therap 2025; 33:8. [PMID: 39966844 PMCID: PMC11837322 DOI: 10.1186/s12998-025-00575-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Evidence has been reported that spinal manipulation therapy (SMT) leads to spine segmental hypoalgesia through neurophysiological and peripheral mechanisms related to regulating inflammatory biomarker function. However, these studies also showed substantial inter-individual variability in the biomarker responses. Such variability may be due to the incomplete understanding of the fundamental effects of force-based manipulations (e.g., patient-specific force-time characteristics) on a person's physiology in health and disease. This study investigated the short-term effects of distinct SMT force-time characteristics on blood oxidative stress and pro-resolution of inflammation biomarkers. METHODS Nineteen healthy adults between 18 and 45 years old were recruited between February and March 2020 before the COVID-19 pandemic and clustered into three groups: control (preload only), target total peak force of 400 N, and 800 N. A validated force-sensing table technology (FSTT®) determined the SMT force-time characteristics. Blood samples were collected at pre-intervention, immediately after SMT, and 20 min post-intervention. Parameters of the oxidant system (total oxidant status, lipid peroxidation and lipid hydroperoxide), the antioxidant system (total antioxidant capacity and bilirubin), and lipid-derived resolvin D1 were evaluated in plasma and erythrocytes through enzyme-linked immunosorbent assay and colorimetric assays. RESULTS The COVID-19 global pandemic impacted recruitment, and our pre-established target sample size could not be reached. As a result, there was a small sample size, which decreased the robustness of the statistical analysis. Despite the limitations, we observed that 400 N seemed to decrease systemic total oxidant status and lipid peroxidation biomarkers. However, 800 N appeared to transitorily increase these pro-oxidant parameters with a further transitory reduction in plasma total antioxidant capacity and resolvin D1 mediator. CONCLUSION Despite the small sample size, which elevates the risk of type II error (false negatives), and the interruption of recruitment caused by the pandemic, our findings appeared to indicate that different single SMT force-time characteristics presented contrasting effects on the systemic redox signalling biomarkers and pro-resolution of inflammation mediators in healthy participants. The findings need to be confirmed by further research; however, they provide baseline information and guidance for future studies in a clinical population.
Collapse
Affiliation(s)
- Felipe C K Duarte
- School of Health, Medical and Applied Sciences, CQUniversity, Brisbane, QLD, Australia.
- Division of Research and Innovation, Canadian Memorial Chiropractic College, Toronto, ON, Canada.
| | - Martha Funabashi
- Division of Research and Innovation, Canadian Memorial Chiropractic College, Toronto, ON, Canada
| | - David Starmer
- Division of Research and Innovation, Canadian Memorial Chiropractic College, Toronto, ON, Canada
| | - Wania A Partata
- Department of Physiology, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Markitantova Y, Simirskii V. Retinal Pigment Epithelium Under Oxidative Stress: Chaperoning Autophagy and Beyond. Int J Mol Sci 2025; 26:1193. [PMID: 39940964 PMCID: PMC11818496 DOI: 10.3390/ijms26031193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
The structural and functional integrity of the retinal pigment epithelium (RPE) plays a key role in the normal functioning of the visual system. RPE cells are characterized by an efficient system of photoreceptor outer segment phagocytosis, high metabolic activity, and risk of oxidative damage. RPE dysfunction is a common pathological feature in various retinal diseases. Dysregulation of RPE cell proteostasis and redox homeostasis is accompanied by increased reactive oxygen species generation during the impairment of phagocytosis, lysosomal and mitochondrial failure, and an accumulation of waste lipidic and protein aggregates. They are the inducers of RPE dysfunction and can trigger specific pathways of cell death. Autophagy serves as important mechanism in the endogenous defense system, controlling RPE homeostasis and survival under normal conditions and cellular responses under stress conditions through the degradation of intracellular components. Impairment of the autophagy process itself can result in cell death. In this review, we summarize the classical types of oxidative stress-induced autophagy in the RPE with an emphasis on autophagy mediated by molecular chaperones. Heat shock proteins, which represent hubs connecting the life supporting pathways of RPE cells, play a special role in these mechanisms. Regulation of oxidative stress-counteracting autophagy is an essential strategy for protecting the RPE against pathological damage when preventing retinal degenerative disease progression.
Collapse
Affiliation(s)
- Yuliya Markitantova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia;
| | | |
Collapse
|
3
|
Jiménez-Jiménez FJ, Alonso-Navarro H, Salgado-Cámara P, García-Martín E, Agúndez JAG. Oxidative Stress Markers in Multiple Sclerosis. Int J Mol Sci 2024; 25:6289. [PMID: 38927996 PMCID: PMC11203935 DOI: 10.3390/ijms25126289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/10/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
The pathogenesis of multiple sclerosis (MS) is not completely understood, but genetic factors, autoimmunity, inflammation, demyelination, and neurodegeneration seem to play a significant role. Data from analyses of central nervous system autopsy material from patients diagnosed with multiple sclerosis, as well as from studies in the main experimental model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), suggest the possibility of a role of oxidative stress as well. In this narrative review, we summarize the main data from studies reported on oxidative stress markers in patients diagnosed with MS and in experimental models of MS (mainly EAE), and case-control association studies on the possible association of candidate genes related to oxidative stress with risk for MS. Most studies have shown an increase in markers of oxidative stress, a decrease in antioxidant substances, or both, with cerebrospinal fluid and serum/plasma malonyl-dialdehyde being the most reliable markers. This topic requires further prospective, multicenter studies with a long-term follow-up period involving a large number of patients with MS and controls.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Paula Salgado-Cámara
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E-10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E-10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
4
|
Tian H, Huang D, Wang J, Li H, Gao J, Zhong Y, Xia L, Zhang A, Lin Z, Ke X. The role of the "gut microbiota-mitochondria" crosstalk in the pathogenesis of multiple sclerosis. Front Microbiol 2024; 15:1404995. [PMID: 38741740 PMCID: PMC11089144 DOI: 10.3389/fmicb.2024.1404995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Multiple Sclerosis (MS) is a neurologic autoimmune disease whose exact pathophysiologic mechanisms remain to be elucidated. Recent studies have shown that the onset and progression of MS are associated with dysbiosis of the gut microbiota. Similarly, a large body of evidence suggests that mitochondrial dysfunction may also have a significant impact on the development of MS. Endosymbiotic theory has found that human mitochondria are microbial in origin and share similar biological characteristics with the gut microbiota. Therefore, gut microbiota and mitochondrial function crosstalk are relevant in the development of MS. However, the relationship between gut microbiota and mitochondrial function in the development of MS is not fully understood. Therefore, by synthesizing previous relevant literature, this paper focuses on the changes in gut microbiota and metabolite composition in the development of MS and the possible mechanisms of the crosstalk between gut microbiota and mitochondrial function in the progression of MS, to provide new therapeutic approaches for the prevention or reduction of MS based on this crosstalk.
Collapse
Affiliation(s)
- Huan Tian
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dunbing Huang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaqi Wang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huaqiang Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaxin Gao
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Zhong
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Libin Xia
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhonghua Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Rehabilitation Medicine Center, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincia Hospital, Fuzhou, China
| | - Xiaohua Ke
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Bustamante-Barrientos FA, Luque-Campos N, Araya MJ, Lara-Barba E, de Solminihac J, Pradenas C, Molina L, Herrera-Luna Y, Utreras-Mendoza Y, Elizondo-Vega R, Vega-Letter AM, Luz-Crawford P. Mitochondrial dysfunction in neurodegenerative disorders: Potential therapeutic application of mitochondrial transfer to central nervous system-residing cells. J Transl Med 2023; 21:613. [PMID: 37689642 PMCID: PMC10493034 DOI: 10.1186/s12967-023-04493-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
Mitochondrial dysfunction is reiteratively involved in the pathogenesis of diverse neurodegenerative diseases. Current in vitro and in vivo approaches support that mitochondrial dysfunction is branded by several molecular and cellular defects, whose impact at different levels including the calcium and iron homeostasis, energetic balance and/or oxidative stress, makes it difficult to resolve them collectively given their multifactorial nature. Mitochondrial transfer offers an overall solution since it contains the replacement of damage mitochondria by healthy units. Therefore, this review provides an introducing view on the structure and energy-related functions of mitochondria as well as their dynamics. In turn, we summarize current knowledge on how these features are deregulated in different neurodegenerative diseases, including frontotemporal dementia, multiple sclerosis, amyotrophic lateral sclerosis, Friedreich ataxia, Alzheimer´s disease, Parkinson´s disease, and Huntington's disease. Finally, we analyzed current advances in mitochondrial transfer between diverse cell types that actively participate in neurodegenerative processes, and how they might be projected toward developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Felipe A Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| | - Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - María Jesús Araya
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Eliana Lara-Barba
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Javiera de Solminihac
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
| | - Carolina Pradenas
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Luis Molina
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Yeimi Herrera-Luna
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | | | - Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ana María Vega-Letter
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaiso, Valparaiso, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| |
Collapse
|
6
|
Luque-Campos N, Riquelme R, Molina L, Canedo-Marroquín G, Vega-Letter AM, Luz-Crawford P, Bustamante-Barrientos FA. Exploring the therapeutic potential of the mitochondrial transfer-associated enzymatic machinery in brain degeneration. Front Physiol 2023; 14:1217815. [PMID: 37576343 PMCID: PMC10416799 DOI: 10.3389/fphys.2023.1217815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Mitochondrial dysfunction is a central event in the pathogenesis of several degenerative brain disorders. It entails fission and fusion dynamics disruption, progressive decline in mitochondrial clearance, and uncontrolled oxidative stress. Many therapeutic strategies have been formulated to reverse these alterations, including replacing damaged mitochondria with healthy ones. Spontaneous mitochondrial transfer is a naturally occurring process with different biological functions. It comprises mitochondrial donation from one cell to another, carried out through different pathways, such as the formation and stabilization of tunneling nanotubules and Gap junctions and the release of extracellular vesicles with mitochondrial cargoes. Even though many aspects of regulating these mechanisms still need to be discovered, some key enzymatic regulators have been identified. This review summarizes the current knowledge on mitochondrial dysfunction in different neurodegenerative disorders. Besides, we analyzed the usage of mitochondrial transfer as an endogenous revitalization tool, emphasizing the enzyme regulators that govern this mechanism. Going deeper into this matter would be helpful to take advantage of the therapeutic potential of mitochondrial transfer.
Collapse
Affiliation(s)
- Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- IMPACT-Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Ricardo Riquelme
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Luis Molina
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Gisela Canedo-Marroquín
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
| | - Ana María Vega-Letter
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaiso, Valparaiso, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- IMPACT-Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Felipe A. Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- IMPACT-Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| |
Collapse
|
7
|
Abstract
Cellular redox homeostasis is precisely balanced by generation and elimination of reactive oxygen species (ROS). ROS are not only capable of causing oxidation of proteins, lipids and DNA to damage cells but can also act as signaling molecules to modulate transcription factors and epigenetic pathways that determine cell survival and death. Hsp70 proteins are central hubs for proteostasis and are important factors to ameliorate damage from different kinds of stress including oxidative stress. Hsp70 members often participate in different cellular signaling pathways via their clients and cochaperones. ROS can directly cause oxidative cysteine modifications of Hsp70 members to alter their structure and chaperone activity, resulting in changes in the interactions between Hsp70 and their clients or cochaperones, which can then transfer redox signals to Hsp70-related signaling pathways. On the other hand, ROS also activate some redox-related signaling pathways to indirectly modulate Hsp70 activity and expression. Post-translational modifications including phosphorylation together with elevated Hsp70 expression can expand the capacity of Hsp70 to deal with ROS-damaged proteins and support antioxidant enzymes. Knowledge about the response and role of Hsp70 in redox homeostasis will facilitate our understanding of the cellular knock-on effects of inhibitors targeting Hsp70 and the mechanisms of redox-related diseases and aging.
Collapse
|
8
|
Ferguson C, Pini N, Du X, Farina M, Hwang JMC, Pietrangelo T, Cheng X. Broadband electrical impedance as a novel characterization of oxidative stress in single L6 skeletal muscle cells. Anal Chim Acta 2021; 1173:338678. [PMID: 34172152 DOI: 10.1016/j.aca.2021.338678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 11/19/2022]
Abstract
Oxidative stress (OS) is one of the leading causes of cytotoxicity and is linked to many human physio-pathological conditions. In particular, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) induced by OS is debilitating to quality of life, while no clear biological markers have been identified for diagnostic measures. Recently, impedance measurements of peripheral blood cells of ME/CFS patients have been shown as a promising approach to diagnose the disease. Inspired by this study and aiming to interrogate muscle cells directly, we investigated if broadband measurements of single muscle cells could differentiate normal and oxidatively stressed cell populations. We first optimized a protocol through H2O2 treatment to introduce oxidative stress to cultured rat L6 skeletal muscle cells. The treated cells were further characterized through broadband impedance spectroscopy of single cells using a microfluidic lab-on-a-chip system. The resulting dielectric properties of cytoplasm permittivity and conductivity are electrically distinct from normally cultured cells. The reflection and transmission coefficients, ΔS11 and ΔS21, of the normal cells are tightly clustered and closely resemble those of the cell-free solution across the frequency range of 9 kHz to 9 GHz. On the other hand, dielectric properties of the oxidized cells have a wide distribution in the GHz range, deviating both in the positive and negative directions from the normally cultured cells. Simulation results guide our hypothesis that the dielectric differences could be linked to ion alterations, while calcium imaging directly supports the contribution of calcium flux to the observed deviation of S parameters. The unique electrical profile associated with oxidized cells in the GHz frequencies provide a framework for future development of technologies to diagnose oxidative-stress related diseases such as ME/CFS.
Collapse
Affiliation(s)
| | - Niccolo Pini
- Department of Neuroscience, Imaging, and Clinical Science, University G. D'Annuzio, Chieti-Pescara, Italy
| | - Xiaotian Du
- Department of Electrical Engineering, Lehigh University, Bethlehem, PA, USA
| | - Marco Farina
- Department of Engineering of Information, University Politecnica delle Marche, Marche, Italy
| | - James M C Hwang
- Department of Electrical Engineering, Lehigh University, Bethlehem, PA, USA
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging, and Clinical Science, University G. D'Annuzio, Chieti-Pescara, Italy
| | - Xuanhong Cheng
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA; Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA, USA.
| |
Collapse
|
9
|
Heat Shock Proteins in Oxidative Stress and Ischemia/Reperfusion Injury and Benefits from Physical Exercises: A Review to the Current Knowledge. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6678457. [PMID: 33603951 PMCID: PMC7868165 DOI: 10.1155/2021/6678457] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
Heat shock proteins (HSPs) are molecular chaperones produced in response to oxidative stress (OS). These proteins are involved in the folding of newly synthesized proteins and refolding of damaged or misfolded proteins. Recent studies have been focused on the regulatory role of HSPs in OS and ischemia/reperfusion injury (I/R) where reactive oxygen species (ROS) play a major role. ROS perform many functions, including cell signaling. Unfortunately, they are also the cause of pathological processes leading to various diseases. Biological pathways such as p38 MAPK, HSP70 and Akt/GSK-3β/eNOS, HSP70, JAK2/STAT3 or PI3K/Akt/HSP70, and HSF1/Nrf2-Keap1 are considered in the relationship between HSP and OS. New pathophysiological mechanisms involving ROS are being discovered and described the protein network of HSP interactions. Understanding of the mechanisms involved, e.g., in I/R, is important to the development of treatment methods. HSPs are multifunctional proteins because they closely interact with the antioxidant and the nitric oxide generation systems, such as HSP70/HSP90/NOS. A deficiency or excess of antioxidants modulates the activation of HSF and subsequent HSP biosynthesis. It is well known that HSPs are involved in the regulation of several redox processes and play an important role in protein-protein interactions. The latest research focuses on determining the role of HSPs in OS, their antioxidant activity, and the possibility of using HSPs in the treatment of I/R consequences. Physical exercises are important in patients with cardiovascular diseases, as they affect the expression of HSPs and the development of OS.
Collapse
|
10
|
Ma F, Luo L. Genome-wide identification of Hsp70/110 genes in rainbow trout and their regulated expression in response to heat stress. PeerJ 2020; 8:e10022. [PMID: 33150058 PMCID: PMC7587057 DOI: 10.7717/peerj.10022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
Heat shock proteins (Hsps) play an important role in many biological processes. However, as a typical cold water fish, the systematic identification of Hsp70/110 gene family of rainbow trout (Oncorhynchus mykiss) has not been reported, and the role of Hsp70/110 gene in the evolution of rainbow trout has not been described systematically. In this study, bioinformatics methods were used to analyze the Hsp70/110 gene family of rainbow trout. A total of 16 hsp70/110 genes were identified and classified into ten subgroups. The 16 Hsp70/110 genes were all distributed on chromosomes 2, 4, 8 and 13. The molecular weight is ranged from 78.93 to 91.39 kD. Gene structure and motif composition are relatively conserved in each subgroup. According to RNA-seq analysis of rainbow trout liver and head kidney, a total of four out of 16 genes were significantly upregulated in liver under heat stress, and a total of seven out of 16 genes were significantly upregulated in head kidney. RT-qPCR was carried out on these gene, and the result were consistent with those of RNA-seq. The significantly regulated expressions of Hsp70/110 genes under heat stress indicats that Hsp70/110 genes are involved in heat stress response in rainbow trout. This systematic analysis provided valuable information about the diverse roles of Hsp70/110 in the evolution of teleost, which will contribute to the functional characterization of Hsp70/110 genes in further research.
Collapse
Affiliation(s)
- Fang Ma
- College of Biological Engineering and Technology, Tianshui Normal University, Tianshui, Qinzhou District, China
| | - Lintong Luo
- College of Biological Engineering and Technology, Tianshui Normal University, Tianshui, Qinzhou District, China
| |
Collapse
|