1
|
Li W, Yang G, Fan Y, Yan X, Li Z, Guo Y, Wang Q, Li X, Gu W, Ning M, Zhou J, Meng Q. Eriocheir sinensis CD63 activate mitochondria-mediated apoptosis to resist Spiroplasma eriocheiris infection. FISH & SHELLFISH IMMUNOLOGY 2025; 161:110227. [PMID: 39993485 DOI: 10.1016/j.fsi.2025.110227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/29/2024] [Accepted: 02/22/2025] [Indexed: 02/26/2025]
Abstract
CD63, a member of the tetraspanins, is involved in cell movement, adhesion, immune response. Nevertheless, the role of CD63 in combating pathogen infections in invertebrates remains largely unclear. Tremor disease, whose pathogen is Spiroplasma eriocheiris, is one of the most prevalent illnesses affecting Eriocheir sinensis. EsCD63 is 1474 bp, with a 756 bp open reading frame that encodes for 252 amino acids. The qPCR data demonstrated that gills showed significant levels of transcription for EsCD63, followed by hemocytes, hepatopancreas, intestines and nerves, while showing low levels of transcription in the heart and muscles. After infection with S. eriocheiris, an obvious drop in the transcription level of EsCD63 was observed. Both the amount of S. eriocheiris copies in hemocytes and the mortality of E. sinensis significantly increased after the injection of chemically synthesized EsCD63 siRNA and stimulation with S. eriocheiris. After EsCD63 interference, the phagocytosis of hemocytes to S. eriocheiris, the apoptosis of hemocytes, and reactive oxygen species level of hemocytes were all decreased significantly, by laser scanning confocal microscopy and flow cytometry analysis. Meanwhile, the mitochondrial membrane potential of hemocytes was increased after EsCD63 interference. These findings indicated that EsCD63 was crucial for E. sinensis immunity and defense mechanisms against infection of S. eriocheiris.
Collapse
Affiliation(s)
- Wenbo Li
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Guanzheng Yang
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Yangzhi Fan
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Xinru Yan
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Zhuoqing Li
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China
| | - Ying Guo
- Nanjing Institute of Fisheries Science, 183 Hanzhongmen Street, Nanjing, 210036, China
| | - Qing Wang
- Nanjing Institute of Fisheries Science, 183 Hanzhongmen Street, Nanjing, 210036, China
| | - Xuguang Li
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China
| | - Mingxiao Ning
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Jun Zhou
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China
| |
Collapse
|
2
|
Bailly C, Thuru X. Targeting of Tetraspanin CD81 with Monoclonal Antibodies and Small Molecules to Combat Cancers and Viral Diseases. Cancers (Basel) 2023; 15:cancers15072186. [PMID: 37046846 PMCID: PMC10093296 DOI: 10.3390/cancers15072186] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Tetraspanin CD81 plays major roles in cell-cell interactions and the regulation of cellular trafficking. This cholesterol-embarking transmembrane protein is a co-receptor for several viruses, including HCV, HIV-1 and Chikungunya virus, which exploits the large extracellular loop EC2 for cell entry. CD81 is also an anticancer target implicated in cancer cell proliferation and mobility, and in tumor metastasis. CD81 signaling contributes to the development of solid tumors (notably colorectal, liver and gastric cancers) and has been implicated in the aggressivity of B-cell lymphomas. A variety of protein partners can interact with CD81, either to regulate attachment and uptake of viruses (HCV E2, claudin-1, IFIM1) or to contribute to tumor growth and dissemination (CD19, CD44, EWI-2). CD81-protein interactions can be modulated with molecules targeting the extracellular domain of CD81, investigated as antiviral and/or anticancer agents. Several monoclonal antibodies anti-CD81 have been developed, notably mAb 5A6 active against invasion and metastasis of triple-negative breast cancer cells. CD81-EC2 can also be targeted with natural products (trachelogenin and harzianoic acids A-B) and synthetic compounds (such as benzothiazole-quinoline derivatives). They are weak CD81 binders but offer templates for the design of new compounds targeting the open EC2 loop. There is no anti-CD81 compound in clinical development at present, but this structurally well-characterized tetraspanin warrants more substantial considerations as a drug target.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, F-59290 Lille, France
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France
- CNRS, Inserm, CHU Lille, UMR9020-U1277-Canther-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France
| | - Xavier Thuru
- CNRS, Inserm, CHU Lille, UMR9020-U1277-Canther-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France
| |
Collapse
|
3
|
AlMalki WH, Shahid I, Abdalla AN, Johargy AK, Ahmed M, Hassan S. Virological surveillance, molecular phylogeny, and evolutionary dynamics of hepatitis C virus subtypes 1a and 4a isolates in patients from Saudi Arabia. Saudi J Biol Sci 2021; 28:1664-1677. [PMID: 33732052 PMCID: PMC7938134 DOI: 10.1016/j.sjbs.2020.11.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 11/29/2022] Open
Abstract
Hepatitis C virus (HCV) subtypes are pre-requisite to predict endemicity, epidemiology, clinical pathogenesis, diagnosis, and treatment of chronic hepatitis C infection. HCV genotypes 4 and 1 are the most prevalent in Saudi Arabia, however; less consensus data exist on circulating HCV subtypes in infected individuals. This study was aimed to demonstrate the virological surveillance, phylogenetic analysis, and evolutionary relationship of HCV genotypes 4 and 1 subtypes in the Saudi population with the rest of the world. Fifty-five clinical specimens from different parts of the country were analyzed based on 5′ untranslated region (5′ UTR) amplification, direct sequencing, and for molecular evolutionary genetic analysis. Pair-wise comparison and multiple sequence alignment were performed to determine the nucleotide conservation, nucleotide variation, and positional mutations within the sequenced isolates. The evolutionary relationship of sequenced HCV isolates with referenced HCV strains from the rest of the world was established by computing pairwise genetic distances and generating phylogenetic trees. Twelve new sequences were submitted to GenBank, NCBI database. The results revealed that HCV subtype 4a is more prevalent preceded by 1a in the Saudi population. Molecular phylogeny predicts the descendants’ relationship of subtype 4a isolates very close to Egyptian prototype HCV strains, while 1a isolates were homogeneous and clustering to the European and North American genetic lineages. The implications of this study highlight the importance of HCV subtyping as an indispensable tool to monitor the distribution of viral strains, to determine the risk factors of infection prevalence, and to investigate clinical differences of treatment outcomes among intergenotypic and intragenotypic isolates in the treated population.
Collapse
Affiliation(s)
- Waleed H AlMalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm-Al-Qura University, Al-abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Imran Shahid
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm-Al-Qura University, Al-abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Medicine, Umm-Al-Qura University, Al-abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm-Al-Qura University, Al-abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Ayman K Johargy
- Medical Microbiology Department, Faculty of Medicine, Umm-Al-Qura University, Al-abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Muhammad Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm-Al-Qura University, Al-abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Sajida Hassan
- Viral Hepatitis Program, Laboratory of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Balakrishnan KN, Abdullah AA, Bala JA, Jesse FFA, Abdullah CAC, Noordin MM, Mohd-Azmi ML. Immediately early 2 (IE-2) and DNA polymerase SiRNA as virus-specific antiviral against novel transplacental cytomegalovirus strain ALL-03 in vitro. INFECTION GENETICS AND EVOLUTION 2021; 90:104783. [PMID: 33640483 DOI: 10.1016/j.meegid.2021.104783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/06/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE This study investigated the suitability of siRNA targeting specific genes that cause inhibition of virus replication in vitro especially for the virus that capable of crossing placenta and we employed a novel transplacental rat cytomegalovirus that mimics infection in human. METHODS Six unique siRNAs with three each targeting different regions of IE2 (ie2a, ie2b and ie2c) and DNA polymerase (dpa, dpb and dpc) were prepared and tested for antiviral activities. The efficacy as an antiviral was determined in in-vitro by measuring TCID50 virus titer, severity of virus-induced cytopathic effect (CPE), intracellular viral genome loads by droplet digital PCR, the degree of apoptosis in siRNA-treated cells and relative expression of viral mRNA in infected Rat Embryo Fibroblast (REF) cells. FINDINGS Remarkably, the siRNAs: dpa, dpb and IE2b, significantly reduced virus yield (approximately >90%) compared to control group at day 18 post infection (p.i). Changes in CPE indicated that DNA polymerase siRNAs were capable of protecting cells against CMV infection at day 14 p.i with higher efficiency than GCV (at the concentration of 300 pmol). Gene expression analysis revealed a marked down regulation of the targeted DNA polymerase gene (73.9%, 96.0% and 90.7% for dpa, dpb and dpc siRNA, respectively) and IE2 gene (50.8%, 49.9% and 15.8% for ie2a, ie2b and ie2c siRNA, respectively) when measured by RT-qPCR. Intracellular viral DNA loads showed a significant reduction for all the DNA polymerase siRNAs (dpa: 96%, dpb: 98% and dpc:92) compared to control group (P < 0.05). CONCLUSION In conclusion, this study clearly highlighted the feasibility of RNAi as an alternative antiviral therapy that could lead to controlling the CMV infection.
Collapse
Affiliation(s)
- Krishnan Nair Balakrishnan
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, Selangor, Malaysia.
| | - Ashwaq Ahmed Abdullah
- Department of Microbiology, Faculty of Applied Science, Taiz University, Taiz, Yemen
| | - Jamilu Abubakar Bala
- Microbiology Unit, Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University Kano, Nigeria
| | - Faez Firdaus Abdullah Jesse
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | | | - Mustapha Mohamed Noordin
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, Selangor, Malaysia
| | - Mohd Lila Mohd-Azmi
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, University Putra Malaysia, Selangor, Malaysia.
| |
Collapse
|
5
|
AlMalki WH, Shahid I, Abdalla AN, Johargy AK, Ahmed M, Hassan S. Consensus small interfering RNA targeted to stem-loops II and III of IRES structure of 5' UTR effectively inhibits virus replication and translation of HCV sub-genotype 4a isolates from Saudi Arabia. Saudi J Biol Sci 2021; 28:1109-1122. [PMID: 33424405 PMCID: PMC7785429 DOI: 10.1016/j.sjbs.2020.11.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022] Open
Abstract
Being the most conserved region of all hepatitis C virus (HCV) genotypes and sub-genotypes, the 5′ untranslated region (5′ UTR) of HCV genome signifies it’s importance as a potential target for anti-mRNA based treatment strategies like RNA interference. The advent and approval of first small interference RNA (siRNA) -based treatment of hereditary transthyretin-mediated amyloidosis for clinical use has raised the hopes to test this approach against highly susceptible viruses like HCV. We investigated the antiviral potential of consensus siRNAs targeted to stem-loops (SLs) II and III nucleotide motifs of internal ribosome entry site (IRES) structure within 5′ UTR of HCV sub-genotype 4a isolates from the Saudi population. siRNA inhibitory effects on viral replication and translation of full-length HCV genome were determined in a competent, persistent, and reproducible Huh-7 cell culture system maintained for one month. Maximal inhibition of RNA transcript levels of HCV-IRES clones and silencing of viral replication and translation of full-length virus genome was demonstrated by siRNAs targeted to SL-III nucleotide motifs of IRES in Huh-7 cells. siRNA Usi-169 decreased 5′ UTR RNA transcript levels of HCV-IRES clones up to 75% (P < 0.001) at 24 h post-transfection and 80% (P < 0.001) at 48 h treatment in Huh-7 cells. 5′ UTR-tagged GFP protein expression was significantly decreased from 70 to 80% in Huh-7 cells co-transfected with constructed vectors (i.e. pCR3.1/GFP/5′ UTR) and siRNA Usi-169 at 24 h and 48 h time-span. Viral replication was inhibited by more than 90% (P < 0.001) and HCV core (C) and hypervariable envelope glycoproteins (E1 and E2) expression was also significantly degraded by intracytoplasmic siRNA Usi-169 activity in persistent Huh-7 cell culture system. The findings unveil that siRNAs targeted to 5′ UTR-IRES of HCV sub-genotype 4a Saudi isolates show potent silencing of HCV replication and blocking of viral translation in a persistent in-vitro Huh-7 tissue culture system. Furthermore, we also elucidated that siRNA silencing of viral mRNA not only inhibits viral replication but also blocks viral translation. The results suggest that siRNA potent antiviral activity should be considered as an effective anti-mRNA based treatment strategies for further in-vivo investigations against less studied and harder-to-treat HCV sub-genotype 4a isolates in Saudi Arabia.
Collapse
Affiliation(s)
- Waleed H AlMalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Al-Abidiyah, P.O. Box 13578, Postal Code 21955, Saudi Arabia
| | - Imran Shahid
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Al-Abidiyah, P.O. Box 13578, Postal Code 21955, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-abidiyah, P.O. Box 13578, Makkah Postal Code 21955, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Al-Abidiyah, P.O. Box 13578, Postal Code 21955, Saudi Arabia
| | - Ayman K Johargy
- Medical Microbiology Department, Faculty of Medicine, Umm Al-Qura University, Al-abidiyah, P.O. Box 13578, Makkah Postal Code 21955, Saudi Arabia
| | - Muhammad Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Al-Abidiyah, P.O. Box 13578, Postal Code 21955, Saudi Arabia
| | - Sajida Hassan
- Viral Hepatitis Program, Laboratory of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Cell Penetrating Peptides Used in Delivery of Therapeutic Oligonucleotides Targeting Hepatitis B Virus. Pharmaceuticals (Basel) 2020; 13:ph13120483. [PMID: 33371278 PMCID: PMC7766285 DOI: 10.3390/ph13120483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Peptide Nucleic Acid (PNAs) and small noncoding RNAs including small interfering RNAs (siRNAs) represent a new class of oligonucleotides considered as an alternative therapeutic strategy in the chronic hepatitis B treatment. Indeed, chronic hepatitis B virus (HBV) infection remains a major public health problem worldwide, despite the availability of an effective prophylactic vaccine. Current therapeutic approaches approved for chronic HBV treatment are pegylated-interferon alpha (IFN)-α and nucleos(t)ide analogues (NAs). Both therapies do not completely eradicate viral infection and promote severe side effects. In this context, the development of new effective treatments is imperative. This review focuses on antiviral activity of both PNAs and siRNAs targeting hepatitis B virus. Thus, we briefly present our results on the ability of PNAs to decrease hepadnaviral replication in duck hepatitis B virus (DHBV) model. Interestingly, other oligonucleotides as siRNAs could significantly inhibit HBV antigen expression in transient replicative cell culture. Because the application of these oligonucleotides as new antiviral drugs has been hampered by their poor intracellular bioavailability, we also discuss the benefits of their coupling to different molecules such as the cell penetrating peptides (CPPs), which were used as vehicles to deliver therapeutic agents into the cells.
Collapse
|