1
|
Robison ZL, Ren Q, Zhang Z. How to Survive without Water: A Short Lesson on the Desiccation Tolerance of Budding Yeast. Int J Mol Sci 2024; 25:7514. [PMID: 39062766 PMCID: PMC11277543 DOI: 10.3390/ijms25147514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Water is essential to all life on earth. It is a major component that makes up living organisms and plays a vital role in multiple biological processes. It provides a medium for chemical and enzymatic reactions in the cell and is a major player in osmoregulation and the maintenance of cell turgidity. Despite this, many organisms, called anhydrobiotes, are capable of surviving under extremely dehydrated conditions. Less is known about how anhydrobiotes adapt and survive under desiccation stress. Studies have shown that morphological and physiological changes occur in anhydrobiotes in response to desiccation stress. Certain disaccharides and proteins, including heat shock proteins, intrinsically disordered proteins, and hydrophilins, play important roles in the desiccation tolerance of anhydrobiotes. In this review, we summarize the recent findings of desiccation tolerance in the budding yeast Saccharomyces cerevisiae. We also propose that the yeast under desiccation could be used as a model to study neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA; (Z.L.R.); (Q.R.)
| |
Collapse
|
2
|
Liao G, Wang W, Yu J, Li J, Yan Y, Liu H, Chen B, Fan L. Integrated analysis of intestinal microbiota and transcriptome reveals that a coordinated interaction of the endocrine, immune system and gut microbiota response to heat stress in Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105176. [PMID: 38582249 DOI: 10.1016/j.dci.2024.105176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Due to the ongoing global warming, the risk of heatwaves in the oceans is continuously increasing while our understanding of the physiological response of Litopenaeus vannamei under extreme temperature conditions remains limited. Therefore, this study aimed to evaluate the physiological responses of L. vannamei under heat stress. Our results indicated that as temperature rose, the structure of intestinal and hepatopancreatic tissues was damaged sequentially. Activity of immune-related enzymes (acid phosphatase/alkaline phosphatase) initially increased before decreased, while antioxidant enzymes (superoxide dismutase and glutathione-S transferase) activity and malondialdehyde content increased with rising temperature. In addition, the total antioxidant capacity decreased with rising temperature. With the rising temperature, there was a significant increase in the expression of caspase-3, heat shock protein 70, lipopolysaccharide-induced tumor necrosis factor-α, transcriptional enhanced associate domain and yorkie in intestinal and hepatopancreatic tissues. Following heat stress, the number of potentially beneficial bacteria (Rhodobacteraceae and Gemmonbacter) increased which maintain balance and promote vitamin synthesis. Intestinal transcriptome analysis revealed 852 differentially expressed genes in the heat stress group compared with the control group. KEGG functional annotation results showed that the endocrine system was the most abundant in Organismal systems followed by the immune system. These results indicated that heat stress leads to tissue damage in shrimp, however the shrimp may respond to stress through a coordinated interaction strategy of the endocrine system, immune system and gut microbiota. This study revealed the response mechanism of L. vannamei to acute heat stress and potentially provided a theoretical foundation for future research on shrimp environmental adaptations.
Collapse
Affiliation(s)
- Guowei Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wanqi Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaoping Yu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jingping Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yumeng Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Haolin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Bing Chen
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Lanfen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Tiong IKR, Lau CC, Sorgeloos P, Mat Taib MI, Muhammad TST, Danish-Daniel M, Tan MP, Sui L, Wang M, Sung YY. Hsp70 Knockdown in the Brine Shrimp Artemia franciscana: Implication on Reproduction, Immune Response and Embryonic Cuticular Structure. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:562-574. [PMID: 38683457 DOI: 10.1007/s10126-024-10318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
The potential functional role(s) of heat shock protein 70 (Hsp70) in the brine shrimp, Artemia franciscana, a crucial crustacean species for aquaculture and stress response studies, was investigated in this study. Though we have previously reported that Hsp70 knockdown may have little or no impact on Artemia development, the gestational survival and number of offspring released by adult females were impaired by obscuring Hsp70 synthesis. Transcriptomic analysis revealed that several cuticle and chitin synthetic genes were downregulated, and carbohydrate metabolic genes were differentially expressed in Hsp70-knockdown individuals. A more comprehensive microscopic examination performed in this study revealed exoskeleton structural destruction and abnormal eye lenses featured in Hsp70-deficient adult females 48 h after Hsp70 dsRNA injection. Cysts produced by these Hsp70-deficient broods, instead, had a defective shell and were smaller in size, whereas nauplii had shorter first antennae and a rougher body epicuticle surface. Changes in carbohydrate metabolism caused by Hsp70 knockdown affected glycogen levels in adult Artemia females, as well as trehalose in cysts released from these broods, indicating that Hsp70 may play a role in energy storage preservation. Outcomes from this work provided novel insights into the roles of Hsp70 in Artemia reproduction performance, cyst formation, and exoskeleton structure preservation. The findings also support our previous observation that Hsp70 knockdown reduced Artemia nauplius tolerance to bacterial pathogens, which could be explained by the fact that loss of Hsp70 downregulated several Toll receptor genes (NT1 and Spaetzle) and reduced the integrity of the exoskeleton, allowing pathogens to enter and cause infection, ultimately resulting in mortality.
Collapse
Affiliation(s)
- Irene K R Tiong
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Cher Chien Lau
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Patrick Sorgeloos
- Laboratory of Aquaculture & Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- International Artemia Aquaculture Consortium (IAAC), Network of Aquaculture Centres in Asia-Pacific, Bangkok, 10900, Thailand
| | - Mimi Iryani Mat Taib
- Faculty of Fisheries and Food Sciences, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Tengku Sifzizul Tengku Muhammad
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Muhd Danish-Daniel
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Min Pau Tan
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Liying Sui
- College of Marine and Environmental Sciences, Tianjin University of Science and Technology, Tianjin, China
- International Artemia Aquaculture Consortium (IAAC), Network of Aquaculture Centres in Asia-Pacific, Bangkok, 10900, Thailand
| | - Min Wang
- UMT-OUC Joint Academic Centre for Marine Studies, 21030, Kuala Nerus, Terengganu, Malaysia
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yeong Yik Sung
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
- International Artemia Aquaculture Consortium (IAAC), Network of Aquaculture Centres in Asia-Pacific, Bangkok, 10900, Thailand.
- UMT-OUC Joint Academic Centre for Marine Studies, 21030, Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
4
|
Lee PC, Stewart S, Amelkina O, Sylvester H, He X, Comizzoli P. Trehalose delivered by cold-responsive nanoparticles improves tolerance of cumulus-oocyte complexes to microwave drying. J Assist Reprod Genet 2023; 40:1817-1828. [PMID: 37261586 PMCID: PMC10371938 DOI: 10.1007/s10815-023-02831-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023] Open
Abstract
PURPOSE Trehalose is a non-permeable protectant that is the key to preserve live cells in a dry state for potential storage at ambient temperatures. After intracellular trehalose delivery via cold-responsive nanoparticles (CRNPs), the objective was to characterize the tolerance of cat cumulus-oocyte complexes (COCs) to different levels of microwave-assisted dehydration. METHODS Trehalose was first encapsulated in CRNPs. After exposure to trehalose-laden CRNPs, different water amounts were removed from cat COCs by microwave drying. After each dehydration level, meiotic and developmental competences were evaluated via in vitro maturation, fertilization, and embryo culture. In addition, expressions of critical genes were assessed by quantitative RT-PCR. RESULTS CRNPs effectively transported trehalose into COCs within 4 h of co-incubation at 38.5 °C followed by a cold-triggered release at 4 °C for 15 min. Intracellular presence of trehalose enabled the maintenance of developmental competence (formation of blastocysts) as well as normal gene expression levels of HSP70 and DNMT1 at dehydration levels reaching up to 63% of water loss. CONCLUSION Intracellular trehalose delivery through CRNPs improves dehydration tolerance of COCs, which opens new options for oocyte storage and fertility preservation at ambient temperatures.
Collapse
Affiliation(s)
- Pei-Chih Lee
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, D.C., USA
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Olga Amelkina
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, D.C., USA
| | - Hannah Sylvester
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, D.C., USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Pierre Comizzoli
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, D.C., USA.
| |
Collapse
|
5
|
Chen B, Chu TW, Chiu K, Hong MC, Wu TM, Ma JW, Liang CM, Wang WK. Transcriptomic analysis elucidates the molecular processes associated with hydrogen peroxide-induced diapause termination in Artemia-encysted embryos. PLoS One 2021; 16:e0247160. [PMID: 33606769 PMCID: PMC7894940 DOI: 10.1371/journal.pone.0247160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 02/03/2021] [Indexed: 01/06/2023] Open
Abstract
Treatment with hydrogen peroxide (H2O2) raises the hatching rate through the development and diapause termination of Artemia cysts. To comprehend the upstream genetic regulation of diapause termination activated by exterior H2O2 elements, an Illumina RNA-seq analysis was performed to recognize and assess comparative transcript amounts to explore the genetic regulation of H2O2 in starting the diapause termination of cysts in Artemia salina. We examined three groupings treated with no H2O2 (control), 180 μM H2O2 (low) and 1800 μM H2O2 (high). The results showed a total of 114,057 unigenes were identified, 41.22% of which were functionally annotated in at least one particular database. When compared to control group, 34 and 98 differentially expressed genes (DEGs) were upregulated in 180 μM and 1800 μM H2O2 treatments, respectively. On the other hand, 162 and 30 DEGs were downregulated in the 180 μM and 1800 μM H2O2 treatments, respectively. Cluster analysis of DEGs demonstrated significant patterns among these types of 3 groups. GO and KEGG enrichment analysis showed the DEGs involved in the regulation of blood coagulation (GO: 0030193; GO: 0050818), regulation of wound healing (GO:0061041), regulation of hemostasis (GO: 1900046), antigen processing and presentation (KO04612), the Hippo signaling pathway (KO04391), as well as the MAPK signaling pathway (KO04010). This research helped to define the diapause-related transcriptomes of Artemia cysts using RNA-seq technology, which might fill up a gap in the prevailing body of knowledge.
Collapse
Affiliation(s)
- Bonien Chen
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Tah-Wei Chu
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Kuohsun Chiu
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ming-Chang Hong
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Tsung-Meng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Jui-Wen Ma
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Chih-Ming Liang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan
| | - Wei-Kuang Wang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
6
|
Hibshman JD, Clegg JS, Goldstein B. Mechanisms of Desiccation Tolerance: Themes and Variations in Brine Shrimp, Roundworms, and Tardigrades. Front Physiol 2020; 11:592016. [PMID: 33192606 PMCID: PMC7649794 DOI: 10.3389/fphys.2020.592016] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/25/2020] [Indexed: 01/05/2023] Open
Abstract
Water is critical for the survival of most cells and organisms. Remarkably, a small number of multicellular animals are able to survive nearly complete drying. The phenomenon of anhydrobiosis, or life without water, has been of interest to researchers for over 300 years. In this review we discuss advances in our understanding of protectants and mechanisms of desiccation tolerance that have emerged from research in three anhydrobiotic invertebrates: brine shrimp (Artemia), roundworms (nematodes), and tardigrades (water bears). Discovery of molecular protectants that allow each of these three animals to survive drying diversifies our understanding of desiccation tolerance, and convergent themes suggest mechanisms that may offer a general model for engineering desiccation tolerance in other contexts.
Collapse
Affiliation(s)
- Jonathan D. Hibshman
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - James S. Clegg
- Bodega Marine Laboratory, University of California, Davis, Davis, CA, United States
| | - Bob Goldstein
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|