1
|
Muhamad SN, Md Akim A, Lim FL, Karuppiah K, Mohd Shabri NSA, How V. Heat stress-induced heat shock protein 70 (HSP70) expressions among vulnerable populations in urban and rural areas Klang Valley, Malaysia. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025:10.1038/s41370-025-00764-4. [PMID: 40038444 DOI: 10.1038/s41370-025-00764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND As climate change raises global temperatures, there remains a notable gap in understanding the body's mechanisms of heat stress defense exhibited by Heat Shock Protein (HSP) within the populations. OBJECTIVE This study aims to investigate the expression level of HSP70 in response to indoor heat exposure among vulnerable populations in both urban and rural settings. METHODS A comparative cross-sectional was conducted among 108 participants from urban and rural areas in Klang Valley, Malaysia. The study included face-to-face interviews, indoor heat exposure monitoring, and thermal stress classification using the Universal Thermal Climate Index (UTCI). HSP70 gene and protein expressions were analyzed using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) and HSP70 High Sensitivity Enzyme-linked Immunosorbent Assay (ELISA), respectively. RESULTS Urban areas experienced signficantly higher UTCI heat exposure levels than rural areas (p < 0.001). In response to heat stress, vulnerable populations in urban areas exhibited higher HSP70 gene relative expression and HSP70 protein expression. A significant mean difference in the plasma HSP70 protein expression was observed between the two groups (p < 0.001). The linear mixed model (LMM) revealed a significant association between UTCI heat exposure levels and HSP70 gene and protein expression in both groups (p < 0.001). IMPACT While previous studies have examined cellular responses to heat stress in healthy individuals within controlled experimental settings, our study uniquely focuses on vulnerable individuals in actual environmental conditions. This is crucial for establishing baseline information on the ability of these populations to adapt to climate change and surrounding temperatures. Such information is essential for building resilient communities and preventing fatal incidents such as heat stroke during extreme heat events. By highlighting the differences between urban and rural populations, this study provides critical information for policymakers and health practitioners to design location-specific and population-specific heat stress mitigation strategies.
Collapse
Affiliation(s)
- Siti Nurfahirah Muhamad
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Abdah Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Fang Lee Lim
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
| | - Karmegam Karuppiah
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nur Shabrina Azreen Mohd Shabri
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Vivien How
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Wei Y, Li Y, Shu Y, Gan PR, Zhu YL, Xu J, Jiang XM, Xia SL, Wang Y, Wu H. The new anti-angiogenesis perspective of rheumatoid arthritis with geniposide: Reducing the extracellular release of HSP70 in HUVECs. Int Immunopharmacol 2025; 144:113645. [PMID: 39571270 DOI: 10.1016/j.intimp.2024.113645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/17/2024] [Accepted: 11/13/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Angiogenesis is essential for pannus formation and maintenance in rheumatoid arthritis (RA). Heat shock protein 70 kDa (HSP70) can induce angiogenesis by being released extracellularly through exosomes. Geniposide (GE) is the primary pharmacological component of the fruit of Gardenia jasminoides Ellis (GJ). In vivo, we have found that GE is able to reduce HSP70 levels in the synovium and serum of CIA-S and has anti-angiogenic effects. However, the mechanism by which GE inhibits HSP70 to improve angiogenesis is still unclear. This study aims to explore how GE inhibits the extracellular release of HSP70 and its impact on angiogenesis in human umbilical vein endothelial cells (HUVECs). METHODS HUVECs' exosomes were extracted using ultracentrifugation and characterized through transmission electron microscope, nanoparticle tracer technology, nano-flow cytometry and Western blotting. The proliferative ability of HUVECs was assessed by EdU and CCK8 assay. Transwell and wound healing assays were used to measure the migration ability of HUVECs, while tube formation assay was employed to evaluate their tube-forming ability. The TNF-α-induced HSP70 release model in HUVECs was established, with extracellular HSP70 levels serving as an evaluation index. Immunofluorescence and co-immunoprecipitation assay were used to analyze the interaction between HSP70 and the lipid raft marker Caveolin-1 (Cav-1). Western blotting was employed to investigate the expression of SphK1/S1P/S1PRs/Gαi pathway-related proteins, and ELISA was utilized to detect extracellular S1P and HSP70 levels. RESULTS The exosomes of HUVECs contained HSP70. HUVECs were stimulated by extracellular HSP70, which enhanced their proliferation, migration, and tube-forming abilities. TNF-α (10 ng/mL) significantly increased the release of HSP70, which was inhibited by GE (25 µM-100 µM) in a concentration-dependent manner. GE reduced HSP70 in lipid rafts without affecting Cav-1. GE (100 µM) inhibited proteins in the SphK1/S1P/S1PRs/Gαi pathway, preventing HSP70 release and improving HUVECs' functions compared to the K6PC-5 (SphK1-specific agonist) and TNF-α groups. CONCLUSION This study found that GE inhibited the extracellular release of HSP70 by suppressing the SphK1/S1P/S1PRs/Gαi pathway, thereby producing anti-angiogenic effects in vitro. This provides a novel direction and strategy for anti-angiogenesis therapy for RA.
Collapse
Affiliation(s)
- Yi Wei
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China
| | - Ya Li
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China
| | - Yin Shu
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China
| | - Pei-Rong Gan
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China
| | - Yu-Long Zhu
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China
| | - Jing Xu
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China
| | - Xiao-Man Jiang
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China
| | - Shi-Lin Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China
| | - Yan Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China.
| | - Hong Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China.
| |
Collapse
|
3
|
Horner E, Lord JM, Hazeldine J. The immune suppressive properties of damage associated molecular patterns in the setting of sterile traumatic injury. Front Immunol 2023; 14:1239683. [PMID: 37662933 PMCID: PMC10469493 DOI: 10.3389/fimmu.2023.1239683] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Associated with the development of hospital-acquired infections, major traumatic injury results in an immediate and persistent state of systemic immunosuppression, yet the underlying mechanisms are poorly understood. Detected in the circulation in the minutes, days and weeks following injury, damage associated molecular patterns (DAMPs) are a heterogeneous collection of proteins, lipids and DNA renowned for initiating the systemic inflammatory response syndrome. Suggesting additional immunomodulatory roles in the post-trauma immune response, data are emerging implicating DAMPs as potential mediators of post-trauma immune suppression. Discussing the results of in vitro, in vivo and ex vivo studies, the purpose of this review is to summarise the emerging immune tolerising properties of cytosolic, nuclear and mitochondrial-derived DAMPs. Direct inhibition of neutrophil antimicrobial activities, the induction of endotoxin tolerance in monocytes and macrophages, and the recruitment, activation and expansion of myeloid derived suppressor cells and regulatory T cells are examples of some of the immune suppressive properties assigned to DAMPs so far. Crucially, with studies identifying the molecular mechanisms by which DAMPs promote immune suppression, therapeutic strategies that prevent and/or reverse DAMP-induced immunosuppression have been proposed. Approaches currently under consideration include the use of synthetic polymers, or the delivery of plasma proteins, to scavenge circulating DAMPs, or to treat critically-injured patients with antagonists of DAMP receptors. However, as DAMPs share signalling pathways with pathogen associated molecular patterns, and pro-inflammatory responses are essential for tissue regeneration, these approaches need to be carefully considered in order to ensure that modulating DAMP levels and/or their interaction with immune cells does not negatively impact upon anti-microbial defence and the physiological responses of tissue repair and wound healing.
Collapse
Affiliation(s)
- Emily Horner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Janet M. Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Wing E, Sutherland C, Miles K, Gray D, Goodyear CS, Otto TD, Breusch S, Cowan G, Gray M. Double-negative-2 B cells are the major synovial plasma cell precursor in rheumatoid arthritis. Front Immunol 2023; 14:1241474. [PMID: 37638026 PMCID: PMC10450142 DOI: 10.3389/fimmu.2023.1241474] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
B cells are key pathogenic drivers of chronic inflammation in rheumatoid arthritis (RA). There is limited understanding of the relationship between synovial B cell subsets and pathogenic antibody secreting cells (ASCs). This knowledge is crucial for the development of more targeted B-cell depleting therapies. While CD11c+ double-negative 2 (DN2) B cells have been suggested as an ASC precursor in lupus, to date there is no proven link between the two subsets in RA. We have used both single-cell gene expression and BCR sequencing to study synovial B cells from patients with established RA, in addition to flow cytometry of circulating B cells. To better understand the differentiation patterns within the diseased tissue, a combination of RNA-based trajectory inference and clonal lineage analysis of BCR relationships were used. Both forms of analysis indicated that DN2 B cells serve as a major precursors to synovial ASCs. This study advances our understanding of B cells in RA and reveals the origin of pathogenic ASCs in the RA synovium. Given the significant role of DN2 B cells as a progenitor to pathogenic B cells in RA, it is important to conduct additional research to investigate the origins of DN2 B cells in RA and explore their potential as therapeutic targets in place of the less specific pan-B cells depletion therapies currently in use.
Collapse
Affiliation(s)
- Elinor Wing
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Catherine Sutherland
- Institute of Immunology and Infection Research, School of Biological Sciences, The King’s Buildings, The University of Edinburgh, Edinburgh, United Kingdom
| | - Katherine Miles
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - David Gray
- Institute of Immunology and Infection Research, School of Biological Sciences, The King’s Buildings, The University of Edinburgh, Edinburgh, United Kingdom
| | - Carl S. Goodyear
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Thomas D. Otto
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Stefan Breusch
- Orthopaedic Unit, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Graeme Cowan
- Institute of Immunology and Infection Research, School of Biological Sciences, The King’s Buildings, The University of Edinburgh, Edinburgh, United Kingdom
| | - Mohini Gray
- Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Sonkodi B, Csorba A, Marsovszky L, Balog A, Kopper B, Nagy ZZ, Resch MD. Evidence of Disruption in Neural Regeneration in Dry Eye Secondary to Rheumatoid Arthritis. Int J Mol Sci 2023; 24:ijms24087514. [PMID: 37108693 PMCID: PMC10140938 DOI: 10.3390/ijms24087514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The purpose of our study was to analyze abnormal neural regeneration activity in the cornea through means of confocal microscopy in rheumatoid arthritis patients with concomitant dry eye disease. We examined 40 rheumatoid arthritis patients with variable severity and 44 volunteer age- and gender-matched healthy control subjects. We found that all examined parameters were significantly lower (p < 0.05) in rheumatoid arthritis patients as opposed to the control samples: namely, the number of fibers, the total length of the nerves, the number of branch points on the main fibers and the total nerve-fiber area. We examined further variables, such as age, sex and the duration of rheumatoid arthritis. Interestingly, we could not find a correlation between the above variables and abnormal neural structural changes in the cornea. We interpreted these findings via implementing our hypotheses. Correspondingly, one neuroimmunological link between dry eye and rheumatoid arthritis could be through the chronic Piezo2 channelopathy-induced K2P-TASK1 signaling axis. This could accelerate neuroimmune-induced sensitization on the spinal level in this autoimmune disease, with Langerhans-cell activation in the cornea and theorized downregulated Piezo1 channels in these cells. Even more importantly, suggested principal primary-damage-associated corneal keratocyte activation could be accompanied by upregulation of Piezo1. Both activation processes on the periphery would skew the plasticity of the Th17/Treg ratio, resulting in Th17/Treg imbalance in dry eye, secondary to rheumatoid arthritis. Hence, chronic somatosensory-terminal Piezo2 channelopathy-induced impaired Piezo2-Piezo1 crosstalk could result in a mixed picture of disrupted functional regeneration but upregulated morphological regeneration activity of these somatosensory axons in the cornea, providing the demonstrated abnormal neural corneal morphology.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Anita Csorba
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| | - László Marsovszky
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| | - Attila Balog
- Department of Rheumatology and Immunology, Faculty of Medicine, Albert Szent-Györgyi Health Center, University of Szeged, 6725 Szeged, Hungary
| | - Bence Kopper
- Faculty of Kinesiology, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| | - Miklós D Resch
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
6
|
Marchioro HZ, de Castro CCS, Jiacomini IG, Miot HA. Association between clinical features and Hsp70 plasma levels in adults with non-segmental vitiligo: a cross-sectional study. An Bras Dermatol 2023; 98:373-375. [PMID: 36863981 PMCID: PMC10173073 DOI: 10.1016/j.abd.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/21/2022] [Accepted: 09/03/2022] [Indexed: 03/04/2023] Open
Affiliation(s)
| | - Caio César Silva de Castro
- Department of Dermatology, Hospital Santa Casa de Curitiba, Curitiba, PR, Brazil; Department of Dermatology, Pontifícia Universidade Católica do Paraná, Curitiba, PR, Brazil
| | - Isabella Gizzi Jiacomini
- Department of Basic Pathology, Division of Biological Sciences, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Hélio Amante Miot
- Department of Dermatology and Radiotherapy, Faculty of Medicine, Universidade Estadual Paulista, Botucatu, SP, Brazil
| |
Collapse
|
7
|
Gouda SAA, Aboulhoda BE, Abdelwahed OM, Abdallah H, Rashed L, Hussein RE, Sharawy N. Low-intensity pulsed ultrasound (LIPUS) switched macrophage into M2 phenotype and mitigated necroptosis and increased HSP 70 in gentamicin-induced nephrotoxicity. Life Sci 2023; 314:121338. [PMID: 36592788 DOI: 10.1016/j.lfs.2022.121338] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIM Many attempts to control acute kidney injury (AKI) have failed due to a lack of understanding of its pathophysiological key components. Macrophages are a crucial determinant of AKI, which can be categorized functionally as M1 pro-inflammatory and M2 anti-inflammatory macrophages. Low-intensity pulsed ultrasound (LIPUS) is currently being investigated as an immune modulator. The present study aimed to explore the potential effects of LIPUS on the polarization of renal macrophages, as well as the possible interplay between macrophage polarization and necroptosis in gentamicin-induced acute kidney injury. METHOD All rats were randomly allocated into one of four groups: control, LIPUS-treated control, gentamicin acute kidney (GM-AKI), and LIPUS-treated GM-AKI. Renal functions, macrophage polarization, necroptosis, and heat shock protein-70 (HSP70) were analyzed using real-time reverse-transcriptase-polymerase chain reaction (rT-PCR), Western Blot, Enzyme-linked immunosorbent assay (ELISA) as well as immunohistological analysis. RESULTS we found that LIPUS markedly inhibited the expressions of M1 macrophage-related genes and promoted significantly the expression of M2 macrophages related genes. This was accompanied by an inhibition of necroptosis and a marked reduction of HSP-70, resulting in a reversal of gentamicin-induced renal alteration. CONCLUSION Functional switching of macrophage responses from M1 into M2 seems to be a potential approach to ameliorate necroptosis as well as HSP-70 by low pulsed ultrasound waves in GM-AKI.
Collapse
Affiliation(s)
| | | | | | - Hend Abdallah
- Department of Anatomy, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Nivin Sharawy
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| |
Collapse
|
8
|
Heat Shock Proteins Alterations in Rheumatoid Arthritis. Int J Mol Sci 2022; 23:ijms23052806. [PMID: 35269948 PMCID: PMC8911505 DOI: 10.3390/ijms23052806] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory and autoimmune disease characterized by the attack of the immune system on the body's healthy joint lining and degeneration of articular structures. This disease involves an increased release of inflammatory mediators in the affected joint that sensitize sensory neurons and create a positive feedback loop to further enhance their release. Among these mediators, the cytokines and neuropeptides are responsible for the crippling pain and the persistent neurogenic inflammation associated with RA. More importantly, specific proteins released either centrally or peripherally have been shown to play opposing roles in the pathogenesis of this disease: an inflammatory role that mediates and increases the severity of inflammatory response and/or an anti-inflammatory and protective role that modulates the process of inflammation. In this review, we will shed light on the neuroimmune function of different members of the heat shock protein (HSPs) family and the complex manifold actions that they exert during the course of RA. Specifically, we will focus our discussion on the duality in the mechanism of action of Hsp27, Hsp60, Hsp70, and Hsp90.
Collapse
|
9
|
Tukaj S, Mantej J, Sitko K, Bednarek M, Zillikens D, Ludwig RJ, Bieber K, Kasperkiewicz M. Evidence for a role of extracellular heat shock protein 70 in epidermolysis bullosa acquisita. Exp Dermatol 2021; 31:528-534. [PMID: 34741567 DOI: 10.1111/exd.14495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/11/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022]
Abstract
Heat shock protein 90 (Hsp90) and Hsp70 are chaperones implicated in different inflammatory disorders, given their property to impact innate and adaptive immune responses. Here, we determined the so far unknown role of extracellular Hsp70 in epidermolysis bullosa acquisita (EBA), an anti-type VII collagen autoantibody-mediated blistering dermatosis. The in vivo pathophysiological relevance of extracellular Hsp70 was demonstrated in an anti-type VII collagen antibody transfer-induced EBA mouse model in which elevated blood levels of this chaperone were recorded. We found that Hsp70-treated mice had a more intense clinical disease severity compared to controls that were paralleled by increased levels of cutaneous matrix metalloproteinase 9 and plasma hydrogen peroxide. The latter finding was confirmed in an independent reactive oxygen species release assay using EBA-specific immune complexes combined with recombinant Hsp70. Finally, cell culture experiments using human naive peripheral blood mononuclear cells (PBMC) revealed that extracellular Hsp70 stimulated the secretion of the T cell-derived pro-inflammatory cytokines IL-6 and IL-8. This work extends knowledge about the role of Hsps in autoimmune bullous diseases, suggesting that extracellular Hsp70 represents a pathophysiological factor and potential treatment target in EBA.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Krzysztof Sitko
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Marta Bednarek
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Detlef Zillikens
- Department of Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Michael Kasperkiewicz
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
10
|
Feng Q, Xia W, Wang S, Dai G, Jiao W, Guo N, Li H, Zhang G. Etodolac improves collagen induced rheumatoid arthritis in rats by inhibiting synovial inflammation, fibrosis and hyperplasia. MOLECULAR BIOMEDICINE 2021; 2:33. [PMID: 35006449 PMCID: PMC8607370 DOI: 10.1186/s43556-021-00052-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Synovial hyperplasia is the main cause of chronic rheumatoid arthritis (RA), but the mechanism of synovial hyperplasia is still unclear. Etodolac (ETD) is a selective COX-2 inhibitor for relieving pain and stiffness in RA, but the disease modifying effect is still lack of evidence. Proteomics method was used to study the differential proteome of synovial tissue in collagen induced arthritis (CIA) in rats. With the help of STRING analysis, the upregulated proteins enriched in the cluster of complement and coagulation cascades and platelet degranulation were highlighted, these proteins with fibrogenic factors Lum, CIV, CXI and Tgfbi participated in the synovial inflammation, fibrosis and hyperplasia in CIA. Based on KOG function class analysis, the proteins involved in the events of the central dogma was explored. They might be hyperplasia related proteins for most of them are related to the proliferation of cancer. ETD significantly attenuated synovial inflammation, fibrosis and hyperplasia in CIA rats by downregulating these proteins. Several proteins have not been observed in RA so far, such as Tmsb4x, Pura, Nfic, Ruvbl1, Snrpd3, U2af2, Srrm2, Srsf7, Elavl1, Hnrnph1, Wars, Yars, Bzw2, Mcts1, Eif4b, Ctsh, Lamp1, Dpp7, Ptges3, Cdc37 and Septin9, they might be potentials targets for RA. Blood biochemistry tests showed the safety of 7 months use of ETD on rats. In conclusion, present study displayed a comprehensive mechanism of synovial hyperplasia in CIA rats, on this basis, the clinical value of ETD in the treatment of RA was well confirmed.
Collapse
Affiliation(s)
- Qin Feng
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China.,National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Wenkai Xia
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Shenglan Wang
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Guoxin Dai
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Weimei Jiao
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Na Guo
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Honghua Li
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China.,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Guimin Zhang
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China. .,Center for New Drug Safety Evaluation of Lunan Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China. .,National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co. Ltd., Linyi, China.
| |
Collapse
|
11
|
Extracellular Heat Shock Proteins as Therapeutic Targets and Biomarkers in Fibrosing Interstitial Lung Diseases. Int J Mol Sci 2021; 22:ijms22179316. [PMID: 34502225 PMCID: PMC8430559 DOI: 10.3390/ijms22179316] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/19/2022] Open
Abstract
Interstitial lung diseases (ILDs) include a large number of diseases and causes with variable outcomes often associated with progressive fibrosis. Although each of the individual fibrosing ILDs are rare, collectively, they affect a considerable number of patients, representing a significant burden of disease. Idiopathic pulmonary fibrosis (IPF) is the typical chronic fibrosing ILD associated with progressive decline in lung. Other fibrosing ILDs are often associated with connective tissues diseases, including rheumatoid arthritis-ILD (RA-ILD) and systemic sclerosis-associated ILD (SSc-ILD), or environmental/drug exposure. Given the vast number of progressive fibrosing ILDs and the disparities in clinical patterns and disease features, the course of these diseases is heterogeneous and cannot accurately be predicted for an individual patient. As a consequence, the discovery of novel biomarkers for these types of diseases is a major clinical challenge. Heat shock proteins (HSPs) are molecular chaperons that have been extensively described to be involved in fibrogenesis. Their extracellular forms (eHSPs) have been recently and successfully used as therapeutic targets or circulating biomarkers in cancer. The current review will describe the role of eHSPs in fibrosing ILDs, highlighting the importance of these particular stress proteins to develop new therapeutic strategies and discover potential biomarkers in these diseases.
Collapse
|
12
|
Tukaj S, Mantej J, Sobala M, Potrykus K, Tukaj Z, Zillikens D, Ludwig RJ, Bieber K, Kasperkiewicz M. Therapeutic Implications of Targeting Heat Shock Protein 70 by Immunization or Antibodies in Experimental Skin Inflammation. Front Immunol 2021; 12:614320. [PMID: 33708208 PMCID: PMC7940535 DOI: 10.3389/fimmu.2021.614320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Heat shock proteins (Hsp) are constitutive and stress-induced molecules which have been reported to impact innate and adaptive immune responses. Here, we evaluated the role of Hsp70 as a treatment target in the imiquimod-induced, psoriasis-like skin inflammation mouse model and related in vitro assays. We found that immunization of mice with Hsp70 resulted in decreased clinical and histological disease severity associated with expansion of T cells in favor of regulatory subtypes (CD4+FoxP3+/CD4+CD25+ cells). Similarly, anti-Hsp70 antibody treatment led to lowered disease activity associated with down-regulation of pro-inflammatory Th17 cells. A direct stimulating action of Hsp70 on regulatory T cells and its anti-proliferative effects on keratinocytes were confirmed in cell culture experiments. Our observations suggest that Hsp70 may be a promising therapeutic target in psoriasis and potentially other autoimmune dermatoses.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Michał Sobala
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Potrykus
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Zbigniew Tukaj
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Detlef Zillikens
- Department of Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Michael Kasperkiewicz
- Department of Dermatology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
13
|
Fourie KR, Wilson HL. Understanding GroEL and DnaK Stress Response Proteins as Antigens for Bacterial Diseases. Vaccines (Basel) 2020; 8:E773. [PMID: 33348708 PMCID: PMC7767184 DOI: 10.3390/vaccines8040773] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 01/16/2023] Open
Abstract
Bacteria do not simply express a constitutive panel of proteins but they instead undergo dynamic changes in their protein repertoire in response to changes in nutritional status and when exposed to different environments. These differentially expressed proteins may be suitable to use for vaccine antigens if they are virulence factors. Immediately upon entry into the host organism, bacteria are exposed to a different environment, which includes changes in temperature, osmotic pressure, pH, etc. Even when an organism has already penetrated the blood or lymphatics and it then enters another organ or a cell, it can respond to these new conditions by increasing the expression of virulence factors to aid in bacterial adherence, invasion, or immune evasion. Stress response proteins such as heat shock proteins and chaperones are some of the proteins that undergo changes in levels of expression and/or changes in cellular localization from the cytosol to the cell surface or the secretome, making them potential immunogens for vaccine development. Herein we highlight literature showing that intracellular chaperone proteins GroEL and DnaK, which were originally identified as playing a role in protein folding, are relocated to the cell surface or are secreted during invasion and therefore may be recognized by the host immune system as antigens. In addition, we highlight literature showcasing the immunomodulation effects these proteins can have on the immune system, also making them potential adjuvants or immunotherapeutics.
Collapse
Affiliation(s)
- Kezia R. Fourie
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
- Vaccine and Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), Saskatoon, SK S7N 5E3, Canada
| | - Heather L. Wilson
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada;
- Vaccine and Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), Saskatoon, SK S7N 5E3, Canada
| |
Collapse
|
14
|
Tukaj S. Heat Shock Protein 70 as a Double Agent Acting Inside and Outside the Cell: Insights into Autoimmunity. Int J Mol Sci 2020; 21:ijms21155298. [PMID: 32722570 PMCID: PMC7432326 DOI: 10.3390/ijms21155298] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (Hsp) are a diverse group of constitutive and/or stress-induced molecules that are categorized into several classes on the basis of their molecular weight. Mammalian Hsp have been mostly regarded as intracellular chaperones that mediate a range of essential cellular functions, including proper folding of newly synthesized polypeptides, refolding of denatured proteins, protein transport, and stabilization of native proteins' structures. The well-characterized and highly evolutionarily conserved, stress-inducible 70-kDa heat shock protein (Hsp70), is a key molecular chaperone that is overexpressed in the cell in response to stress of various origin. Hsp70 exhibits an immunosuppressive activity via, e.g., downregulation of the nuclear factor-kappa B (NF-κB) activation, and pharmacological induction of Hsp70 can ameliorate the autoimmune arthritis development in animal models. Moreover, Hsp70 might be passively or actively released from the necrotic or stressed cells, respectively. Highly immunogenic extracellular Hsp70 has been reported to impact both the innate and adaptive immune responses, and to be implicated in the autoimmune reaction. In addition, preclinical studies revealed that immunization with highly conserved Hsp70 peptides could be regarded as a potential treatment target for autoimmune arthritis, such as the rheumatoid arthritis, via induction of antigen-specific regulatory T helper cells (also called Treg). Here, a dual role of the intra- and extracellular Hsp70 is presented in the context of the autoimmune reaction.
Collapse
Affiliation(s)
- Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|