1
|
Verde EM, Secco V, Ghezzi A, Mandrioli J, Carra S. Molecular Mechanisms of Protein Aggregation in ALS-FTD: Focus on TDP-43 and Cellular Protective Responses. Cells 2025; 14:680. [PMID: 40422183 DOI: 10.3390/cells14100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/30/2025] [Accepted: 05/04/2025] [Indexed: 05/28/2025] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are two neurodegenerative disorders that share common genes and pathomechanisms and are referred to as the ALS-FTD spectrum. A hallmark of ALS-FTD pathology is the abnormal aggregation of proteins, including Cu/Zn superoxide dismutase (SOD1), transactive response DNA-binding protein 43 (TDP-43), fused in sarcoma/translocated in liposarcoma (FUS/TLS), and dipeptide repeat proteins resulting from C9orf72 hexanucleotide expansions. Genetic mutations linked to ALS-FTD disrupt protein stability, phase separation, and interaction networks, promoting misfolding and insolubility. This review explores the molecular mechanisms underlying protein aggregation in ALS-FTD, with a particular focus on TDP-43, as it represents the main aggregated species inside pathological inclusions and can also aggregate in its wild-type form. Moreover, this review describes the protective mechanisms activated by the cells to prevent protein aggregation, including molecular chaperones and post-translational modifications (PTMs). Understanding these regulatory pathways could offer new insights into targeted interventions aimed at mitigating cell toxicity and restoring cellular function.
Collapse
Affiliation(s)
- Enza Maria Verde
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Andrea Ghezzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
2
|
Lin H, Ramanan S, Kaplan S, King DH, Bunn D, Johnson GVW. One BAG Does Not Fit All: Differences and Similarities of BAG Family Members in Mediating Central Nervous System Homeostasis. Biol Psychiatry 2025:S0006-3223(25)00020-4. [PMID: 39793689 DOI: 10.1016/j.biopsych.2024.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
There is an increasing awareness that B-cell lymphoma 2 (Bcl-2)-associated athanogene (BAG) proteins play critical roles in maintaining neural homeostasis and that their dysregulation contributes to neurological disorders. This protein family, which comprises 9 members, is evolutionarily conserved, with each member having at least one BAG domain that binds to the nucleotide-binding domains of Hsp70 family members. Collectively, these proteins are essential for the proper functioning of the central nervous system (CNS). Although numerous studies have focused on a specific BAG protein, an understanding of how BAG family members may act cooperatively to maintain cellular homeostasis is needed. In this review, we give an overview of the BAG domain interactors Hsp72, Hsp70.2, CHIP, and METTL3, which are common to all BAG family members. This is followed by a concise description of each BAG family member, with a focus on its function in the CNS and dysfunction in neurological conditions. Finally, we discuss the intersection of the molecular functions of the different BAG family proteins by delineating similarities and differences and describing how their functions can be either complementary or competing. The information in this review provides a basic conceptual framework for analyzing the roles of a particular BAG family member in the CNS and neurological conditions. This review also provides a basis for examining how BAG family members can play either redundant or antagonistic roles that may modulate experimental outcomes.
Collapse
Affiliation(s)
- Heng Lin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, New York
| | - Sudarshan Ramanan
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, New York
| | - Sofia Kaplan
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, New York
| | - Darron H King
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, New York
| | - Dominic Bunn
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, New York
| | - Gail V W Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester, Rochester, New York.
| |
Collapse
|
3
|
Akaree N, Secco V, Levy-Adam F, Younis A, Carra S, Shalgi R. Regulation of physiological and pathological condensates by molecular chaperones. FEBS J 2025. [PMID: 39756021 DOI: 10.1111/febs.17390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/17/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Biomolecular condensates are dynamic membraneless compartments that regulate a myriad of cellular functions. A particular type of physiological condensate called stress granules (SGs) has gained increasing interest due to its role in the cellular stress response and various diseases. SGs, composed of several hundred RNA-binding proteins, form transiently in response to stress to protect mRNAs from translation and disassemble when the stress subsides. Interestingly, SGs contain several aggregation-prone proteins, such as TDP-43, FUS, hnRNPA1, and others, which are typically found in pathological inclusions seen in autopsy tissues from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) patients. Moreover, mutations in these genes lead to the familial form of ALS and FTD. This has led researchers to propose that pathological aggregation is seeded by aberrant SGs: SGs that fail to properly disassemble, lose their dynamic properties, and become pathological condensates which finally 'mature' into aggregates. Here, we discuss the evidence supporting this model for various ALS/FTD-associated proteins. We further continue to focus on molecular chaperone-mediated regulation of ALS/FTD-associated physiological condensates on one hand, and pathological condensates on the other. In addition to SGs, we review ALS/FTD-relevant nuclear condensates, namely paraspeckles, anisosomes, and nucleolar amyloid bodies, and discuss their emerging regulation by chaperones. As the majority of chaperoning mechanisms regulate physiological condensate disassembly, we highlight parallel themes of physiological and pathological condensation regulation across different chaperone families, underscoring the potential for early disease intervention.
Collapse
Affiliation(s)
- Nadeen Akaree
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Flonia Levy-Adam
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amal Younis
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy
| | - Reut Shalgi
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
4
|
Shu B, Wen Y, Lin R, He C, Luo C, Li F. HSPB8-BAG3 chaperone complex modulates cell invasion in intrahepatic cholangiocarcinoma by regulating CASA-mediated Filamin A degradation. Cancer Biol Ther 2024; 25:2396694. [PMID: 39215616 PMCID: PMC11370900 DOI: 10.1080/15384047.2024.2396694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/16/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
The incidence of intrahepatic cholangiocarcinoma (ICC) is steadily rising, and it is associated with a high mortality rate. Clinical samples were collected to detect the expression of HSPB8 and BAG3 in ICC tissues. ICC cells were cultured and transfected with plasmids that overexpressed or silenced specific genes to investigate the impact of gene expression alterations on cell function. qPCR and Western blot techniques were utilized to measure gene and protein expression levels. A wound healing assay was conducted to assess cell migration ability. The Transwell assay was used to assess cell invasion ability. Co-IP was used to verify the binding relationship between HSPB8 and BAG3. The effects of HSPB8 and BAG3 on lung metastasis of tumors in vivo were verified by constructing a metastatic tumor model. Through the above experiments, we discovered that the expressions of HSPB8 and BAG3 were up-regulated in ICC tissues and cells, and their expressions were positively correlated. The metastatic ability of ICC cells could be promoted or inhibited by upregulating or downregulating the expression of BAG3. Furthermore, the HSPB8-BAG3 chaperone complex resulted in the abnormal degradation of Filamin A by activating autophagy. Increased expression of Filamin A inhibits the migration and invasion of ICC cells. Overexpression of HSPB8 and BAG3 in vivo promoted the lung metastasis ability of ICC cells. The HSPB8-BAG3 chaperone complex promotes ICC cell migration and invasion by regulating CASA-mediated degradation of Filamin A, offering insights for enhancing ICC therapeutic strategies.
Collapse
Affiliation(s)
- Bo Shu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yu Wen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Ronghua Lin
- Department of General Surgery, Huichang County People’s Hospital, Huichang, Jiangxi Province, China
| | - Chao He
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Cailan Luo
- Department of Hospital Nursing, Huichang County People’s Hospital, Huichang, Jiangxi Province, China
| | - Fazhao Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
5
|
Ganassi M, Figeac N, Reynaud M, Ortuste Quiroga HP, Zammit PS. Antagonism Between DUX4 and DUX4c Highlights a Pathomechanism Operating Through β-Catenin in Facioscapulohumeral Muscular Dystrophy. Front Cell Dev Biol 2022; 10:802573. [PMID: 36158201 PMCID: PMC9490378 DOI: 10.3389/fcell.2022.802573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Aberrant expression of the transcription factor DUX4 from D4Z4 macrosatellite repeats on chromosome 4q35, and its transcriptome, associate with pathogenesis in facioscapulohumeral muscular dystrophy (FSHD). Forced DUX4 expression halts skeletal muscle cell proliferation and induces cell death. DUX4 binds DNA via two homeodomains that are identical in sequence to those of DUX4c (DUX4L9): a closely related transcriptional regulator encoded by a single, inverted, mutated D4Z4 unit located centromeric to the D4Z4 macrosatellite array on chromosome 4. However, the function and contribution of DUX4c to FSHD pathogenesis are unclear. To explore interplay between DUX4, DUX4c, and the DUX4-induced phenotype, we investigated whether DUX4c interferes with DUX4 function in human myogenesis. Constitutive expression of DUX4c rescued the DUX4-induced inhibition of proliferation and reduced cell death in human myoblasts. Functionally, DUX4 promotes nuclear translocation of β-CATENIN and increases canonical WNT signalling. Concomitant constitutive expression of DUX4c prevents β-CATENIN nuclear accumulation and the downstream transcriptional program. DUX4 reduces endogenous DUX4c levels, whereas constitutive expression of DUX4c robustly suppresses expression of DUX4 target genes, suggesting molecular antagonism. In line, DUX4 expression in FSHD myoblasts correlates with reduced DUX4c levels. Addressing the mechanism, we identified a subset of genes involved in the WNT/β-CATENIN pathway that are differentially regulated between DUX4 and DUX4c, whose expression pattern can separate muscle biopsies from severely affected FSHD patients from healthy. Finally, blockade of WNT/β-CATENIN signalling rescues viability of FSHD myoblasts. Together, our study highlights an antagonistic interplay whereby DUX4 alters cell viability via β-CATENIN signalling and DUX4c counteracts aspects of DUX4-mediated toxicity in human muscle cells, potentially acting as a gene modifier for FSHD severity. Importantly, direct DUX4 regulation of the WNT/β-CATENIN pathway informs future therapeutic interventions to ameliorate FSHD pathology.
Collapse
Affiliation(s)
| | | | | | | | - Peter S. Zammit
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| |
Collapse
|
6
|
Ganassi M, Zammit PS. Involvement of muscle satellite cell dysfunction in neuromuscular disorders: Expanding the portfolio of satellite cell-opathies. Eur J Transl Myol 2022; 32:10064. [PMID: 35302338 PMCID: PMC8992676 DOI: 10.4081/ejtm.2022.10064] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/11/2022] [Indexed: 12/03/2022] Open
Abstract
Neuromuscular disorders are a heterogeneous group of acquired or hereditary conditions that affect striated muscle function. The resulting decrease in muscle strength and motility irreversibly impacts quality of life. In addition to directly affecting skeletal muscle, pathogenesis can also arise from dysfunctional crosstalk between nerves and muscles, and may include cardiac impairment. Muscular weakness is often progressive and paralleled by continuous decline in the ability of skeletal muscle to functionally adapt and regenerate. Normally, the skeletal muscle resident stem cells, named satellite cells, ensure tissue homeostasis by providing myoblasts for growth, maintenance, repair and regeneration. We recently defined 'Satellite Cell-opathies' as those inherited neuromuscular conditions presenting satellite cell dysfunction in muscular dystrophies and myopathies (doi:10.1016/j.yexcr.2021.112906). Here, we expand the portfolio of Satellite Cell-opathies by evaluating the potential impairment of satellite cell function across all 16 categories of neuromuscular disorders, including those with mainly neurogenic and cardiac involvement. We explore the expression dynamics of myopathogenes, genes whose mutation leads to skeletal muscle pathogenesis, using transcriptomic analysis. This revealed that 45% of myopathogenes are differentially expressed during early satellite cell activation (0 - 5 hours). Of these 271 myopathogenes, 83 respond to Pax7, a master regulator of satellite cells. Our analysis suggests possible perturbation of satellite cell function in many neuromuscular disorders across all categories, including those where skeletal muscle pathology is not predominant. This characterisation further aids understanding of pathomechanisms and informs on development of prognostic and diagnostic tools, and ultimately, new therapeutics.
Collapse
Affiliation(s)
- Massimo Ganassi
- King's College London, Randall Centre for Cell and Molecular Biophysics, Guy's Campus, London.
| | - Peter S Zammit
- King's College London, Randall Centre for Cell and Molecular Biophysics, Guy's Campus, London.
| |
Collapse
|
7
|
Juillerat-Jeanneret L, Tafelmeyer P, Golshayan D. Regulation of Fibroblast Activation Protein-α Expression: Focus on Intracellular Protein Interactions. J Med Chem 2021; 64:14028-14045. [PMID: 34523930 DOI: 10.1021/acs.jmedchem.1c01010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The prolyl-specific peptidase fibroblast activation protein-α (FAP-α) is expressed at very low or undetectable levels in nondiseased human tissues but is selectively induced in activated (myo)fibroblasts at sites of tissue remodeling in fibrogenic processes. In normal regenerative processes involving transient fibrosis FAP-α+(myo)fibroblasts disappear from injured tissues, replaced by cells with a normal FAP-α- phenotype. In chronic uncontrolled pathological fibrosis FAP-α+(myo)fibroblasts permanently replace normal tissues. The mechanisms of regulation and elimination of FAP-α expression in(myo)fibroblasts are unknown. According to a yeast two-hybrid screen and protein databanks search, we propose that the intracellular (co)-chaperone BAG6/BAT3 can interact with FAP-α, mediated by the BAG6/BAT3 Pro-rich domain, inducing proteosomal degradation of FAP-α protein under tissue homeostasis. In this Perspective, we discuss our findings in the context of current knowledge on the regulation of FAP-α expression and comment potential therapeutic strategies for uncontrolled fibrosis, including small molecule degraders (PROTACs)-modified FAP-α targeted inhibitors.
Collapse
Affiliation(s)
- Lucienne Juillerat-Jeanneret
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), CH1011 Lausanne, Switzerland.,University Institute of Pathology, CHUV and UNIL, CH1011 Lausanne, Switzerland
| | - Petra Tafelmeyer
- Hybrigenics Services, Laboratories and Headquarters-Paris, 1 rue Pierre Fontaine, 91000 Evry, France.,Hybrigenics Corporation, Cambridge Innovation Center, 50 Milk Street, Cambridge, Massachusetts 02142, United States
| | - Dela Golshayan
- Transplantation Center and Transplantation Immunopathology Laboratory, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), CH1011 Lausanne, Switzerland
| |
Collapse
|
8
|
Sherman MY, Gabai V. The role of Bag3 in cell signaling. J Cell Biochem 2021; 123:43-53. [PMID: 34297413 DOI: 10.1002/jcb.30111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/31/2022]
Abstract
Bag3 has been implicated in a wide variety of physiological processes from autophagy to aggresome formation and from cell transformation to survival. We argue that involvement of Bag3 in many of these processes is due to its distinct function in cell signaling. The structure of Bag3 suggests that it can serve as a scaffold that links molecular chaperones Hsp70 and small Hsps with components of a variety of signaling pathways. Major protein-protein interaction motifs of Bag3 that recruit components of signaling pathways are WW domain and PXXP motif that interacts with SH3-domain proteins. Furthermore, Hsp70-Bag3 appears to be a sensor of abnormal polypeptides during the proteotoxic stress. It also serves as a sensor of a mechanical force during mechanotransduction. Common feature of these and probably certain other sensory mechanisms is that they represent responses to specific kinds of abnormal proteins, i.e. unfolded filamin A in case of mechanotransduction or stalled translating polypeptides in case of sensing proteasome inhibition. Overall Hsp70-Bag3 module represents a novel signaling node that responds to multiple stimuli and controls multiple physiological processes.
Collapse
Affiliation(s)
| | - Vladimir Gabai
- Department of Biochemistry, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Reinle K, Mogk A, Bukau B. The Diverse Functions of Small Heat Shock Proteins in the Proteostasis Network. J Mol Biol 2021; 434:167157. [PMID: 34271010 DOI: 10.1016/j.jmb.2021.167157] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/21/2023]
Abstract
The protein quality control (PQC) system maintains protein homeostasis by counteracting the accumulation of misfolded protein conformers. Substrate degradation and refolding activities executed by ATP-dependent proteases and chaperones constitute major strategies of the proteostasis network. Small heat shock proteins represent ATP-independent chaperones that bind to misfolded proteins, preventing their uncontrolled aggregation. sHsps share the conserved α-crystallin domain (ACD) and gain functional specificity through variable and largely disordered N- and C-terminal extensions (NTE, CTE). They form large, polydisperse oligomers through multiple, weak interactions between NTE/CTEs and ACD dimers. Sequence variations of sHsps and the large variability of sHsp oligomers enable sHsps to fulfill diverse tasks in the PQC network. sHsp oligomers represent inactive yet dynamic resting states that are rapidly deoligomerized and activated upon stress conditions, releasing substrate binding sites in NTEs and ACDs Bound substrates are usually isolated in large sHsp/substrate complexes. This sequestration activity of sHsps represents a third strategy of the proteostasis network. Substrate sequestration reduces the burden for other PQC components during immediate and persistent stress conditions. Sequestered substrates can be released and directed towards refolding pathways by ATP-dependent Hsp70/Hsp100 chaperones or sorted for degradation by autophagic pathways. sHsps can also maintain the dynamic state of phase-separated stress granules (SGs), which store mRNA and translation factors, by reducing the accumulation of misfolded proteins inside SGs and preventing unfolding of SG components. This ensures SG disassembly and regain of translational capacity during recovery periods.
Collapse
Affiliation(s)
- Kevin Reinle
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
10
|
Hervás R, Oroz J. Mechanistic Insights into the Role of Molecular Chaperones in Protein Misfolding Diseases: From Molecular Recognition to Amyloid Disassembly. Int J Mol Sci 2020; 21:ijms21239186. [PMID: 33276458 PMCID: PMC7730194 DOI: 10.3390/ijms21239186] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/29/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Age-dependent alterations in the proteostasis network are crucial in the progress of prevalent neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, or amyotrophic lateral sclerosis, which are characterized by the presence of insoluble protein deposits in degenerating neurons. Because molecular chaperones deter misfolded protein aggregation, regulate functional phase separation, and even dissolve noxious aggregates, they are considered major sentinels impeding the molecular processes that lead to cell damage in the course of these diseases. Indeed, members of the chaperome, such as molecular chaperones and co-chaperones, are increasingly recognized as therapeutic targets for the development of treatments against degenerative proteinopathies. Chaperones must recognize diverse toxic clients of different orders (soluble proteins, biomolecular condensates, organized protein aggregates). It is therefore critical to understand the basis of the selective chaperone recognition to discern the mechanisms of action of chaperones in protein conformational diseases. This review aimed to define the selective interplay between chaperones and toxic client proteins and the basis for the protective role of these interactions. The presence and availability of chaperone recognition motifs in soluble proteins and in insoluble aggregates, both functional and pathogenic, are discussed. Finally, the formation of aberrant (pro-toxic) chaperone complexes will also be disclosed.
Collapse
Affiliation(s)
- Rubén Hervás
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA;
| | - Javier Oroz
- Rocasolano Institute for Physical Chemistry, Spanish National Research Council (IQFR-CSIC), Serrano 119, E-28006 Madrid, Spain
- Correspondence: ; Tel.: +34-915619400
| |
Collapse
|