1
|
Roeterink RMA, Casadevall I Solvas X, Collins DJ, Scott DJ. Force versus Response: Methods for Activating and Characterizing Mechanosensitive Ion Channels and GPCRs. Adv Healthc Mater 2024; 13:e2402167. [PMID: 39402780 DOI: 10.1002/adhm.202402167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/20/2024] [Indexed: 12/18/2024]
Abstract
Mechanotransduction is the process whereby cells convert mechanical signals into electrochemical responses, where mechanosensitive proteins mediate this interaction. To characterize these critical proteins, numerous techniques have been developed that apply forces and measure the subsequent cellular responses. While these approaches have given insight into specific aspects of many such proteins, subsequent validation and cross-comparison between techniques remain difficult given significant variations in reported activation thresholds and responses for the same protein across different studies. Accurately determining mechanosensitivity responses for various proteins, however, is essential for understanding mechanotransduction and potential physiological implications, including therapeutics. This critical review provides an assessment of current and emerging approaches used for mechanosensitive ion channel and G-Coupled Receptors (GPCRs) stimulation and measurement, with a specific focus on the ability to quantitatively measure mechanosensitive responses.
Collapse
Affiliation(s)
- Renate M A Roeterink
- Department of Biomedical Engineering, The University of Melbourne, VIC, Parkville, Victoria, 3010, Australia
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, Leuven, 3001, Belgium
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | | | - David J Collins
- Department of Biomedical Engineering, The University of Melbourne, VIC, Parkville, Victoria, 3010, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
2
|
Dong J, Wang B, Wang G, Zhang S, Wang X, Wang R, Crabbe MJC, Wang Z. Probing action potentials of single beating cardiomyocytes using atomic force microscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5527-5535. [PMID: 39069789 DOI: 10.1039/d4ay00929k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
This paper presents a method for using atomic force microscopy to probe action potentials of single beating cardiomyocytes at the nanoscale. In this work, the conductive tip of an atomic force microscope (AFM) was used as a nanoelectrode to record the action potentials of self-beating cardiomyocytes in both the non-constant force contact mode and the constant force contact mode. An electrical model of a tip-cell interface was developed and the indentation force effect on the seal of an AFM conductive tip-cell membrane was theoretically analyzed. The force feedback of AFM allowed for the precise control of tip-cell contact, and enabled reliable measurements. The feasibility of simultaneously recording the action potentials and force information during the contraction of the same beating cardiomyocyte was studied. Furthermore, the AFM tip electrode was used to probe the differences of action potentials using different drugs. This method provides a way at the nanoscale for electrophysiological studies on single beating cardiomyocytes, neurons, and ion channels embedded within the cell membrane in relation to disease states, pharmaceutical drug testing and screening.
Collapse
Affiliation(s)
- Jianjun Dong
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Bowei Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Guoliang Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Siwei Zhang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Xingyue Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - Rui Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
| | - M James C Crabbe
- Wolfson College, University of Oxford, Oxford OX2 6UD, UK
- Institute of Biomedical and Environmental Science & Technology, Institute for Research in Applicable Computing, University of Bedfordshire, Luton LU1 3JU, UK
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
- Institute of Biomedical and Environmental Science & Technology, Institute for Research in Applicable Computing, University of Bedfordshire, Luton LU1 3JU, UK
| |
Collapse
|
3
|
Peyronnet R, Desai A, Edelmann JC, Cameron BA, Emig R, Kohl P, Dean D. Simultaneous assessment of radial and axial myocyte mechanics by combining atomic force microscopy and carbon fibre techniques. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210326. [PMID: 36189808 PMCID: PMC9527909 DOI: 10.1098/rstb.2021.0326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/21/2022] [Indexed: 11/12/2022] Open
Abstract
Cardiomyocytes sense and shape their mechanical environment, contributing to its dynamics by their passive and active mechanical properties. While axial forces generated by contracting cardiomyocytes have been amply investigated, the corresponding radial mechanics remain poorly characterized. Our aim is to simultaneously monitor passive and active forces, both axially and radially, in cardiomyocytes freshly isolated from adult mouse ventricles. To do so, we combine a carbon fibre (CF) set-up with a custom-made atomic force microscope (AFM). CF allows us to apply stretch and to record passive and active forces in the axial direction. The AFM, modified for frontal access to fit in CF, is used to characterize radial cell mechanics. We show that stretch increases the radial elastic modulus of cardiomyocytes. We further find that during contraction, cardiomyocytes generate radial forces that are reduced, but not abolished, when cells are forced to contract near isometrically. Radial forces may contribute to ventricular wall thickening during contraction, together with the dynamic re-orientation of cells and sheetlets in the myocardium. This new approach for characterizing cell mechanics allows one to obtain a more detailed picture of the balance of axial and radial mechanics in cardiomyocytes at rest, during stretch, and during contraction. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
Collapse
Affiliation(s)
- Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg – Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | - Breanne A. Cameron
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg – Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - Ramona Emig
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg – Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg – Bad Krozingen, University of Freiburg, 79110 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
- National Heart and Lung Institute, Imperial College London, London, UK
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | | |
Collapse
|
4
|
Tamayo-Elizalde M, Chen H, Malboubi M, Ye H, Jerusalem A. Action potential alterations induced by single F11 neuronal cell loading. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 162:141-153. [PMID: 33444567 DOI: 10.1016/j.pbiomolbio.2020.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/19/2020] [Accepted: 12/18/2020] [Indexed: 01/06/2023]
Abstract
Several research programmes have demonstrated how Transcranial Ultrasound Stimulation (TUS) can non-invasively and reversibly mechanically perturb neuronal functions. However, the mechanisms through which such reversible and a priori non-damaging behaviour can be observed remain largely unknown. While several TUS protocols have demonstrated motor and behavioural alterations in in vivo models, in vitro studies remain scarce. In particular, an experimental framework able to load mechanically an individual neuron in a controlled manner and simultaneously measure the generation and evolution of action potentials before, during and after such load, while allowing for direct microscopy, has not been successfully proposed. To this end, we herein present a multiphysics setup combining nanoindentation and patch clamp systems, assembled in an inverted microscope for simultaneous bright-field or fluorescence imaging. We evaluate the potential of the platform with a set of experiments in which single dorsal root ganglion-derived neuronal cell bodies are compressed while their spontaneous activity is recorded. We show that these transient quasi-static mechanical loads reversibly affect the amplitude and rate of change of the neuronal action potentials, which are smaller and slower upon indentation, while irreversibly altering other features. The ability to simultaneously image, mechanically and electrically manipulate and record single cells in a perturbed mechanical environment makes this system particularly suitable for studying the multiphysics of the brain at the cell level.
Collapse
Affiliation(s)
| | - Haoyu Chen
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Majid Malboubi
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Hua Ye
- Department of Engineering Science, University of Oxford, Oxford, UK
| | - Antoine Jerusalem
- Department of Engineering Science, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Desbiolles BXE, Hannebelle MTM, de Coulon E, Bertsch A, Rohr S, Fantner GE, Renaud P. Volcano-Shaped Scanning Probe Microscopy Probe for Combined Force-Electrogram Recordings from Excitable Cells. NANO LETTERS 2020; 20:4520-4529. [PMID: 32426984 PMCID: PMC7291358 DOI: 10.1021/acs.nanolett.0c01319] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/19/2020] [Indexed: 05/30/2023]
Abstract
Atomic force microscopy based approaches have led to remarkable advances in the field of mechanobiology. However, linking the mechanical cues to biological responses requires complementary techniques capable of recording these physiological characteristics. In this study, we present an instrument for combined optical, force, and electrical measurements based on a novel type of scanning probe microscopy cantilever composed of a protruding volcano-shaped nanopatterned microelectrode (nanovolcano probe) at the tip of a suspended microcantilever. This probe enables simultaneous force and electrical recordings from single cells. Successful impedance measurements on mechanically stimulated neonatal rat cardiomyocytes in situ were achieved using these nanovolcano probes. Furthermore, proof of concept experiments demonstrated that extracellular field potentials (electrogram) together with contraction displacement curves could simultaneously be recorded. These features render the nanovolcano probe especially suited for mechanobiological studies aiming at linking mechanical stimuli to electrophysiological responses of single cells.
Collapse
Affiliation(s)
- B. X. E. Desbiolles
- Laboratory
of Microsystems LMIS4, Ecole Polytechnique
Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - M. T. M Hannebelle
- Laboratory
of Bio- and Nano- Instrumentation, Ecole
Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - E. de Coulon
- Laboratory
of Cellular Optics II, Department of Physiology, University of Bern, Bern 3012, Switzerland
| | - A. Bertsch
- Laboratory
of Microsystems LMIS4, Ecole Polytechnique
Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - S. Rohr
- Laboratory
of Cellular Optics II, Department of Physiology, University of Bern, Bern 3012, Switzerland
| | - G. E. Fantner
- Laboratory
of Bio- and Nano- Instrumentation, Ecole
Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - P. Renaud
- Laboratory
of Microsystems LMIS4, Ecole Polytechnique
Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
6
|
Bhattacharjee S, Brayden DJ. Development of nanotoxicology: implications for drug delivery and medical devices. Nanomedicine (Lond) 2015; 10:2289-305. [DOI: 10.2217/nnm.15.69] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Current nanotoxicology research suffers from suboptimal in vitro models, lack of in vitro–in vivo correlations, variability within in vitro protocols, deficits in both material purity and physicochemical characterization. Reliable nanomaterial toxicity and mechanistic insights are required for health and toxicity risk assessments. Much in vitro toxicological data is inconclusive in designating whether nanomaterials for drug delivery and medical device implants are truly safe. A critique is presented to analyze the interface between toxicology and nanopharmaceuticals. Deficiencies of existing practices in toxicology are reviewed and useful emerging techniques (e.g., lab-on-a-chip, tissue engineering, atomic force microscopy, high-content analysis) are highlighted. Cross-fertilization between disciplines will aid development of biocompatible delivery and implant platforms while improvements are being suggested for better translation of nanotoxicology.
Collapse
Affiliation(s)
| | - David J Brayden
- Conway Institute, University College Dublin (UCD), Dublin, Ireland
- School of Veterinary Medicine, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
7
|
Robertson JWF, Kasianowicz JJ, Banerjee S. Analytical Approaches for Studying Transporters, Channels and Porins. Chem Rev 2012; 112:6227-49. [DOI: 10.1021/cr300317z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Joseph W. F. Robertson
- Physical Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899, United States
| | - John J. Kasianowicz
- Physical Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899, United States
| | - Soojay Banerjee
- National
Institute of Neurological
Disorders and Stroke, Bethesda, Maryland 20824, United States
| |
Collapse
|
8
|
Quantitative microscopy and imaging tools for the mechanical analysis of morphogenesis. Curr Opin Genet Dev 2011; 21:664-70. [PMID: 21893407 DOI: 10.1016/j.gde.2011.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 11/20/2022]
Abstract
The importance of mechanical signals during embryogenesis and development, through both intercellular and extracellular signals, is coming into focus. It is widely hypothesized that physical forces help to guide the shape, cellular differentiation and the patterning of tissues. To test these ideas many classical engineering principles and imaging technologies are being adapted. Recent advances in microscopy, mechanical testing and genetic and pharmacological techniques, alongside computational models are helping to dissect the activity of mechanical signals in development at the cellular and molecular level. These inroads are providing maps of mechanical changes in tissue structure and stiffness, and will permit deeper insights into the role of mechanics in both developmental biology and disease.
Collapse
|