1
|
Ge X, Zhang Q, Fei T, Wu Y, Luo L, Du P. Designing Polychromatic Luminescence in Mn 2+-Doped Cs 2NaLuCl 6 Double Perovskite Crystals via Energy Transfer Engineering for Optical Thermometry and X-ray Imaging. Inorg Chem 2025; 64:3038-3047. [PMID: 39895068 DOI: 10.1021/acs.inorgchem.4c05370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Metal halide double perovskites with splendid optical features have been considerably investigated for optoelectronic applications. Herein, a series of Mn2+-doped Cs2NaLuCl6 double perovskite crystals were prepared. Via adopting the density functional theory calculation, the effect of Mn2+ doping on the electronic structure of the Cs2NaLuCl6 compound was discussed. It was found that the Cs2NaLuCl6 crystal can emit intense blue light from the host self-trapped exciton (STE) emission. Excited by 320 nm, the STE and Mn2+ emissions were simultaneously observed in the resulting crystals. Owing to the efficient energy transfer from the STE to Mn2+, polychromatic luminescence was observed in final products. Moreover, taking advantage of the various responses of the emission intensities of the STE and Mn2+ to temperature, the thermometric characteristics of resulting crystals were investigated, and their maximum relative sensitivity is 0.99% K-1, which is hardly impacted by Mn2+ content. Furthermore, the prepared crystals exhibit good X-ray radioluminescence properties, with a low detection limitation of 0.99 μGyair s-1. Additionally, utilizing the designed crystal, flexible X-ray imaging with a high resolution of 20 lp mm-1 that can be operated in a high-temperature environment was realized. These results indicated that the Mn2+-doped Cs2NaLuCl6 double perovskite crystals are suitable for optical thermometry and X-ray imaging.
Collapse
Affiliation(s)
- Xuanyu Ge
- School of Physical Science and Technology, Ningbo University, 315211 Ningbo, Zhejiang, China
| | - Quan Zhang
- Key Laboratory of MEMS of Ministry of Education, School of Electrical Science and Engineering, Southeast University, Nanjing 210096, China
| | - Ting Fei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Ningbo University, 315020 Ningbo, Zhejiang, China
| | - Yajian Wu
- School of Physical Science and Technology, Ningbo University, 315211 Ningbo, Zhejiang, China
| | - Laihui Luo
- School of Physical Science and Technology, Ningbo University, 315211 Ningbo, Zhejiang, China
| | - Peng Du
- School of Physical Science and Technology, Ningbo University, 315211 Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Iwan A, Bogdanowicz KA, Pich R, Gonciarz A, Pellowski W, Miedziak J, Przybyl W. Photovoltaic Cells and Scintillators Towards Carbon Footprint Reduction: Advantages and Challenges for Ecological Safety. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5909. [PMID: 39685345 DOI: 10.3390/ma17235909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/23/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024]
Abstract
The main goal of this review paper is to show the advantages and challenges of photovoltaic cells/modules/panels and scintillators towards carbon footprint reduction for ecological safety. Briefly, the various types of solar-driven CO2 conversion processes are shown as a new concept of CO2 reduction. The health toxicity and environmental effects of scintillators, along with risks associated with use and disposal, are presented, taking into consideration inorganic and organic materials. Factors affecting the durability and lifespan of scintillators and the carbon footprint of solar cell production are analysed, considering CO2 emission. Moreover, the technology of recycling photovoltaic modules and scintillators, along with a SWOT analysis of scintillation material toxicity, is presented to find the best solutions for clean technology and ecological safety. Finally, we offer recommendations for the areas where the most significant reductions in CO2 emissions are expected to be implemented in the future of green energy in industry, including ESG strategies.
Collapse
Affiliation(s)
- Agnieszka Iwan
- Faculty of Security and Safety Research, General Tadeusz Kosciuszko Military University of Land Forces, Czajkowskiego 109 Str., 51-147 Wroclaw, Poland
| | | | - Robert Pich
- Faculty of Security and Safety Research, General Tadeusz Kosciuszko Military University of Land Forces, Czajkowskiego 109 Str., 51-147 Wroclaw, Poland
| | - Agnieszka Gonciarz
- Faculty of Security and Safety Research, General Tadeusz Kosciuszko Military University of Land Forces, Czajkowskiego 109 Str., 51-147 Wroclaw, Poland
| | - Witalis Pellowski
- Faculty of Security and Safety Research, General Tadeusz Kosciuszko Military University of Land Forces, Czajkowskiego 109 Str., 51-147 Wroclaw, Poland
| | - Jacek Miedziak
- Faculty of Security and Safety Research, General Tadeusz Kosciuszko Military University of Land Forces, Czajkowskiego 109 Str., 51-147 Wroclaw, Poland
| | - Wojciech Przybyl
- Military Institute of Engineer Technology, 136 Obornicka Str, 50-961 Wroclaw, Poland
| |
Collapse
|
3
|
Patil SM, Agrawal R, Gupta R, Kumar Gupta S, Ghosh A, Kumar S, Jayachandran K, Ghanty TK. Understanding the excited state dynamics and redox behavior of highly luminescent and electrochemically active Eu(III)-DES complex. Dalton Trans 2023; 52:17349-17359. [PMID: 37937949 DOI: 10.1039/d3dt02764c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Deep eutectic solvents (DES) are considered a novel class of environmentally benign molecular solvents that are considered as potential solvents for nuclear fuel reprocessing, material recycling, and many other technological applications in both research and industry. However, there is a complete dearth of understanding pertaining to the behavior of metal ions in DES. Herein, we have investigated the speciation, complexation behavior, photochemistry, and redox properties and tried to obtain insight into the chemical aspects of the europium ion in DES (synthesized from heptyltriphenylphosphonium bromide and decanoic acid). The same has been probed using time-resolved photoluminescence (TRPL), cyclic voltammetry (CV), synchrotron-based extended X-ray absorption fine structure (EXAFS) spectroscopy, and density functional theory (DFT) calculations. TRPL indicated the stabilization of europium in the +3 oxidation state, favoring the potential of the Eu(III)-DES complex to emit red light under near UV excitation and the existence of inefficient energy transfer between DES and Eu3+. EXAFS analysis revealed the presence of Eu-O and Eu-Br, which represent the local surroundings of Eu3+ in the Eu(III)-DES complex. TRPL measurement has also suggested two distinct local environments of europium ions in the complex. DFT calculations supported the EXAFS findings, confirming that the Eu(III)-DES structure involves not only the oxygen atom of decanoic acid but also the oxygen atoms from the nitrate ions, contributing to the local coordination of Eu(III). Electrochemical studies demonstrated that the redox reaction of Eu(III)/Eu(II) in DES displays quasi-reversible behavior. The reaction rate was observed to increase with higher temperatures. The findings of this study can contribute to the understanding of the fundamental properties and potential applications of this luminescent and electrochemically active complex and pave the way for further studies and the development of novel materials with enhanced luminescent and electrochemical properties.
Collapse
Affiliation(s)
- Sushil M Patil
- Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Ruchi Agrawal
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Ruma Gupta
- Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Santosh Kumar Gupta
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Ayan Ghosh
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | - Sumit Kumar
- Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Kavitha Jayachandran
- Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
| | - Tapan K Ghanty
- Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| |
Collapse
|
4
|
Sobolev BP, Sulyanova EA. Two-Component Rare-Earth Fluoride Materials with Negative Thermal Expansion Based on a Phase Transition-Type Mechanism in 50 RF 3- R'F 3 ( R = La-Lu) Systems. Int J Mol Sci 2023; 24:14000. [PMID: 37762303 PMCID: PMC10530745 DOI: 10.3390/ijms241814000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The formation of materials with negative thermal expansion (NTE) based on a phase transition-type mechanism (NTE-II) in 50 T-x (temperature-composition) RF3-R'F3 (R = La-Lu) systems out of 105 possible is predicted. The components of these systems are "mother" RF3 compounds (R = Pm, Sm, Eu, and Gd) with polymorphic transformations (PolTrs), which occur during heating between the main structural types of RF3: β-(β-YF3) → t-(mineral tysonite LaF3). The PolTr is characterized by a density anomaly: the formula volume (Vform) of the low-temperature modification (Vβ-) is higher than that of the high-temperature modification (Vt-) by a giant value (up to 4.7%). In RF3-R'F3 systems, isomorphic substitutions chemically modify RF3 by forming R1-xR'xF3solid solutions (ss) based on both modifications. A two-phase composite (β-ss + t-ss) is a two-component NTE-II material with adjustable parameters. The prospects of using the material are estimated using the parameter of the average volume change (ΔV/Vav). The Vav at a fixed gross composition of a system is determined by the β-ss and t-ss decay (synthesis) curves and the temperature T. The regulation of ΔV/Vav is achieved by changing T within a "window ΔT". The available ΔT values are determined using phase diagrams. A chemical classification (ChCl) translates the search for NTE-II materials from 15 RF3 into an array of 105 RF3-R'F3 systems. Phase diagrams are divided into 10 types of systems (TypeSs), in four of which NTE-II materials are formed. The tables of the systems that comprise these TypeSs are presented. The position of Ttrans of the PolTr on the T scale for a short quasi-system (QS) "from PmF3 to TbF3" determines the interval of the ΔTtrans offset achievable in the RF3-R'F3 systems: from -148 to 1186 ± 10 °C. NTE-II fluoride materials exceed known NTE-II materials by almost three times in this parameter. Equilibrium in RF3-R'F3 systems is established quickly. The number of qualitatively different two-component fluoride materials with the giant NTE-II can be increased by more than ten times compared to RF3 with NTE-II.
Collapse
Affiliation(s)
| | - Elena A. Sulyanova
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Leninskiy Prospekt 59, 119333 Moscow, Russia;
| |
Collapse
|
5
|
Shonde TB, Chaaban M, Liu H, Olasupo OJ, Ben-Akacha A, Gonzalez FG, Julevich K, Lin X, Winfred JSRV, Stand LM, Zhuravleva M, Ma B. Molecular Sensitization Enabled High Performance Organic Metal Halide Hybrid Scintillator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301612. [PMID: 36988220 DOI: 10.1002/adma.202301612] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Indexed: 06/09/2023]
Abstract
Scintillators, one of the essential components in medical imaging and security checking devices, rely heavily on rare-earth-containing inorganic materials. Here, a new type of organic-inorganic hybrid scintillators containing earth abundant elements that can be prepared via low-temperature processes is reported. With room temperature co-crystallization of an aggregation-induced emission (AIE) organic halide, 4-(4-(diphenylamino) phenyl)-1-(propyl)-pyrindin-1ium bromide (TPA-PBr), and a metal halide, zinc bromide (ZnBr2 ), a zero-dimensional (0D) organic metal halide hybrid (TPA-P)2 ZnBr4 with a yellowish-green emission peaked at 550 nm has been developed. In this hybrid material, dramatically enhanced X-ray scintillation of TPA-P+ is achieved via the sensitization by ZnBr4 2- . The absolute light yield (14,700 ± 800 Photons/MeV) of (TPA-P)2 ZnBr4 is found to be higher than that of anthracene (≈13,500 Photons/MeV), a well-known organic scintillator, while its X-ray absorption is comparable to those of inorganic scintillators. With TPA-P+ as an emitting center, short photoluminescence and radioluminescence decay lifetimes of 3.56 and 9.96 ns have been achieved. Taking the advantages of high X-ray absorption of metal halides and efficient radioluminescence with short decay lifetimes of organic cations, the material design paves a new pathway to address the issues of low X-ray absorption of organic scintillators and long decay lifetimes of inorganic scintillators simultaneously.
Collapse
Affiliation(s)
- Tunde Blessed Shonde
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Maya Chaaban
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - He Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | | | - Azza Ben-Akacha
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Fabiola G Gonzalez
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Kerri Julevich
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Xinsong Lin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | | | - Luis M Stand
- Department of Nuclear Engineering, University of Tennessee, Knoxville, TN, 37996, USA
- Scintillation Materials Research Center, University of Tennessee, Knoxville, TN, 37996, USA
| | - Mariya Zhuravleva
- Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Biwu Ma
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
- Materials Science and Engineering Program, Florida State University, Tallahassee, FL, 32306, USA
| |
Collapse
|
6
|
Aboelezz E, Pogue BW. Review of nanomaterial advances for ionizing radiation dosimetry. APPLIED PHYSICS REVIEWS 2023; 10:021312. [PMID: 37304732 PMCID: PMC10249220 DOI: 10.1063/5.0134982] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/01/2023] [Indexed: 06/13/2023]
Abstract
There are a wide range of applications with ionizing radiation and a common theme throughout these is that accurate dosimetry is usually required, although many newer demands are provided by improved features in higher range, multi-spectral and particle type detected. Today, the array of dosimeters includes both offline and online tools, such as gel dosimeters, thermoluminescence (TL), scintillators, optically stimulated luminescence (OSL), radiochromic polymeric films, gels, ionization chambers, colorimetry, and electron spin resonance (ESR) measurement systems. Several future nanocomposite features and interpretation of their substantial behaviors are discussed that can lead to improvements in specific features, such as (1) lower sensitivity range, (2) less saturation at high range, (3) overall increased dynamic range, (4) superior linearity, (5) linear energy transfer and energy independence, (6) lower cost, (7) higher ease of use, and (8) improved tissue equivalence. Nanophase versions of TL and ESR dosimeters and scintillators each have potential for higher range of linearity, sometimes due to superior charge transfer to the trapping center. Both OSL and ESR detection of nanomaterials can have increased dose sensitivity because of their higher readout sensitivity with nanoscale sensing. New nanocrystalline scintillators, such as perovskite, have fundamentally important advantages in sensitivity and purposeful design for key new applications. Nanoparticle plasmon coupled sensors doped within a lower Zeff material have been an effective way to achieve enhanced sensitivity of many dosimetry systems while still achieving tissue equivalency. These nanomaterial processing techniques and unique combinations of them are key steps that lead to the advanced features. Each must be realized through industrial production and quality control with packaging into dosimetry systems that maximize stability and reproducibility. Ultimately, recommendations for future work in this field of radiation dosimetry were summarized throughout the review.
Collapse
Affiliation(s)
- Eslam Aboelezz
- Ionizing Radiation Metrology Department, National Institute of Standards, Giza, Egypt
| | - Brian W. Pogue
- Department of Medical Physics, University of Wisconsin-Madison, Madison 53705, USA
| |
Collapse
|
7
|
Zahra B, Guerbous L, Bousbia-salah H, Boukerika A. Effect of annealing atmospheres on the scintillation properties of Ce3+-doped YAG nanoscintillator. RADIATION DETECTION TECHNOLOGY AND METHODS 2023. [DOI: 10.1007/s41605-023-00397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
8
|
Souris JS, Leoni L, Zhang HJ, Pan A, Tanios E, Tsai HM, Balyasnikova IV, Bissonnette M, Chen CT. X-ray Activated Nanoplatforms for Deep Tissue Photodynamic Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:673. [PMID: 36839041 PMCID: PMC9962876 DOI: 10.3390/nano13040673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 05/10/2023]
Abstract
Photodynamic therapy (PDT), the use of light to excite photosensitive molecules whose electronic relaxation drives the production of highly cytotoxic reactive oxygen species (ROS), has proven an effective means of oncotherapy. However, its application has been severely constrained to superficial tissues and those readily accessed either endoscopically or laparoscopically, due to the intrinsic scattering and absorption of photons by intervening tissues. Recent advances in the design of nanoparticle-based X-ray scintillators and photosensitizers have enabled hybridization of these moieties into single nanocomposite particles. These nanoplatforms, when irradiated with diagnostic doses and energies of X-rays, produce large quantities of ROS and permit, for the first time, non-invasive deep tissue PDT of tumors with few of the therapeutic limitations or side effects of conventional PDT. In this review we examine the underlying principles and evolution of PDT: from its initial and still dominant use of light-activated, small molecule photosensitizers that passively accumulate in tumors, to its latest development of X-ray-activated, scintillator-photosensitizer hybrid nanoplatforms that actively target cancer biomarkers. Challenges and potential remedies for the clinical translation of these hybrid nanoplatforms and X-ray PDT are also presented.
Collapse
Affiliation(s)
- Jeffrey S. Souris
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | - Lara Leoni
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | - Hannah J. Zhang
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | - Ariel Pan
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY 10065, USA
| | - Eve Tanios
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
| | - Hsiu-Ming Tsai
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| | | | - Marc Bissonnette
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Chin-Tu Chen
- Department of Radiology, The University of Chicago, Chicago, IL 60637, USA
- Integrated Small Animal Imaging Research Resource, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Maiti D, Yu H, Kim BS, Naito M, Yamashita S, Kim HJ, Miyata K. Rose Bengal Decorated NaYF 4:Tb Nanoparticles for Low Dose X-ray-Induced Photodynamic Therapy in Cancer Cells. ACS APPLIED BIO MATERIALS 2022; 5:5477-5486. [PMID: 36318743 DOI: 10.1021/acsabm.2c00801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The use of scintillating nanoparticles (ScNPs) in X-ray-induced photodynamic therapy (X-PDT) is a technique for deep tissue-localized tumor therapy with few side effects. ScNPs transfer X-ray-induced energy to photosensitizers, which generate massive amounts of reactive oxygen species (ROS) and kill cancer cells. Here we fabricated rose bengal (RB)-installed, Tb3+-rich NaYF4 nanocrystals (NaYF4:Tb@RB), in which optically inert Y3+ enables highly efficient energy transfer via high amounts of Tb3+ doping. NaYF4:Tb was prepared via solvothermal synthesis to have an average size of 7.6 nm, followed by coating with poly(maleic anhydride-alt-1-octedecene)-poly(ethylene glycol) with a molecular weight of 2000 (C18PMH-PEG2k). Further, RB was covalently conjugated to carboxyl groups generated from PMH on NaYF4:Tb using an ethylenediamine linker. NaYF4:Tb@RB exhibited a hydrodynamic diameter of ∼75 nm with a ζ-potential of -12 mV. NaYF4:Tb@RB efficiently generated ROS in cultured luciferase-expressing murine epithelial breast cancer (4T1-luc) cells under low dose X-ray irradiation (0.5 Gy). The ROS generation amounts of NaYF4:Tb@RB were 1.5-2-fold higher than those of NaGdF4:Tb@RB, in which host nanocrystals were prepared with optically active Gd3+. Flow cytometric and confocal microscopic analyses showed higher intracellular ROS production of NaYF4:Tb@RB, compared to NaYF4:Tb and RB, resulting in higher X-ray-induced DNA damage in cultured 4T1-luc cells. Ultimately, NaYF4:Tb@RB elicited significant cytotoxicity after X-ray irradiation (0.5 Gy), while inducing marginal cytotoxicity without X-ray irradiation. Altogether, this research proposes a promising ScNP design for efficient X-PDT agents that make the better use of incident X-ray energy while causing the fewest side effects.
Collapse
Affiliation(s)
- Debabrata Maiti
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hao Yu
- Nuclear Professional School, Graduate School of Engineering, The University of Tokyo, 2-22 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188, Japan
| | - Beob Soo Kim
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mitsuru Naito
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinichi Yamashita
- Nuclear Professional School, Graduate School of Engineering, The University of Tokyo, 2-22 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188, Japan
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.,Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
10
|
Chen H, Chen J, Li M, You M, Chen Q, Lin M, Yang H. Recent advances in metal-organic frameworks for X-ray detection. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1334-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Influence of the methods of synthesis and grain size distribution on XEOL spectra of CaWO4:xTb3+. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Gupta SK, Modak B, Tyagi M, Rawat NS, Modak P, Sudarshan K. Harvesting Light from BaHfO 3/Eu 3+ through Ultraviolet, X-ray, and Heat Stimulation: An Optically Multifunctional Perovskite. ACS OMEGA 2022; 7:5311-5323. [PMID: 35187346 PMCID: PMC8851442 DOI: 10.1021/acsomega.1c06474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/21/2022] [Indexed: 05/09/2023]
Abstract
Materials with optical multifunctionality such as photoluminescence (PL), radioluminescence, and thermoluminescence (TL) are a boon for a sustainable society. BaHfO3 (barium hafnium oxide [BHO]) under UV irradiation demonstrated visible PL endowed by oxygen vacancies (OVs). Eu3+ doping in BHO (BHOE) introduces f-state impurity levels just below the conduction band for both Eu@Ba and Eu@Hf sites, causing efficient host-to-dopant energy transfer, generating intense 5D0 → 7F1 magnetic dipole transitions (MDT) with internal quantum yield of ∼70%. X-ray photoelectron spectroscopy and electron paramagnetic resonance showed the formation of OVs in both BHO and BHOE samples with more vacancies in the doped sample. The positron lifetime measurements suggested that Eu3+ ions are distributed at both Ba2+ and Hf4+ sites. The association of OVs with Hf4+ and Eu3+ ions due to high charge/radius ratio is considered to be responsible for lowering the symmetry around Eu3+ ions to C 4v in BHOE. Density functional theory studies of defect formation energy justified the same. Time-resolved emission spectroscopy showed distinct spectra for Eu@Ba and Eu@Hf sites corresponding to symmetric and asymmetric environments, respectively. This could be highly relevant in designing color tunable phosphor by forcing dopant ions at one specific site because Eu@Ba displayed orange emission whereas Eu@Hf displayed red emission. We could further harness BHOE for X-ray scintillator application by designing a thin film, which showed efficient conversion of high-energy X-ray into visible light. Under beta irradiation; both BHO and BHOE showed distinct TL glow curves as shallow traps were formed in the former and deep traps in the latter, which could have long-term implications in harnessing this material for persistent luminescence. We believe that BHO/BHOE demonstrated an extraordinary credential as a perovskite for multifunctional applications in the area of defect-induced light emission, UV phosphor, X-ray scintillator, and TL crystals.
Collapse
Affiliation(s)
- Santosh Kumar Gupta
- Radiochemistry
Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai 400094, India
| | - Brindaban Modak
- Chemistry
Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai 400094, India
| | - Mohit Tyagi
- Technical
Physics Division, Bhabha Atomic Research
Centre, Mumbai 400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai 400094, India
| | - Narender Singh Rawat
- Radiological
Physics and Advisory Division, Bhabha Atomic
Research Centre, Mumbai 400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai 400094, India
| | - Pampa Modak
- Radiological
Safety Division, Atomic Energy Regulatory
Board, Anushaktinagar, Mumbai 400094, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai 400094, India
| | - Kathi Sudarshan
- Radiochemistry
Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha
National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
13
|
Min S, Seo B, Roh C, Hong S, Cheong J. Phoswich Detectors in Sensing Applications. SENSORS (BASEL, SWITZERLAND) 2021; 21:4047. [PMID: 34208411 PMCID: PMC8231195 DOI: 10.3390/s21124047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022]
Abstract
Herein, we review studies of the integration of Phoswich detectors with readout integrated circuits and the associated performance in a radiological sensing application. The basic concept and knowledge of interactions with scintillation materials and the mechanisms and characteristics of radiological detection are extensively discussed. Additionally, we summarize integrated multiple detection systems and Phoswich detectors in radiological measurements for their device performance. Moreover, we further exhibit recent progress and perspective in the future of Phoswich-based radiological detection and measurement. Finally, we provide perspectives to evaluate the detector performance for radiological detection and measurement. We expect this review can pave the way to understanding the recent status and future challenges for Phoswich detectors for radiological detection and measurement.
Collapse
Affiliation(s)
- Sujung Min
- Department of Nuclear Engineering, Kyung-Hee University, Yongin-si 17104, Korea;
- Decommissioning Technology Research Division, Korea Atomic Energy Research Institute, Daejeon 34057, Korea;
| | - Bumkyung Seo
- Decommissioning Technology Research Division, Korea Atomic Energy Research Institute, Daejeon 34057, Korea;
| | - Changhyun Roh
- Decommissioning Technology Research Division, Korea Atomic Energy Research Institute, Daejeon 34057, Korea;
- Quantum Energy Chemical Engineering, University of Science and Technology (UST), 217 Gajeong-ro, Daejeon 34113, Korea
| | - Sangbum Hong
- Decommissioning Technology Research Division, Korea Atomic Energy Research Institute, Daejeon 34057, Korea;
| | - JaeHak Cheong
- Department of Nuclear Engineering, Kyung-Hee University, Yongin-si 17104, Korea;
| |
Collapse
|
14
|
Gupta SK, Prasad KS, Pathak N, Kadam R. Color tuning in CaZrO3:RE3+ perovskite by choice of rare earth ion. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128776] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Gupta SK, Rajeshwari B, Achary SN, Tyagi AK, Kadam RM. Controlling the luminescence in K 2Th(PO 4) 2:Eu 3+ by energy transfer and excitation photon: a multicolor emitting phosphor. NEW J CHEM 2020. [DOI: 10.1039/d0nj03117h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This work highlighted green, red, and white light emission from a single K2Th(PO4)2 compound consisting of actinide and an alkali ion through defect, doping, excitation, and energy transfer manipulation.
Collapse
Affiliation(s)
- Santosh K. Gupta
- Radiochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
| | - B. Rajeshwari
- Radiochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
| | - S. N. Achary
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
- Homi Bhabha National Institute
| | - A. K. Tyagi
- Chemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
- Homi Bhabha National Institute
| | - R. M. Kadam
- Radiochemistry Division
- Bhabha Atomic Research Centre
- Mumbai 400085
- India
- Homi Bhabha National Institute
| |
Collapse
|