1
|
Kovalenko V, Tereshkina K, Moiseenko A, Ryzhykau YL, Kuklin AI, Tereshkin E, Zaytsev P, Generalova A, Persiyantseva N, Sokolova OS, Krupyanskii Y, Loiko N. The Dps Protein Protects Escherichia coli DNA in the Form of the Trimer. Int J Mol Sci 2025; 26:619. [PMID: 39859335 PMCID: PMC11766142 DOI: 10.3390/ijms26020619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/29/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
The Dps protein is the major DNA-binding protein of prokaryotes, which protects DNA during starvation by forming a crystalline complex. The structure of such an intracellular DNA-Dps complex is still unknown. However, the phenomenon of a decrease in the size of the Dps protein from 90 Å to 69-75 Å during the formation of a complex with DNA has been repeatedly observed, and no explanation has been given. In this work, we show that during the formation of intracellular DNA-Dps crystals, the protein transitions to another oligomeric form: from a dodecameric (of 12 monomers), which has an almost spherical shape with a diameter of 90 Å, to a trimeric (of three monomers), which has a shape close to a torus-like structure with a diameter of 70 Å and a height of 40 Å. The trimer model was obtained through the molecular dynamic modeling of the interaction of the three monomers of the Dps protein. Placement of the obtained trimer in the electron density of in vitro DNA-Dps crystal allowed for the determination of the lattice parameters of the studied crystal. This crystal model was in good agreement with the SAXS data obtained from intracellular crystals of 2-day-old Escherichia coli cells. The final crystal structure contains a DNA molecule in the through channel of the crystal structure between the Dps trimers. It was discussed that the mechanism of protein transition from one oligomeric form to another in the cell cytoplasm could be regulated by intracellular metabolites and is a simple and flexible mechanism of prokaryotic cell transition from one metabolic state to another.
Collapse
Affiliation(s)
- Vladislav Kovalenko
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (K.T.); (E.T.); (A.G.); (Y.K.)
| | - Ksenia Tereshkina
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (K.T.); (E.T.); (A.G.); (Y.K.)
| | - Andrey Moiseenko
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.M.); (P.Z.); (O.S.S.)
| | - Yury L. Ryzhykau
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (Y.L.R.); (A.I.K.)
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - Alexander I. Kuklin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (Y.L.R.); (A.I.K.)
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - Eduard Tereshkin
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (K.T.); (E.T.); (A.G.); (Y.K.)
| | - Petr Zaytsev
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.M.); (P.Z.); (O.S.S.)
| | - Anastasiya Generalova
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (K.T.); (E.T.); (A.G.); (Y.K.)
| | - Nadezhda Persiyantseva
- “N. N. Blokhin National Medical Research Centre of Oncology” of the Health Ministry of Russia, 115478 Moscow, Russia;
| | - Olga S. Sokolova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.M.); (P.Z.); (O.S.S.)
| | - Yurii Krupyanskii
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia; (K.T.); (E.T.); (A.G.); (Y.K.)
| | - Nataliya Loiko
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
2
|
Panwar H, Rokana N, Aparna SV, Kaur J, Singh A, Singh J, Singh KS, Chaudhary V, Puniya AK. Gastrointestinal stress as innate defence against microbial attack. J Appl Microbiol 2020; 130:1035-1061. [PMID: 32869386 DOI: 10.1111/jam.14836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/09/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
The human gastrointestinal (GI) tract has been bestowed with the most difficult task of protecting the underlying biological compartments from the resident commensal flora and the potential pathogens in transit through the GI tract. It has a unique environment in which several defence tactics are at play while maintaining homeostasis and health. The GI tract shows myriad number of environmental extremes, which includes pH variations, anaerobic conditions, nutrient limitations, elevated osmolarity etc., which puts a check to colonization and growth of nonfriendly microbial strains. The GI tract acts as a highly selective barrier/platform for ingested food and is the primary playground for balance between the resident and uninvited organisms. This review focuses on antimicrobial defense mechanisms of different sections of human GI tract. In addition, the protective mechanisms used by microbes to combat the human GI defence systems are also discussed. The ability to survive this innate defence mechanism determines the capability of probiotic or pathogen strains to confer health benefits or induce clinical events respectively.
Collapse
Affiliation(s)
- H Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - N Rokana
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - S V Aparna
- Department of Dairy Microbiology, College of Dairy Science and Technology, Kerala Veterinary and Animal Science University, Mannuthy, Thrissur, India
| | - J Kaur
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - A Singh
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - J Singh
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - K S Singh
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - V Chaudhary
- Department of Microbiology, Punjab Agriculture University, Ludhiana, Punjab, India
| | - A K Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
3
|
Tirumalai MR, Stepanov VG, Wünsche A, Montazari S, Gonzalez RO, Venkateswaran K, Fox GE. Bacillus safensis FO-36b and Bacillus pumilus SAFR-032: a whole genome comparison of two spacecraft assembly facility isolates. BMC Microbiol 2018; 18:57. [PMID: 29884123 PMCID: PMC5994023 DOI: 10.1186/s12866-018-1191-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/18/2018] [Indexed: 11/16/2022] Open
Abstract
Background Bacillus strains producing highly resistant spores have been isolated from cleanrooms and space craft assembly facilities. Organisms that can survive such conditions merit planetary protection concern and if that resistance can be transferred to other organisms, a health concern too. To further efforts to understand these resistances, the complete genome of Bacillus safensis strain FO-36b, which produces spores resistant to peroxide and radiation was determined. The genome was compared to the complete genome of B. pumilus SAFR-032, and the draft genomes of B. safensis JPL-MERTA-8-2 and the type strain B. pumilus ATCC7061T. Additional comparisons were made to 61 draft genomes that have been mostly identified as strains of B. pumilus or B. safensis. Results The FO-36b gene order is essentially the same as that in SAFR-032 and other B. pumilus strains. The annotated genome has 3850 open reading frames and 40 noncoding RNAs and riboswitches. Of these, 307 are not shared by SAFR-032, and 65 are also not shared by MERTA and ATCC7061T. The FO-36b genome has ten unique open reading frames and two phage-like regions, homologous to the Bacillus bacteriophage SPP1 and Brevibacillus phage Jimmer1. Differing remnants of the Jimmer1 phage are found in essentially all B. safensis / B. pumilus strains. Seven unique genes are part of these phage elements. Whole Genome Phylogenetic Analysis of the B. pumilus, B. safensis and other Firmicutes genomes, separate them into three distinct clusters. Two clusters are subgroups of B. pumilus while one houses all the B. safensis strains. The Genome-genome distance analysis and a phylogenetic analysis of gyrA sequences corroborated these results. Conclusions It is not immediately obvious that the presence or absence of any specific gene or combination of genes is responsible for the variations in resistance seen. It is quite possible that distinctions in gene regulation can alter the expression levels of key proteins thereby changing the organism’s resistance properties without gain or loss of a particular gene. What is clear is that phage elements contribute significantly to genome variability. Multiple genome comparison indicates that many strains named as B. pumilus likely belong to the B. safensis group. Electronic supplementary material The online version of this article (10.1186/s12866-018-1191-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Madhan R Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| | - Victor G Stepanov
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| | - Andrea Wünsche
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| | - Saied Montazari
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| | - Racquel O Gonzalez
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| | - Kasturi Venkateswaran
- Biotechnology & Planetary Protection Group, NASA Jet Propulsion Laboratories, California Institute of Technology, Pasadena, CA, 91109, USA
| | - George E Fox
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA.
| |
Collapse
|
4
|
Wani W, Masoodi KZ, Zaid A, Wani SH, Shah F, Meena VS, Wani SA, Mosa KA. Engineering plants for heavy metal stress tolerance. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2018. [DOI: 10.1007/s12210-018-0702-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Transcriptomic Analysis of 3-Hydroxypropanoic Acid Stress in Escherichia coli. Appl Biochem Biotechnol 2015; 178:527-43. [PMID: 26472673 DOI: 10.1007/s12010-015-1892-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
The stress response of Escherichia coli to 3-hydroxypropanoic acid (3-HP) was elucidated through global transcriptomic analysis. Around 375 genes showed difference of more than 2-fold in 3-HP-treated samples. Further analysis revealed that the toxicity effect of 3-HP was due to the cation and anion components of this acid and some effects-specific to 3-HP. Genes related to the oxidative stress, DNA protection, and repair were upregulated in treated cells due to the lowered cytoplasmic pH caused by accumulated cations. 3-HP-treated E. coli used the arginine acid tolerance mechanism to increase the cytoplasmic pH. Additionally, the anion effects were manifested as imbalance in the osmotic pressure. Analysis of top ten highly upregulated genes suggests the formation of 3-hydroxypropionaldehyde under 3-HP stress. The transcriptomic analysis shed light on the global genetic reprogramming due to 3-HP stress and suggests strategies for increasing the tolerance of E. coli toward 3-HP.
Collapse
|
6
|
Genome-wide comparison of ferritin family from Archaea, Bacteria, Eukarya, and Viruses: its distribution, characteristic motif, and phylogenetic relationship. Naturwissenschaften 2015; 102:64. [DOI: 10.1007/s00114-015-1314-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 01/06/2023]
|
7
|
Dps and DpsL Mediate Survival In Vitro and In Vivo during the Prolonged Oxidative Stress Response in Bacteroides fragilis. J Bacteriol 2015; 197:3329-38. [PMID: 26260459 DOI: 10.1128/jb.00342-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/05/2015] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Bacteroides fragilis is a Gram-negative anaerobe and member of the human intestinal tract microbiome, where it plays many beneficial roles. However, translocation of the organism to the peritoneal cavity can lead to peritonitis, intra-abdominal abscess formation, bacteremia, and sepsis. During translocation, B. fragilis is exposed to increased oxidative stress from the oxygenated tissues of the peritoneal cavity and the immune response. In order to survive, B. fragilis mounts a robust oxidative stress response consisting of an acute and a prolonged oxidative stress (POST) response. This report demonstrates that the ability to induce high levels of resistance to tert-butyl hydroperoxide (tBOOH) after extended exposure to air can be linked to the POST response. Disk diffusion assays comparing the wild type to a Δdps mutant and a Δdps Δbfr mutant showed greater sensitivity of the mutants to tBOOH after exposure to air, suggesting that Dps and DpsL play a role in the resistance phenotype. Complementation studies with dps or bfr (encoding DpsL) restored tBOOH resistance, suggesting a role for both of these ferritin-family proteins in the response. Additionally, cultures treated with the iron chelator dipyridyl were not killed by tBOOH, indicating Dps and DpsL function by sequestering iron to prevent cellular damage. An in vivo animal model showed that the Δdps Δbfr mutant was attenuated, indicating that management of iron is important for survival within the abscess. Together, these data demonstrate a role for Dps and DpsL in the POST response which mediates survival in vitro and in vivo. IMPORTANCE B. fragilis is the anaerobe most frequently isolated from extraintestinal opportunistic infections, but there is a paucity of information about the factors that allow this organism to survive outside its normal intestinal environment. This report demonstrates that the iron storage proteins Dps and DpsL protect against oxidative stress and that they contribute to survival both in vitro and in vivo. Additionally, this work demonstrates an important role for the POST response in B. fragilis survival and provides insight into the complex regulation of this response.
Collapse
|
8
|
Ng TW, An T, Li G, Ho WK, Yip HY, Zhao H, Wong PK. The role and synergistic effect of the light irradiation and H2O2 in photocatalytic inactivation of Escherichia coli. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 149:164-71. [PMID: 26083904 DOI: 10.1016/j.jphotobiol.2015.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 11/30/2022]
Abstract
Inactivation of Escherichia coli K-12 was conducted by applying a continuous supplying of commercial H2O2 to mimic the H2O2 production in a photocatalytic system, and the contribution of H2O2 in photocatalytic inactivation was investigated using a modified "partition system" and five E. coli mutants. The concentration of exogenous H2O2 required for complete inactivation of bacterial cells was much higher than that produced in-situ in common photocatalytic system, indicating that H2O2 alone plays a minor role in photocatalytic inactivation. However, the concentration of exogenously produced H2O2 required for effective inactivation of E. coli K-12 was much lower when the light irradiation was applied. To further investigate the possible physiological changes, inactivation of E. coli BW25113 (the parental strain), and its corresponding isogenic single-gene deletion mutants with light pretreatment was compared. The results indicate that light irradiation increases the bacterial intracellular Fe(2+) level and favors hydroxyl radical (OH) production via the catalytic reaction of Fe(2+), leading to increase in DNA damage. Moreover, the results indicate that the properties of light source, such as intensity and major emission wavelength, may alter the physiology of bacterial cells and affect the susceptibility to in-situ resultant H2O2 in the photocatalytic inactivation processes, leading to significant influence on the photocatalytic inactivation efficiencies of E. coli K-12.
Collapse
Affiliation(s)
- Tsz Wai Ng
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region
| | - Taicheng An
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Guiying Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Wing Kei Ho
- Department of Science and Environmental Studies, The Hong Kong Institute of Education, Taipo, N.T., Hong Kong, China
| | - Ho Yin Yip
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region
| | - Huijun Zhao
- Centre for Clean Environment and Energy, Griffith School of Environment, Griffith University, Queensland 4222, Australia
| | - Po Keung Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region.
| |
Collapse
|
9
|
Characterization of the Bacteroides fragilis bfr gene product identifies a bacterial DPS-like protein and suggests evolutionary links in the ferritin superfamily. J Bacteriol 2012; 194:15-27. [PMID: 22020642 PMCID: PMC3256617 DOI: 10.1128/jb.05260-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A factor contributing to the pathogenicity of Bacteroides fragilis, the most common anaerobic species isolated from clinical infections, is the bacterium's extreme aerotolerance, which allows survival in oxygenated tissues prior to anaerobic abscess formation. We investigated the role of the bacterioferritin-related (bfr) gene in the B. fragilis oxidative stress response. The bfr mRNA levels are increased in stationary phase or in response to O(2) or iron. In addition, bfr null mutants exhibit reduced aerotolerance, and the bfr gene product protects DNA from hydroxyl radical cleavage in vitro. Crystallographic studies revealed a protein with a dodecameric structure and greater similarity to an archaeal DNA protection in starved cells (DPS)-like protein than to the 24-subunit bacterioferritins. Similarity to the DPS-like (DPSL) protein extends to the subunit and includes a pair of conserved cysteine residues juxtaposed to a buried dimetal binding site within the four-helix bundle. Compared to archaeal DPSLs, however, this bacterial DPSL protein contains several unique features, including a significantly different conformation in the C-terminal tail that alters the number and location of pores leading to the central cavity and a conserved metal binding site on the interior surface of the dodecamer. Combined, these characteristics confirm this new class of miniferritin in the bacterial domain, delineate the similarities and differences between bacterial DPSL proteins and their archaeal homologs, allow corrected annotations for B. fragilis bfr and other dpsl genes within the bacterial domain, and suggest an evolutionary link within the ferritin superfamily that connects dodecameric DPS to the (bacterio)ferritin 24-mer.
Collapse
|
10
|
The iron-binding protein Dps2 confers peroxide stress resistance on Bacillus anthracis. J Bacteriol 2011; 194:925-31. [PMID: 22155779 DOI: 10.1128/jb.06005-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron is an essential nutrient that is implicated in most cellular oxidation reactions. However, iron is a highly reactive element that, if not appropriately chaperoned, can react with endogenously and exogenously generated oxidants such as hydrogen peroxide to generate highly toxic hydroxyl radicals. Dps proteins (DNA-binding proteins from starved cells) form a distinct class (the miniferritins) of iron-binding proteins within the ferritin superfamily. Bacillus anthracis encodes two Dps-like proteins, Dps1 and Dps2, the latter being one of the main iron-containing proteins in the cytoplasm. In this study, the function of Dps2 was characterized in vivo. A B. anthracis Δdps2 mutant was constructed by double-crossover mutagenesis. The growth of the Δdps2 mutant was unaffected by excess iron or iron-limiting conditions, indicating that the primary role of Dps2 is not that of iron sequestration and storage. However, the Δdps2 mutant was highly sensitive to H(2)O(2), and pretreatment of the cells with the iron chelator deferoxamine mesylate (DFM) significantly reduced its sensitivity to H(2)O(2) stress. In addition, the transcription of dps2 was upregulated by H(2)O(2) treatment and derepressed in a perR mutant, indicating that dps2 is a member of the regulon controlled by the PerR regulator. This indicates that the main role of Dps2 is to protect cells from peroxide stress by inhibiting the iron-catalyzed production of OH.
Collapse
|
11
|
Pesek J, Büchler R, Albrecht R, Boland W, Zeth K. Structure and mechanism of iron translocation by a Dps protein from Microbacterium arborescens. J Biol Chem 2011; 286:34872-82. [PMID: 21768097 PMCID: PMC3186433 DOI: 10.1074/jbc.m111.246108] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dps (DNA protection during starvation) enzymes are a major class of dodecameric proteins that bacteria use to detoxify their cytosol through the uptake of reactive iron species. In the stationary growth phase of bacteria, Dps enzymes are primarily used to protect DNA by biocrystallization. To characterize the wild type Dps protein from Microbacterium arborescens that displays additional catalytic functions (amide hydrolysis and synthesis), we determined the crystal structure to a resolution of 2.05 Å at low iron content. The structure shows a single iron at the ferroxidase center coordinated by an oxo atom, one water molecule, and three ligating residues. An iron-enriched protein structure was obtained at 2 Å and shows the stepwise uptake of two hexahydrated iron atoms moving along channels at the 3-fold axis before a restriction site inside the channels requires removal of the hydration sphere. Supporting biochemical data provide insight into the regulation of this acylamino acid hydrolase. Moreover, the peroxidase activity of the protein was determined. The influence of iron and siderophores on the expression of acylamino acid hydrolase was monitored during several stages of cell growth. Altogether our data provide an interesting view of an unusual Dps-like enzyme evolutionarily located apart from the large Dps sequence clusters.
Collapse
Affiliation(s)
- Jelena Pesek
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | | | | | | | | |
Collapse
|
12
|
Pohl S, Tu WY, Aldridge PD, Gillespie C, Hahne H, Mäder U, Read TD, Harwood CR. Combined proteomic and transcriptomic analysis of the response of Bacillus anthracis
to oxidative stress. Proteomics 2011; 11:3036-55. [DOI: 10.1002/pmic.201100085] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/28/2011] [Accepted: 04/05/2011] [Indexed: 11/12/2022]
|