1
|
Hamida R, Ali MA, Mugren N, Al-Zaban MI, Bin-Meferij MM, Redhwan A. Planophila laetevirens-Mediated Synthesis of Silver Nanoparticles: Optimization, Characterization, and Anticancer and Antibacterial Potentials. ACS OMEGA 2023; 8:29169-29188. [PMID: 37599946 PMCID: PMC10433340 DOI: 10.1021/acsomega.3c02368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
Algal-mediated synthesis of nanoparticles (NPs) opens the horizon for green and sustainable synthesis of NPs that can be used in many fields, such as medicine and industry. We extracellularly synthesized silver NPs (Ag-NPs) using the novel microalgae Planophila laetevirens under optimized conditions. The isolate was collected from freshwater/soil, purified, morphologically identified, and genetically identified using light, inverted light, scanning electron microscopy, and 18S rRNA sequencing. The phytochemicals in the algal extract were detected by GC-MS. Aqueous biomass extracts and cell-free media were used to reduce silver nitrate to Ag-NPs. To get small, uniformly shaped, and stable Ag-NPs, various abiotic parameters, including precursor concentration, the ratio between the reductant and precursor, temperature, time of temperature exposure, pH, illumination, and incubation time, were controlled during the synthesis of Ag-NPs. B-P@Ag-NPs and S-P@Ag-NPs (Ag-NPs synthesized using biomass and cell-free medium, respectively) were characterized using UV-vis spectroscopy, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray analysis (EDX) and mapping, Fourier transform infrared (FTIR) spectroscopy, and a zeta sizer. S-P@Ag-NPs had a smaller size (10.8 ± 0.3 nm) than B-P@Ag-NPs (19.0 ± 0.6 nm), while their shapes were uniform quasispherical (S-P@Ag-NPs) and spherical to oval (B-P@Ag-NPs). EDX and mapping analyses demonstrated that Ag was the dominant element in the B-P@Ag-NP and S-P@Ag-NP samples, while FTIR revealed the presence of O-H, C-H, N-H, and C-O groups, indicating that polysaccharides and proteins acted as reductants, while polysaccharides/fatty acids acted as stabilizers during the synthesis of NPs. The hydrodynamic diameters of B-P@Ag-NPs and S-P@Ag-NPs were 37.7 and 28.3 nm, respectively, with negative charges on their surfaces, suggesting their colloidal stability. Anticancer activities against colon cancer (Sw620 and HT-29 cells), breast cancer (MDA-MB231 and MCF-7 cells), and normal human fibroblasts (HFs) were screened using the MTT assay. B-P@Ag-NPs and S-P@Ag-NPs had a greater antiproliferative effect against colon cancer than against breast cancer, with biocompatibility against HFs. The biocidal effects of the B-P@Ag-NPs and S-P@Ag-NPs were evaluated against Escherichia coli, Bacillus cereus, and Bacillus subtilis using agar well diffusion and resazurin dye assays. B-P@Ag-NPs and S-P@Ag-NPs caused higher growth inhibition of Gram-negative bacteria than of Gram-positive bacteria. B-P@Ag-NPs and S-P@Ag-NPs synthesized by P. laetevirens are promising antitumor and biocidal agents.
Collapse
Affiliation(s)
| | - Mohamed Abdelaal Ali
- Plant
Production Department, Arid Lands Cultivation
Research Institute, City of Scientific Research and Technological
Applications (SRTA-CITY) New Borg El-Arab, Alexandria 21934, Egypt
| | - Njoud Mugren
- Graduated
Student, Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mayasar Ibrahim Al-Zaban
- Department
of Biology, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mashael Mohammed Bin-Meferij
- Department
of Biology, College of Science, Princess
Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Alya Redhwan
- Department
of Heath, College of Health, and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| |
Collapse
|
2
|
Mora-Godínez S, Contreras-Torres FF, Pacheco A. Characterization of Silver Nanoparticle Systems from Microalgae Acclimated to Different CO 2 Atmospheres. ACS OMEGA 2023; 8:21969-21982. [PMID: 37360473 PMCID: PMC10286254 DOI: 10.1021/acsomega.3c01914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
Green synthesis of metallic nanoparticles using microalgae exposed to high CO2 atmospheres has not been studied in detail; this is of relevance in biological CO2 mitigation systems where considerable biomass is produced. In this study, we further characterized the potential of an environmental isolate Desmodesmus abundans acclimated to low and high CO2 atmospheres [low carbon acclimation (LCA) and high carbon acclimation (HCA) strains, respectively] as a platform for silver nanoparticle (AgNP) synthesis. As previously characterized, cell pellets at pH 11 were selected from the biological components tested of the different microalgae, which included the culture collection strain Spirulina platensis. AgNP characterization showed superior performance of strain HCA components as preserving the supernatant resulted in synthesis in all pH conditions. Size distribution analysis evidenced strain HCA cell pellet platform (pH 11) as the most homogeneous AgNP population (14.9 ± 6.4 nm diameter, -32.7 ± 5.3 mV) followed by S. platensis (18.3 ± 7.5 nm, -33.9 ± 2.4 mV). In contrast, strain LCA presented a broader population where the size was above 100 nm (127.8 ± 14.8 nm, -26.7 ± 2.4 mV). Fourier-transform infrared and Raman spectroscopies showed that the reducing power of microalgae might be attributed to functional groups in the cell pellet from proteins, carbohydrates, and fatty acids and, in the supernatant, from amino acids, monosaccharides, disaccharides, and polysaccharides. Microalgae AgNPs exhibited similar antimicrobial properties in the agar diffusion test against Escherichia coli. However, they were not effective against Gram (+) Lactobacillus plantarum. It is suggested that a high CO2 atmosphere potentiates components in the D. abundans strain HCA for nanotechnology applications.
Collapse
Affiliation(s)
- Shirley Mora-Godínez
- Tecnologico
de Monterrey, Escuela de Ingenieria y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
| | - Flavio F. Contreras-Torres
- Tecnologico
de Monterrey, The Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
| | - Adriana Pacheco
- Tecnologico
de Monterrey, Escuela de Ingenieria y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
| |
Collapse
|
3
|
Barabadi H, Mobaraki K, Ashouri F, Noqani H, Jounaki K, Mostafavi E. Nanobiotechnological approaches in antinociceptive therapy: Animal-based evidence for analgesic nanotherapeutics of bioengineered silver and gold nanomaterials. Adv Colloid Interface Sci 2023; 316:102917. [PMID: 37150042 DOI: 10.1016/j.cis.2023.102917] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Abstract
Pain management is a major challenge in healthcare systems worldwide. Owing to undesirable side effects of current analgesic medications, there is an exceeding need to develop the effective alternative therapeutics. Nowadays, the application of nanomaterials is being highly considered, as their exceptional properties arising from the nanoscale dimensions are undeniable. With the increasing use of metal NPs, more biocompatible and costly methods of synthesis have been developed in which different biological rescores including microorganisms, plants and algae are employed. Nanobiotechnology-based synthesis of nanosized particles is an ecological approach offering safe production of nanoparticles (NPs) by biological resources eliminating the toxicity attributed to the conventional routes. This review provides an assessment of biosynthesized silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) as antinociceptive agents in recent studies. Living animal models (mice and rats) have been used for analyzing the effect of biogenic NPs on decreasing the nociceptive pain utilizing different methods such as acetic acid-induced writhing test, hot plate test, and formalin test. Potent analgesic activity exhibited by green fabricated AgNPs and AuNPs represents the bright future of nanotechnology in the management of pain and other social and medicinal issues followed by this unpleasant sensation. Moreover, there NPs showed a protective effects on liver, kidney, and body weight in animal models that make them attractive for clinical studies. However, further research is required to fully address the harmless antinociceptive effect of NPs for clinical usage.
Collapse
Affiliation(s)
- Hamed Barabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Kiana Mobaraki
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ashouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hesam Noqani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Jounaki
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States.
| |
Collapse
|
4
|
Bioremediation of Hazardous Wastes Using Green Synthesis of Nanoparticles. Processes (Basel) 2023. [DOI: 10.3390/pr11010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Advanced agronomic methods, urbanisation, and industrial expansion contaminate air, water and soil, globally. Agricultural and industrial activities threaten living biota, causing biodiversity loss and serious diseases. Strategies such as bioremediation and physiochemical remediation have not been effectively beneficial at treating pollutants. Metal-based nanoparticles (NPs) such as copper, zinc, silver, gold, etc., in various nanoformulations and nanocomposites are used more and more as they effectively resist the uptake of toxic compounds via plants by facilitating their immobilisation. According to studies, bio-based NP synthesis is a recent and agroecologically friendly approach for remediating environmental waste, which is effective against carcinogens, heavy metal contamination, treating marine water polluted with excessive concentrations of phosphorus, nitrogen and harmful algae, and hazardous dye- and pesticide-contaminated water. Biogenic resources such as bacteria, fungi, algae and plants are extensively used for the biosynthesis of NPs, particularly metallic NPs. Strategies involving green synthesis of NPs are nontoxic and could be employed for commercial scale production. Here, the focus is on the green synthesis of NPs for reduction of hazardous wastes to help with the clean-up process.
Collapse
|
5
|
Barciela P, Carpena M, Li NY, Liu C, Jafari SM, Simal-Gandara J, Prieto MA. Macroalgae as biofactories of metal nanoparticles; biosynthesis and food applications. Adv Colloid Interface Sci 2023; 311:102829. [PMID: 36603300 DOI: 10.1016/j.cis.2022.102829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Nanotechnology has opened a new frontier in recent years, capable of providing new ways of controlling and structuring products with greater market value and offering significant opportunities for the development of innovative applications in food processing, preservation, and packaging. Macroalgae (MAG) are the major photoautotrophic group of living beings known as a potential source of secondary metabolites, namely phenolic compounds, pigments, and polysaccharides. Biosynthesis based on the abilities of MAG as "nanobiofactories" targets the use of algal secondary metabolites as reducing agents to stabilize nanoparticles (NPs). Nowadays, most of the studies are focused on the use of metal (Ag, Au) and metal-oxide (CuO, ZnO) NPs derived from algae. The eco-friendly biosynthesis of metal NPs reduces the cost and production time and increases their biocompatibility, due to the presence of bioactive compounds in MAG, making them suitable for a wide variety of applications. These compounds have been attributed to the antimicrobial and antioxidant properties responsible for their application through innovative technologies such as nanoencapsulation, nanocomposites, or biosensors in the food industry. Nevertheless, toxicity is a key factor that should be considered, so the applicable regulation needs to guarantee the safe use of metal NPs. Consequently, the aim of this review will be to compile the available information on MAG-mediated metal NPs, their biosynthesis, and potential food applications.
Collapse
Affiliation(s)
- P Barciela
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - M Carpena
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Ning-Yang Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, PR China.
| | - S M Jafari
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain; Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, PR China.
| | - J Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - M A Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal.
| |
Collapse
|
6
|
Yalçın D, Erkaya İA, Erdem B. Antimicrobial, antibiofilm potential, and anti-quorum sensing activity of silver nanoparticles synthesized from Cyanobacteria Oscillatoria princeps. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89738-89752. [PMID: 35859236 DOI: 10.1007/s11356-022-22068-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacteria are among the beneficial and environmentally friendly natural candidates used in the biosynthesis of nanoparticles, with their ability to accumulate heavy metals from their environment, thanks to their biologically active compounds. In the current study, an aqueous extract of Oscillatoria princeps fresh biomass was used for the green synthesis of AgNPs. UV-vis spectrum, Fourier transforms infrared, scanning electron microscopy, and energy-dispersive spectroscopy were used to validate and characterize biosynthesized of OSC-AgNPs. The biosynthesis of AgNPs was visually verified in terms of the change in the color of the AgNO3 solution from yellowish brown to brown colors from 72 h onwards. An absorption peak of approximately 420 nm was detected in the UV-vis spectrum, corresponding to the plasmon resonance of AgNPs. FT-IR analysis showed the presence of free amino groups in addition to sulfur-containing amino acid derivatives that act as stabilizing agents. SEM images detected the roughly spherical shape of OSC-AgNPs with an average size of 38 nm. The pathogens tested were all susceptible to OSC-AgNPs showing varying antimicrobial effects on pathogenic microorganisms. E. coli and C. albicans displayed the maximum susceptibility, with zones of inhibition of 14.6 and 13.8 mm at 3-mM concentration, respectively, while B. cereus had the lowest zone of inhibition (10.6 mm) at 3-mM OSC-AgN03 concentration. In conclusion, AgNPs synthesized from Oscillatoria princeps inhibit biofilm formation, suggesting that AgNPs may be a promising candidate for the prevention and treatment of biofilm-associated infections caused by bacteria and yeasts.
Collapse
Affiliation(s)
- Dilek Yalçın
- Department of Advanced Materials and Aviation Technologies, Space Support Systems, Turkish Space Agency, Ankara, Turkey.
| | - İlkay Açıkgöz Erkaya
- Department of Environmental Engineering, Faculty of Architecture and Engineering, Kırşehir Ahi Evran University, Kırşehir, Turkey
| | - Belgin Erdem
- Medical Services and Techniques Programs, Vocational School of Health Services, Kırşehir Ahi Evran University, Kırşehir, Turkey
| |
Collapse
|
7
|
Nitnavare R, Bhattacharya J, Thongmee S, Ghosh S. Photosynthetic microbes in nanobiotechnology: Applications and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156457. [PMID: 35662597 DOI: 10.1016/j.scitotenv.2022.156457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Photosynthetic microbes like brown algae, red algae, green-algae and blue-green algae (cyanobacteria) are utilized extensively for various commercial and industrial purposes. However, in recent time, their application has shifted to nanotechnology. The synthesis of metal nanoparticles using algal resources is known as Phyconanotechnology. Due to various advantages of the photosynthetic microbes such as presence of bioactive molecules, scalability, high metal uptake and cultivability, these microbes form ideal sources for nanoparticle synthesis. The green synthesis of nanoparticles is a non-toxic and environment-friendly alternative compared to other hazardous chemical and physical routes of synthesis. Several species of algae are explored for the fabrication of metal and metal oxide nanoparticles. Various physical characterization techniques collectively contribute in defining the surface morphology of nanoparticles and the existing functional groups for bioreduction and stability. A wide range of nanostructured metals like gold, silver, copper, zinc, iron, platinum and palladium are fabricated using algae and cyanobacteria. Due to the unique properties of the phycogenic nanoparticles, biocompatibility and safety aspects, all of these metal nanoparticles have their applications in facets like infection control, diagnosis, drug delivery, biosensing and bioremediation. Herein, the uniqueness of the phycogenic nanoparticles along with their distinctive antibacterial, antifungal, antibiofilm, algaecidal, antiviral, anticancer, antioxidant, antidiabetic, dye degradation, metal removal and catalytic properties are featured. Lastly, this work highlights the various challenges and future perspectives for further exploration of the biogenic metal nanoparticles for development of nanomedicine and environmental remediation in the coming years.
Collapse
Affiliation(s)
- Rahul Nitnavare
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, United Kingdom; Department of Plant Sciences, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Joorie Bhattacharya
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, Telangana, India; Department of Genetics, Osmania University, Hyderabad 500007, Telangana, India
| | - Sirikanjana Thongmee
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| | - Sougata Ghosh
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Department of Microbiology, School of Science, RK University, Rajkot 360020, Gujarat, India.
| |
Collapse
|
8
|
Khan F, Shahid A, Zhu H, Wang N, Javed MR, Ahmad N, Xu J, Alam MA, Mehmood MA. Prospects of algae-based green synthesis of nanoparticles for environmental applications. CHEMOSPHERE 2022; 293:133571. [PMID: 35026203 DOI: 10.1016/j.chemosphere.2022.133571] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 05/22/2023]
Abstract
Green synthesis of nanoparticles (NPs) has emerged as an eco-friendly alternative to produce nanomaterials with diverse physical, chemical, and biological characteristics. Previously used, physical and chemical methods involve the production of toxic byproducts, costly instrumentation, and energy-intensive experimental processes thereby, limiting their applicability. Biogenic synthesis of nanoparticles has come forward as a potential alternative, providing an eco-friendly, cost-effective, and energy-efficient approach for the synthesis of a diverse range of NPs. Several biological entities are employed in the biosynthesis of NPs including bacteria, fungi, and algae. However, the distinguishing characteristics of microalgae and cyanobacteria make them promising candidates for NPs synthesis because of their higher growth rate, substantially higher rate of sequestering CO2, hyperaccumulation of heavy metals, absence of toxic byproducts, minimum energy input, and employment of biomolecules (pigments and enzymes) as reducing and capping agents. Algal extract, being a natural reducing and capping agent, serves as a living cell factory for the efficient green synthesis of nanoparticles. Physiological and biological methods allow algal cells to uptake heavy metals and utilize them as nutrient source to generate biomass by regulating their metabolic processes. Despite their enormous potential, studies on the microalgae-based synthesis of nanoparticles for the removal of toxic pollutants from wastewater remained an unexplored research area in the literature. This review was aimed to summarize the recent advancements and prospects in the algae-based synthesis of nanoparticles for environmental applications particularly treating the wastewater.
Collapse
Affiliation(s)
- Fahad Khan
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ayesha Shahid
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hui Zhu
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Ning Wang
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong, China
| | - Muhammad Rizwan Javed
- Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Niaz Ahmad
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan
| | - Jianren Xu
- College of Bioscience and Engineering, North Minzu University, Yinchuan, China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Muhammad Aamer Mehmood
- School of Bioengineering, Sichuan University of Science and Engineering, Zigong, China; Bioenergy Research Centre, Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.
| |
Collapse
|
9
|
Behera A, Pradhan SP, Ahmed FK, Abd-Elsalam KA. Enzymatic synthesis of silver nanoparticles: Mechanisms and applications. GREEN SYNTHESIS OF SILVER NANOMATERIALS 2022:699-756. [DOI: 10.1016/b978-0-12-824508-8.00030-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
10
|
Kashyap M, Samadhiya K, Ghosh A, Anand V, Lee H, Sawamoto N, Ogura A, Ohshita Y, Shirage PM, Bala K. Synthesis, characterization and application of intracellular Ag/AgCl nanohybrids biosynthesized in Scenedesmus sp. as neutral lipid inducer and antibacterial agent. ENVIRONMENTAL RESEARCH 2021; 201:111499. [PMID: 34146525 DOI: 10.1016/j.envres.2021.111499] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/09/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
The current research focuses on the Intracellular biosynthesis of Ag/AgCl nanohybrids in microalgae, Scenedesmus sp. The effect of biosynthesis process on growth and lipid profile of cells is key element of this study. Ag/AgCl nanohybrids synthesized intracellularly were characterized by UV-Vis spectrophotometer, Powder X-Ray Diffraction (P-XRD), Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (HRTEM). 10-20 nm and 10-50 nm sized spherical shaped nanoparticles of polycrystalline nature were grown using 0.5 and 1 mM of AgNO3 precursor, respectively and Scenedesmus sp. as reducing agent. Total lipid content of the cells treated with 0.5 mM and 1 mM AgNO3 was static and found to be 43.2 ± 0.01 μg/mL and 48.2 ± 0.02 μg/mL respectively at 120 h of Ag/AgCl nanoparticles biosynthesis. FAME (Fatty Acid Methyl Ester) profile was improved due to intracellular nanoparticles biosynthesis with maximum C16:0 (palmitic acid) (35.7%) in cells treated with 0.5 mM AgNO3 used for Ag/AgCl nanohybrids synthesis. Palmitic acid in cells exposed to 0.5 mM concentration of metallic precursor increased by 75.86%. Synthesized nanoparticles were tested on four bacterial strains to establish its antibacterial efficiency showing appropriate zone of inhibition at varying concentrations. Present study efficiently demonstrates the utility of microalgae integrating nanoparticles biosynthesis and lipid accumulation.
Collapse
Affiliation(s)
- Mrinal Kashyap
- Department of Biosciences and Biomedical Engineering, IIT Indore, India
| | - Kanchan Samadhiya
- Department of Biosciences and Biomedical Engineering, IIT Indore, India
| | - Atreyee Ghosh
- Department of Biosciences and Biomedical Engineering, IIT Indore, India
| | - Vishal Anand
- Department of Biosciences and Biomedical Engineering, IIT Indore, India
| | - Hyunju Lee
- Meiji Renewable Energy Laboratory, Meiji University, Kawasaki, Japan
| | - Naomi Sawamoto
- Meiji Renewable Energy Laboratory, Meiji University, Kawasaki, Japan
| | - Atsushi Ogura
- Meiji Renewable Energy Laboratory, Meiji University, Kawasaki, Japan; School of Science and Technology, Meiji University, Kawasaki, Japan
| | | | | | - Kiran Bala
- Department of Biosciences and Biomedical Engineering, IIT Indore, India.
| |
Collapse
|
11
|
Cytotoxicity properties of plant-mediated synthesized K-doped ZnO nanostructures. Bioprocess Biosyst Eng 2021; 45:97-105. [PMID: 34581868 DOI: 10.1007/s00449-021-02643-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022]
Abstract
In this study, potassium-doped zinc oxide nanoparticles (K-doped ZnO NPs) were green-synthesized using pine pollen extracts based on bioethics principles. The synthesized NPs were analyzed using X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP-AES), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDXA), and transmission electron microscopy (TEM). The cytotoxicity of these nanoparticles (NPs) on normal macrophage cells and cancer cell lines was evaluated. In the same concentrations of K-doped ZnO and pure ZnO NPs, K-doped ZnO NPs demonstrated higher toxicity. The results confirmed that the doped potassium could increase cytotoxicity. The IC50 of K-doped ZnO NPs, pure ZnO NPs, and the examined control drug were 497 ± 15, 769 ± 12, and 606 ± 19 µg/mL, respectively. Considering the obtained IC50 of K-doped ZnO NPs, they were more toxic to the cancer cell lines and had less cytotoxicity on normal macrophage cells.
Collapse
|
12
|
Evaluation and comparison of the effects of biosynthesized selenium and silver nanoparticles using plant extracts with antifungal drugs on the growth of Aspergillus and Candida species. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2021. [DOI: 10.1007/s12210-021-01021-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Kashyap M, Kiran B. Milking microalgae in conjugation with nano-biorefinery approach utilizing wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112864. [PMID: 34049157 DOI: 10.1016/j.jenvman.2021.112864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
In today's era, we need to replace chemical or physical processes of nanoparticle synthesis with biosynthesis processes to avoid environmental damage. These bioderived nanoparticles can help in addressing the problems of wastewater treatment and biofuels production. This review gives an insight into solving multiple problems using a nano-biorefinery approach in conjugation with wastewater treatment. The major advantage of using a bio-derivative method in nanoparticle synthesis is its low toxicity towards the environment. The current review discusses the development of nanoscience and its biogenic importance. It covers the usage of microalgae for (A) Nanoparticle's biosynthesis (B) Mechanism of nanoparticle biosynthesis (C) Nanoparticles in bio-refinery processes (D) Wastewater treatment with microalgae and bio-derived nanoparticles (E) A hypothetical mechanistic approach, which utilizes the photothermal effect of metallic nanoparticles to extract lipids from the cells without cell damage. The term "cell milking" has been around for quite some time, and the hypothesis discussed in the present study can help in this context. The current hypothesized process can pave ways for futuristic endeavors to conjugate nanoparticles and microalgae for viable and commercial production of biofuel, nanoparticles, and many other molecules.
Collapse
Affiliation(s)
- Mrinal Kashyap
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, 453552, India
| | - Bala Kiran
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, 453552, India.
| |
Collapse
|
14
|
Bioremediation of phenolic pollutant bisphenol A using optimized reverse micelles system of Trametes versicolor laccase in non-aqueous environment. 3 Biotech 2021; 11:297. [PMID: 34136334 DOI: 10.1007/s13205-021-02842-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022] Open
Abstract
In recent times, there is increased public interest and indeed strong movement against the use of Bisphenol A (4,4'-(propane-2,2,-diphenol)) due to its endocrine disrupting properties. In the present study, biotransformation of Bisphenol A (BPA) was accomplished using Trametes versicolor laccase (E.C. 1.10.3.2) enzyme. The enzyme was entrapped in reverse micelles comprising of bis(2-ethylhexyl) sulfosuccinate sodium salt (AOT) and 2,2,4-trimethylpentane (isooctane) for non-aqueous catalysis considering hydrophobicity of BPA. Screening of various parameters that may affect micellar system was carried out using Plackett-Burman experimental design and central composite design (Design Expert 11). According to Design Expert actual concentration of different variables was 0.55, 150 (Wo 30), 0.0035 mM and 175 µg/ml for Mg+2ions, Hydration ratio (Wo), 2,6-dimethoxyphenol (2,6 DMP, substrate) and laccase, respectively, at 40 °C and pH 4.5. Under these conditions laccase activity in reverse micelles was increased two folds as compared to unoptimized micellar system. It was evident that the reverse micelles diameter was linearly proportionated to the amount of laccase enzyme incorporated. BPA bioremediation mediated by laccase in non-aqueous environment was found to be 84% in 8 h of treatment. Biotransformation of BPA was monitored using GC-MS. BPA degraded products, such as BPA-O-catechol and 4,4 (Ethane 2-oxy 2-ol) diphenol were identified indicating transformation by oxidation. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02842-4.
Collapse
|
15
|
Leishmanicidal activities of biosynthesized BaCO 3 (witherite) nanoparticles and their biocompatibility with macrophages. Bioprocess Biosyst Eng 2021; 44:1957-1964. [PMID: 33934243 DOI: 10.1007/s00449-021-02576-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
The aim of this study was cost-effective and greener synthesis of barium carbonate (BaCO3 or witherite) nanoparticles with economic importance, and to evaluate their therapeutic potentials and biocompatibility with immune cells. Barium carbonate nanoparticles were biosynthesized using black elderberry extract in one step with non-toxic precursors and simple laboratory conditions; their morphologies and specific structures were analyzed using field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDX). The therapeutic capabilities of these nanoparticles on the immune cells of murine macrophages J774 and promastigotes Leishmania tropica were evaluated. BaCO3 nanoparticles with IC50 = 46.6 µg/mL were more effective than negative control and glucantium (positive control) in reducing promastigotes (P < 0.01). Additionally, these nanoparticles with a high value of cytotoxicity concentration 50% (CC50) were less toxic to macrophage cells than glucantime; however, they were significantly different at high concentrations compared to the negative control.
Collapse
|
16
|
Nag S, Biswas A, Chattopadhyay D, Bhattacharyya M. Protein-stabilized silver nanoparticles encapsulating gentamycin for the therapy of bacterial biofilm infections. Nanomedicine (Lond) 2021; 16:801-818. [PMID: 33900109 DOI: 10.2217/nnm-2020-0451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: An antibiotic-conjugated protein-stabilized nanoparticle hybrid system was developed to combat the challenges faced during the treatment of drug-resistant bacterial biofilm-associated infections. Materials & methods: Biocompatible silver nanoparticles were synthesized using intracellular protein and gentamycin was attached. The resulting nanohybrid was characterized and its antibacterial efficiency was assessed against Gram-positive, Gram-negative and drug-resistant bacteria. Results: Spectroscopic and electron microscopic analysis revealed that the nanoparticles were spherical with a diameter of 2-6 nm. Red-shifting of the surface plasmon peak and an increase in hydrodynamic diameter confirmed attachment of gentamycin. The nanohybrid exhibited antibacterial efficiency against a range of bacteria with the ability to inhibit and disrupt bacterial biofilm. Conclusion: A unique nanohybrid was designed that has potential to be used to control drug-resistant bacterial infections in the future.
Collapse
Affiliation(s)
- Sudip Nag
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Arpita Biswas
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | | | - Maitree Bhattacharyya
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.,Jagadis Bose National Science Talent Search, 1300 Rajdanga Main Road, Kolkata, 700107, India
| |
Collapse
|
17
|
Garg D, Sarkar A, Chand P, Bansal P, Gola D, Sharma S, Khantwal S, Surabhi, Mehrotra R, Chauhan N, Bharti RK. Synthesis of silver nanoparticles utilizing various biological systems: mechanisms and applications-a review. Prog Biomater 2020; 9:81-95. [PMID: 32654045 PMCID: PMC7544790 DOI: 10.1007/s40204-020-00135-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022] Open
Abstract
The evolving technology of nanoparticle synthesis, especially silver nanoparticle (AgNPs) has already been applied in various fields i.e., electronics, optics, catalysis, food, health and environment. With advancement in research, it is possible to develop nanoparticles of various size, shape, morphology, and surface to volume ratio utilizing biological systems. A number of different agents and methods can be employed to develop choice based AgNPs using algae, plants, fungi and bacteria. The use of plant extracts to produce AgNPs appears to be more convenient, as the method is simple, environmental friendly and inexpensive, also requiring a single-step. The microbial synthesis of AgNps showed intracellular and extracellular mechanisms to reduce metal ions into nanoparticles. Studies have shown that different size (1-100 nm) and shapes (spherical, triangular and hexagonal etc.) of nanoparticles can be produced from various biological routes and these diverse nanoparticles have various functions and usability i.e., agriculture, medical-science, textile, cosmetics and environment protection. The present review provides an overview of various biological systems used for AgNP synthesis, its underlying mechanisms, further highlighting the current research and applications of variable shape and sized AgNPs.
Collapse
Affiliation(s)
- Divyanshi Garg
- Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Aritri Sarkar
- Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Pooja Chand
- Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Pulkita Bansal
- Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Deepak Gola
- Noida Institute of Engineering and Technology, Greater Noida, Uttar Pradesh, India
| | - Shivangi Sharma
- Department of Microbiology, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Sukirti Khantwal
- Department of Microbiology, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Surabhi
- Department of Microbiology, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Rekha Mehrotra
- Department of Microbiology, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Nitin Chauhan
- Department of Microbiology, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India.
| | - Randhir K Bharti
- University School of Environmental Management, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| |
Collapse
|
18
|
Rahman A, Lin J, Jaramillo FE, Bazylinski DA, Jeffryes C, Dahoumane SA. In Vivo Biosynthesis of Inorganic Nanomaterials Using Eukaryotes-A Review. Molecules 2020; 25:E3246. [PMID: 32708767 PMCID: PMC7397067 DOI: 10.3390/molecules25143246] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 01/09/2023] Open
Abstract
Bionanotechnology, the use of biological resources to produce novel, valuable nanomaterials, has witnessed tremendous developments over the past two decades. This eco-friendly and sustainable approach enables the synthesis of numerous, diverse types of useful nanomaterials for many medical, commercial, and scientific applications. Countless reviews describing the biosynthesis of nanomaterials have been published. However, to the best of our knowledge, no review has been exclusively focused on the in vivo biosynthesis of inorganic nanomaterials. Therefore, the present review is dedicated to filling this gap by describing the many different facets of the in vivo biosynthesis of nanoparticles (NPs) using living eukaryotic cells and organisms-more specifically, live plants and living biomass of several species of microalgae, yeast, fungus, mammalian cells, and animals. It also highlights the strengths and weaknesses of the synthesis methodologies and the NP characteristics, bio-applications, and proposed synthesis mechanisms. This comprehensive review also brings attention to enabling a better understanding between the living organisms themselves and the synthesis conditions that allow their exploitation as nanobiotechnological production platforms as these might serve as a robust resource to boost and expand the bio-production and use of desirable, functional inorganic nanomaterials.
Collapse
Affiliation(s)
- Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, Beaumont, TX 77710, USA;
- Center for Advances in Water and Air Quality & The Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA; (J.L.); (C.J.)
| | - Julia Lin
- Center for Advances in Water and Air Quality & The Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA; (J.L.); (C.J.)
| | - Francisco E. Jaramillo
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador;
| | - Dennis A. Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154-4004, USA;
| | - Clayton Jeffryes
- Center for Advances in Water and Air Quality & The Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA; (J.L.); (C.J.)
| | - Si Amar Dahoumane
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador;
| |
Collapse
|
19
|
Alijani HQ, Pourseyedi S, Torkzadeh-Mahani M, Seifalian A, Khatami M. Bimetallic nickel-ferrite nanorod particles: greener synthesis using rosemary and its biomedical efficiency. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:242-251. [PMID: 31851843 DOI: 10.1080/21691401.2019.1699830] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nickel-ferrite (NiFe2O4) nanorods particles (NRP) was biosynthesised for the first time by the Rosemary Extract. The NRP was fully characterised, including the type, nanostructure and physicochemical properties of using XRD, HRTEM, FeSEM, XPS, FTIR and VSM. TEM confirmed rod-shaped nano-sized particles with average sizes ranging from 10 nm to 28 nm. The EDAX Analysis showed the presence of iron, nickel, oxygen, and carbon. XRD analysis confirmed the synthesis of NiFe2O4 crystals. XPS curves showed photoelectron for iron, oxygen and nickel. EDS showed the atomic, weight percentages ratios of Ni(12%): Fe(24%) and: O(48) are close to the theoretical value (Ni: Fe:O = 1:2:4), of bimetallic magnetic NiFe2O4 NRP. NiFe2O4 NRP had cytotoxicity effect on MCF-7 cells survival which suggests that NiFe2O4 NRP can be used as a new class of anticancer agent in design novel cancer therapy research.
Collapse
Affiliation(s)
- Hajar Q Alijani
- NanoBioElectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Shahram Pourseyedi
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre, London, United Kingdom
| | - Mehrdad Khatami
- NanoBioElectrochemistry Research Center, Bam University of Medical Sciences, Bam, Iran.,Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
20
|
Yılmaz Öztürk B, Yenice Gürsu B, Dağ İ. Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Azhdari S, Sarabi RE, Rezaeizade N, Mosazade F, Heidari M, Borhani F, Abdollahpour-Alitappeh M, Khatami M. Metallic SPIONP/AgNP synthesis using a novel natural source and their antifungal activities. RSC Adv 2020; 10:29737-29744. [PMID: 35518215 PMCID: PMC9056177 DOI: 10.1039/d0ra04071a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
The green synthesis of nanoparticles (NPs) is important because of the favorable potential of plant biomolecules involved in the synthesis of NPs. This study aimed to provide a fast, easy, cheap, and environmentally friendly method for the synthesis of superparamagnetic iron oxide NPs (SPIONP) and silver nanoparticles (AgNPs) using Stachys lavandulifolia and an evaluation of their use as antifungal agents against Aspergillus niger and Fusarium solani. The physicochemical properties of AgNPs and SPIONPs were studied using FESEM, HRTEM, XRD, VSM, UV-Vis, and EDX spectroscopy. The sizes and morphologies of the AgNPs and SPIONPs, measured via electron microscopy, were 12.57 nm and 10.70 nm, respectively. Nanoparticles have previously been shown to have antifungal activities, and SPIONPs and AgNPs can show antifungal resistance. These NPs can be used as a substitute for widely used toxic fungicides to promote food safety and public health. AgNPs and SPIONPs showed inhibitory effects against the radial growth of the mycelia of the pathogenic fungi A. niger and F. solani.![]()
Collapse
Affiliation(s)
- Sara Azhdari
- Noncommunicable Diseases Research Center
- Bam University of Medical Sciences
- Bam
- Iran
- Department of Anatomy and Embryology
| | - Roghayeh Ershad Sarabi
- Department of Health Information Sciences
- Faculty of Management and Medical Information Sciences
- Kerman University of Medical Sciences
- Kerman
- Iran
| | - Nadia Rezaeizade
- Clinical Research Center
- Pastor Educational Hospital
- Bam University of Medical Sciences
- Bam
- Iran
| | - Faride Mosazade
- Noncommunicable Diseases Research Center
- Bam University of Medical Sciences
- Bam
- Iran
| | | | - Fariba Borhani
- Medical Ethics and Law Research Center
- Shahid Beheshti University of Medical Sciences
- Tehran
- Iran
| | | | - Mehrdad Khatami
- Noncommunicable Diseases Research Center
- Bam University of Medical Sciences
- Bam
- Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center
| |
Collapse
|
22
|
Khatami M, Sarani M, Mosazadeh F, Rajabalipour M, Izadi A, Abdollahpour-Alitappeh M, Lima Nobre MA, Borhani F. Nickel-Doped Cerium Oxide Nanoparticles: Green Synthesis Using Stevia and Protective Effect against Harmful Ultraviolet Rays. Molecules 2019; 24:E4424. [PMID: 31817060 PMCID: PMC6943421 DOI: 10.3390/molecules24244424] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
Nanoparticles of cerium oxide CeO2 are important nanomaterials with remarkable properties for use in both industrial and non-industrial fields. In a general way, doping of oxide nanometric with transition metals improves the properties of nanoparticles. In this study, nickel- doped cerium oxide nanoparticles were synthesized from Stevia rebaudiana extract. Both doped and non-doped nanoparticles were characterized by X-ray diffraction, Field Emission Scanning Electron Microscopy, Energy Dispersive X-ray, Raman spectroscopy, and Vibrating-Sample Magnetometry analysis. According to X-ray diffraction, Raman and Energy Dispersive X-ray crystalline and single phase of CeO2 and Ni doped CeO2 nanoparticles exhibiting fluorite structure with F2g mode were synthesized. Field Emission Scanning Electron Microscopy shows that CeO2 and Ni doped nanoparticles have spherical shape and sizes ranging of 8 to 10 nm. Ni doping of CeO2 results in an increasing of magnetic properties. The enhancement of ultraviolet protector character via Ni doping of CeO2 is also discussed.
Collapse
Affiliation(s)
- Mehrdad Khatami
- NanoBioEletrochemistry Research Center, Bam University of Medical Sciences, Bam 76617-71967, Iran; (M.K.); (M.S.); (M.R.)
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman 7618747653, Iran
| | - Mina Sarani
- NanoBioEletrochemistry Research Center, Bam University of Medical Sciences, Bam 76617-71967, Iran; (M.K.); (M.S.); (M.R.)
- Students Research Committee, School of Public Health, Bam University of Medical Sciences, Bam 76617-71967, Iran;
| | - Faride Mosazadeh
- Students Research Committee, School of Public Health, Bam University of Medical Sciences, Bam 76617-71967, Iran;
| | - Mohammadreza Rajabalipour
- NanoBioEletrochemistry Research Center, Bam University of Medical Sciences, Bam 76617-71967, Iran; (M.K.); (M.S.); (M.R.)
| | - Alireza Izadi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran 14167-53955, Iran;
| | | | - Marcos Augusto Lima Nobre
- School of Technology and Sciences, São Paulo State University (Unesp), Presidente Prudente-SP 19060-900, Brazil;
| | - Fariba Borhani
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| |
Collapse
|