1
|
Motahar SFS, Tiyoula FN, Motamedi E, Zeinalabedini M, Kavousi K, Ariaeenejad S. Computational Insights into the Selecting Mechanism of α-Amylase Immobilized on Cellulose Nanocrystals: Unveiling the Potential of α-Amylases Immobilized for Efficient Poultry Feed Hydrolysis. Bioconjug Chem 2023; 34:2034-2048. [PMID: 37823388 DOI: 10.1021/acs.bioconjchem.3c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The selection of an appropriate amylase for hydrolysis poultry feed is crucial for achieving improved digestibility and high-quality feed. Cellulose nanocrystals (CNCs), which are known for their high surface area, provide an excellent platform for enzyme immobilization. Immobilization greatly enhances the operational stability of α-amylases and the efficiency of starch bioconversion in poultry feeds. In this study, we immobilized two metagenome-derived α-amylases, PersiAmy2 and PersiAmy3, on CNCs and employed computational methods to characterize and compare the degradation efficiencies of these enzymes for poultry feed hydrolysis. Experimental in vitro bioconversion assessments were performed to validate the computational outcomes. Molecular docking studies revealed the superior hydrolysis performance of PersiAmy3, which displayed stronger electrostatic interactions with CNCs. Experimental characterization demonstrated the improved performance of both α-amylases after immobilization at high temperatures (80 °C). A similar trend was observed under alkaline conditions, with α-amylase activity reaching 88% within a pH range of 8.0 to 9.0. Both immobilized α-amylases exhibited halotolerance at NaCl concentrations up to 3 M and retained over 50% of their initial activity after 13 use cycles. Notably, PersiAmy3 displayed more remarkable improvements than PersiAmy2 following immobilization, including a significant increase in activity from 65 to 80.73% at 80 °C, an increase in activity to 156.48% at a high salinity of 3 M NaCl, and a longer half-life, indicating greater thermal stability within the range of 60 to 80 °C. These findings were substantiated by the in vitro hydrolysis of poultry feed, where PersiAmy3 generated 53.53 g/L reducing sugars. This comprehensive comparison underscores the utility of computational methods as a faster and more efficient approach for selecting optimal enzymes for poultry feed hydrolysis, thereby providing valuable insights into enhancing feed digestibility and quality.
Collapse
Affiliation(s)
- Seyedeh Fatemeh Sadeghian Motahar
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj 31535-1897, Iran
| | - Fereshteh Noroozi Tiyoula
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 14176-14411, Iran
| | - Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Research and Extension Organization (AREEO), Karaj 55555, Iran
| | - Mehrshad Zeinalabedini
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj 31535-1897, Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 14176-14411, Iran
| | - Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj 31535-1897, Iran
| |
Collapse
|
2
|
Tsvetkov V, Yarullina L, Sorokan A, Khabibullina V, Mardanshin I. Activity of Hydrolases and Their Inhibitors in Potato Plants Treated with Bacillus subtilis, Salicylic, and Jasmonic Acids and Affected by the Combined Effect of the Late Blight and the Lack of Moisture. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2023. [DOI: 10.3390/ijpb14020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
The effect of Bacillus subtilis in combination with salicylic (SA) and jasmonic (JA) acids on the activity of amylases, cellulases, proteases, and their inhibitors in potato leaves in connection with the development of resistance to Phytophthora infestans (Mont.) de Bary in conditions of moisture deficiency have been investigated. Plants grown from microtubers were treated with Bacillus subtilis suspension (108 cells/mL) and with a mixture of bacteria with SA (10−6 M), JA (10−7 M), and SA + JA and were then infected with P. infestans (107 spores/mL) and cultivated under drought. Treatment with B. subtilis bacteria, especially in combination with signaling molecules, contributed to a decrease in the degree of pathogen infestation on plants grown with a lack of moisture. Both salicylate and jasmonate signaling pathways play an important role in the regulation of hydrolase activity and the stimulation of plant resistance. The revealed differences in the degree of hydrolase inhibitors activation under the influence of B. subtilis bacteria and signal molecules suggest different paths to the formation of resistance to P. infestans in potato under drought conditions.
Collapse
|
3
|
Zhang Y, Kang L, Gao J, Puri KD, Jia R, Zhang Z, Zhang J, Zhao J. Systemic Colonization of Potato Plants by Verticillium dahliae Leads to Infection of Tubers and Sprouting Buds. PLANT DISEASE 2023; 107:750-757. [PMID: 35939739 DOI: 10.1094/pdis-05-22-1029-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A green fluorescent protein (GFP)-tagged isolate of Verticillium dahliae was used to study its colonization in potato plants and tubers. Three-week-old potato plants of the highly susceptible cultivar 'Shepody' were inoculated with a conidial suspension of a GFP-tagged isolate of V. dahliae using a wound inoculation method. Colonization was studied using confocal microscopy combined with tissue sections. Conidia germinated and hyphae grew along the root hairs, elongation zones, and root caps between 24 and 96 h postinoculation (HPI). At 7 days postinoculation (DPI), the pathogen advanced to cortical tissues and grew into the root vascular bundles. At 8 weeks postinoculation (WPI), the stem epidermal cells, cortical tissues, vascular elements, and petioles were fully colonized by the mycelium of V. dahliae. At 11 WPI, the pathogen was detected in the stolon and progeny tubers, as confirmed by both GFP signals in tissues and reisolation of the pathogen on the semiselective NP-10 medium. Progeny potato tubers were harvested from the inoculated potato plants, and the GFP-signal was observed in the epidermal cells and vascular elements of sprouting buds that emerged from the harvested tubers. The infection rate of progeny tubers detected on semiselective NP-10 medium ranged from 34.55 to 55.56%, with an average of 45.31%. In conclusion, we report, for the first time, the entire progression of colonization by V. dahliae in potato plant tissues, progeny tubers, as well as of the sprouting buds that emerged from progeny tubers.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
- Key Laboratory of Biohazard Monitoring and Green Prevention and Control for Artificial Grassland, Ministry of Agriculture and Rural Affairs, Institute of Grassland Research of CAAS, Hohhot 010010, China
| | - Liru Kang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
- Inner Mongolia Academy of Agricultural & Animal Husbandry Science, Hohhot 010031, China
| | - Jing Gao
- Inner Mongolia Academy of Agricultural & Animal Husbandry Science, Hohhot 010031, China
| | - Krishna D Puri
- Department of Plant Pathology, University of California, Davis, Salinas, CA 93905, U.S.A
| | - Ruifang Jia
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zhiwei Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jian Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jun Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
4
|
Rasbold LM, Delai VM, da Cruz Kerber CM, Simões MR, Heinen PR, da Conceição Silva JL, de Cássia Garcia Simão R, Kadowaki MK, Maller A. Production, immobilization and application of invertase from new wild strain Cunninghamella echinulata PA3S12MM. J Appl Microbiol 2021; 132:2832-2843. [PMID: 34850500 DOI: 10.1111/jam.15394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 11/30/2022]
Abstract
AIMS The objective of this study was to determine the best conditions to produce invertase by Cunninghamella echinulata PA3S12MM and to immobilize and apply the enzyme. METHODS AND RESULTS The maximum production was verified in 8 days of cultivation at 28°C supplemented with 10 g L-1 apple peel, reaching 1054.85 U ml-1 . The invertase was purified from the DEAE-Sephadex column. The derivative immobilized in alginate-gelatin-calcium phosphate showed reusability >50% for 19 cycles. The derivative immobilized in glutaraldehyde-chitosan showed greater thermostability and at a different pH. The hydrolysis of 15 ml of sucrose 500 g L-1 in a fixed bed reactor (total volume of 31 ml) produced 24.44 µmol min-1 of glucose and fructose at a residence time of 30 min and a conversion factor of 0.5. CONCLUSIONS The new wild strain C. echinulata PA3S12MM presents high invertase production in medium supplemented with an agro-industrial residue and the immobilized enzyme showed high thermal stability and resistance at a different pH. SIGNIFICANCE AND IMPACT OF THE STUDY The fungus C. echinulata PA3S12MM is an excellent producer of invertases in Vogel medium supplemented with apple peel. The enzyme is promising for industrial application since it has good performance in reusability and inverted sugar production.
Collapse
Affiliation(s)
- Letícia Mara Rasbold
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Vitória Maciel Delai
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | | | - Márcia Regina Simões
- Centro de Engenharias e Ciências Exatas, Universidade Estadual do Oeste do Paraná, Toledo, Paraná, Brazil
| | | | | | - Rita de Cássia Garcia Simão
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Marina Kimiko Kadowaki
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Alexandre Maller
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| |
Collapse
|
5
|
Yarullina LG, Sorokan AV, Tsvetkov VO, Burkhanova GF, Kalatskaja JN. Influence of the genus Bacillus bacteria on the content of H2O2 and the activity of hydrolases and their inhibitors in potato plants during Phytophthora infestans Mont. de Bary infection. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202302010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The authors studied the effect of treatment with bacteria Bacillus subtilis Cohn (strains 26D) and B. thuringiensis Berliner (strain B-6066) on the hydrogen peroxide (H2O2) content, the activity of hydrolytic enzymes and their protein inhibitors in potato plants (Solanum tuberosum L.) in connection with development of resistance to the late blight pathogen - oomycete Phytophthora infestans Mont. de Bary. Studies were carried out on potato plants of the susceptible Early Rose potato cultivar that were treated with a suspension of B. subtilis and B. thuringiensis bacteria (108 cells/ml) and infected with P. infestans (107 spores/ml). A decrease in the degree of leaf damage by oomycete was revealed under the influence of the genus Bacillus bacteria, depending on the strain. The increase in potato resistance to P. infestans infection was mediated by the stimulating effect of the B. subtilis 26D and the B. thuringiensis B-6066 bacteria on the concentration of H2O2, the modulating effect on the activity of hydrolytic enzymes and the enhancement of the transcriptional activity of protease and amylase inhibitor genes in plant tissues. Differences in the degree of activation of the transcriptional activity of hydrolase inhibitor genes by the B. subtilis 26D and the B. thuringiensis B-6066 bacteria were revealed, which suggests differential ways of forming the potato resistance to P. infestans under their influence.
Collapse
|
6
|
Carrazco‐Escalante M, Caro‐Corrales J, Iribe‐Salazar R, Ríos‐Iribe E, Vázquez‐López Y, Gutiérrez‐Dorado R, Hernández‐Calderón O. A new approach for describing and solving the reversible Briggs‐Haldane mechanism using immobilized enzyme. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marco Carrazco‐Escalante
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico BiológicasUniversidad Autónoma de Sinaloa, C.P 80013 Culiacán Sinaloa México
| | - José Caro‐Corrales
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico BiológicasUniversidad Autónoma de Sinaloa, C.P 80013 Culiacán Sinaloa México
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico BiológicasUniversidad Autónoma de Sinaloa, C.P 80013 Culiacán Sinaloa México
| | - Rosalina Iribe‐Salazar
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico BiológicasUniversidad Autónoma de Sinaloa, C.P 80013 Culiacán Sinaloa México
| | - Erika Ríos‐Iribe
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico BiológicasUniversidad Autónoma de Sinaloa, C.P 80013 Culiacán Sinaloa México
| | - Yessica Vázquez‐López
- Posgrado en Ciencias Agropecuarias, Facultad de Medicina, Veterinaria y ZootecniaUniversidad Autónoma de Sinaloa, C.P 80260 Culiacán, Sinaloa México
| | - Roberto Gutiérrez‐Dorado
- Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico BiológicasUniversidad Autónoma de Sinaloa, C.P 80013 Culiacán Sinaloa México
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico BiológicasUniversidad Autónoma de Sinaloa, C.P 80013 Culiacán Sinaloa México
| | - Oscar Hernández‐Calderón
- Departamento de Ingeniería Química, Facultad de Ciencias Químico BiológicasUniversidad Autónoma de Sinaloa, C.P 80013 Culiacán Sinaloa México
| |
Collapse
|
7
|
Wang YC, Zhao N, Ma JW, Liu J, Yan QJ, Jiang ZQ. High-level expression of a novel α-amylase from Thermomyces dupontii in Pichia pastoris and its application in maltose syrup production. Int J Biol Macromol 2019; 127:683-692. [DOI: 10.1016/j.ijbiomac.2019.01.162] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
|
8
|
Yi Z, Fang Y, He K, Liu D, Luo H, Zhao D, He H, Jin Y, Zhao H. Directly mining a fungal thermostable α-amylase from Chinese Nong-flavor liquor starter. Microb Cell Fact 2018; 17:30. [PMID: 29471820 PMCID: PMC5822527 DOI: 10.1186/s12934-018-0878-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/12/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chinese Nong-flavor (NF) liquor is continuously and stably produced by solid-state fermentation technology for 1000 years, resulting in enrichment of special microbial community and enzymes system in its starter. Based on traditional culture-dependent methods, these functional enzymes are hardly obtained. According to our previous metatranscriptomic analysis, which identifies plenty of thermostable carbohydrate-active enzymes in NF liquor starter, the aim of this study is to provide a direct and efficient way to mine these thermostable enzymes. RESULTS In present study, an alpha-amylase (NFAmy13A) gene, which showed the highest expression level of enzymes in starch degradation at high temperature stage (62 °C), was directly obtained by functional metatranscriptomics from Chinese Nong-flavor liquor starter and expressed in Pichia pastoris. NFAmy13A had a typical signal peptide and shared the highest sequence identity of 64% with α-amylase from Aspergillus niger. The recombinant enzyme of NFAmy13A showed an optimal pH at 5.0-5.5 and optimal temperature at 60 °C. NFAmy13A was activated and stabilized by Ca2+, and its half-lives at 60 and 70 °C were improved significantly from 1.5 and 0.4 h to 16 and 0.7 h, respectively, in the presence of 10 mM CaCl2. Meanwhile, Hg2+, Co2+ and SDS largely inhibited its activity. NFAmy13A showed the maximum activity on amylopectin, followed by various starches, amylose, glycogen, and pullulan, and its specificity activity on amylopectin was 200.4 U/mg. Moreover, this α-amylase efficiently hydrolyzed starches (from corn, wheat, and potato) at high concentrations up to 15 mg/ml. CONCLUSIONS This study provides a direct way to mine active enzymes from man-made environment of NF liquor starter, by which a fungal thermostable α-amylase (NFAmy13A) is successfully obtained. The good characteristics of NFAmy13A in degrading starch at high temperature are consistent with its pivotal role in solid-state fermentation of NF liquor brewing. This work would stimulate mining more enzymes from NF liquor starter and studying their potentially synergistic roles in NF liquor brewing, thus paving the way toward the optimization of liquor production and improvement of liquor quality in future.
Collapse
Affiliation(s)
- Zhuolin Yi
- Meat-processing Application Key Laboratory of Sichuan Province, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China.,Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, China.,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yang Fang
- Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, China.,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Kaize He
- Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, China.,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dayu Liu
- Meat-processing Application Key Laboratory of Sichuan Province, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Huibo Luo
- Liquor Making Bio-Technology & Application of Key Laboratory of Sichuan Province, Bioengineering College, Sichuan University of Science & Engineering, Zigong, China
| | | | - Hui He
- Department of Liquor Making Engineering, Moutai College, Renhuai, China
| | - Yanling Jin
- Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, China. .,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Hai Zhao
- Meat-processing Application Key Laboratory of Sichuan Province, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China. .,Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu, China. .,Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
9
|
Yarullina LG, Ahatova AR, Kasimova RI. Activities of hydrolases and their protein inhibitors in wheat leaves treated with salicylic and jasmonic acids and infected with Septoria nodorum strains differing in aggressiveness. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817050180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Marine Microbiological Enzymes: Studies with Multiple Strategies and Prospects. Mar Drugs 2016; 14:md14100171. [PMID: 27669268 PMCID: PMC5082319 DOI: 10.3390/md14100171] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/04/2016] [Accepted: 09/14/2016] [Indexed: 11/16/2022] Open
Abstract
Marine microorganisms produce a series of promising enzymes that have been widely used or are potentially valuable for our daily life. Both classic and newly developed biochemistry technologies have been broadly used to study marine and terrestrial microbiological enzymes. In this brief review, we provide a research update and prospects regarding regulatory mechanisms and related strategies of acyl-homoserine lactones (AHL) lactonase, which is an important but largely unexplored enzyme. We also detail the status and catalytic mechanism of the main types of polysaccharide-degrading enzymes that broadly exist among marine microorganisms but have been poorly explored. In order to facilitate understanding, the regulatory and synthetic biology strategies of terrestrial microorganisms are also mentioned in comparison. We anticipate that this review will provide an outline of multiple strategies for promising marine microbial enzymes and open new avenues for the exploration, engineering and application of various enzymes.
Collapse
|
11
|
Xian L, Wang F, Luo X, Feng YL, Feng JX. Purification and characterization of a highly efficient calcium-independent α-amylase from Talaromyces pinophilus 1-95. PLoS One 2015; 10:e0121531. [PMID: 25811759 PMCID: PMC4374950 DOI: 10.1371/journal.pone.0121531] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 02/02/2015] [Indexed: 12/03/2022] Open
Abstract
Alpha-amylase is a very important enzyme in the starch conversion process. Most of the α-amylases are calcium-dependent and exhibit poor performance in the simultaneous saccharification and fermentation process of industrial bioethanol production that uses starch as feedstock. In this study, an extracellular amylolytic enzyme was purified from the culture broth of newly isolated Talaromyces pinophilus strain 1-95. The purified amylolytic enzyme, with an apparent molecular weight of 58 kDa on SDS-PAGE, hydrolyzed maltopentaose, maltohexaose, and maltoheptaose into mainly maltose and maltotriose and minor amount of glucose, confirming the endo-acting mode of the enzyme, and hence, was named Talaromyces pinophilus α-amylase (TpAA). TpAA was most active at pH 4.0-5.0 (with the temperature held at 37°C) and 55°C (at pH 5.0), and stable within the pH range of 5.0-9.5 (at 4°C) and below 45°C (at pH 5.0). Interestingly, the Ca2+ did not improve its enzymatic activity, optimal temperature, or thermostability of the enzyme, indicating that the TpAA was Ca2+-independent. TpAA displayed higher enzyme activity toward malto-oligosaccharides and dextrin than other previously reported α-amylases. This highly active Ca2+-independent α-amylase may have potential applications in starch-to-ethanol conversion process.
Collapse
Affiliation(s)
- Liang Xian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Fei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiang Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yu-Liang Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
12
|
Machado CB, Citadini AP, Goldbeck R, de Lima EA, Figueiredo FL, da Silva TM, Hoffmam ZB, de Sousa AS, Squina FM, de Lourdes Teixeira de Moraes Poliz M, Ruller R, Ward RJ. Increased biomass saccharification by supplementation of a commercial enzyme cocktail with endo-arabinanase from Bacillus licheniformis. Biotechnol Lett 2015; 37:1455-62. [DOI: 10.1007/s10529-015-1818-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/19/2015] [Indexed: 11/30/2022]
|
13
|
Valencia EY, Chambergo FS. Mini-review: Brazilian fungi diversity for biomass degradation. Fungal Genet Biol 2013; 60:9-18. [PMID: 23872076 DOI: 10.1016/j.fgb.2013.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/28/2013] [Accepted: 07/08/2013] [Indexed: 01/01/2023]
Abstract
Brazil houses over 10% of the total number of known species on Earth, with a great diversity of plants and fungi. The collection, isolation, identification and conservation of filamentous fungi with relevance to agriculture, pharmaceutical, food and biotechnological industries in Biological Resource Centers (CRBs) is very important to the development of a nation's scientific and technological infrastructure. In Brazil, 36 fungal collections are registered in the database of International Collections. Several federal and state programs have encouraged the formation of a researcher's network in order to study natural resources and the nation's biodiversity. In this context, Brazilian researchers have been on the frontiers of knowledge, investigating the enzymatic systems from native filamentous fungi with potential for biomass degradation and biotechnological application. In this review, we address recent progress in Brazilian fungal research, focusing on the identification and study of fungi and enzymes with potential for biomass degradation and application in bioenergy.
Collapse
Affiliation(s)
- Estela Y Valencia
- Departamento de Microbiologia Microbiana, Centro Nacional de Biotecnologia (CSIC), Madrid, Spain.
| | | |
Collapse
|