1
|
Lin Q, Wu X, Guo C, Li L, Peng T, Zou X, Li G, Wang J. Effects of different concentrations of chlormequat chloride on bacterial community composition and diversity in peanut soil. BMC Microbiol 2025; 25:129. [PMID: 40069633 PMCID: PMC11895187 DOI: 10.1186/s12866-025-03828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/13/2025] [Indexed: 03/15/2025] Open
Abstract
The application of pesticides may have significant impacts on soil environment and communities. In order to understand the deep relationship between the application of chlormequat chloride (CC) and the bacterial community in peanut soil, high-resolution characterization was performed using peanut soil samples (12 points; 0-20 cm rhizosphere soil) from untreated and sprayed with different concentrations of CC. Experimental data showed that with the increase of concentration, operational taxonomic units (OTUs) richness showed a decreasing tendency. The OTUs richness at low concentration (D, 50% CC diluted 5000 times, 45 g ai/ha), medium concentration (M, 50% CC diluted 300 times, 75 g ai/ha), and high concentration (G, 50% CC diluted 1000 times, 225 g ai/ha) were 5583, 5430, and 3910, respectively. Low concentrations increased the composition and relative abundance of soil bacterial communities. In contrast, high concentrations significantly reduced bacterial diversity. As the concentration of CC increases, the abundance of Proteobacteria decreases, while the abundance of Firmicutes and Bacteroidetes increases. The number of Acidobacterium and Bacteroidetes increased in groups D and M, while it decreased in group G. D, M and G groups showed a decrease in the abundance of Pseudomonas, polaromonas, and Azovibrio compared to CK, while the abundance of Flavobacterium increased. In addition, the abundance of Rahnella1 decreased in groups D and M, while the abundance increased in group G. The main metabolic pathways included the metabolisms of nucleotides, terpenoids, polyketides, other amino acids, cofactors, vitamins, lipids, glycan biosynthesis, energy, carbohydrates, xenobiotics, amino acids, and other secondary metabolites.
Collapse
Affiliation(s)
- Qiujun Lin
- Institute of Agricultural Quality Standards and Testing Technology, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Xianxin Wu
- Institute of Agricultural Quality Standards and Testing Technology, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Chunjing Guo
- Institute of Agricultural Quality Standards and Testing Technology, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Lina Li
- Institute of Agricultural Quality Standards and Testing Technology, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Tianshu Peng
- Institute of Agricultural Quality Standards and Testing Technology, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Xun Zou
- Institute of Agricultural Quality Standards and Testing Technology, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Guang Li
- Institute of Agricultural Quality Standards and Testing Technology, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Jianzhong Wang
- Institute of Agricultural Quality Standards and Testing Technology, Liaoning Academy of Agricultural Sciences, Shenyang, China.
| |
Collapse
|
2
|
Liu ZS, Wang XK, Wang KH, Yang ML, Li DF, Liu SJ. Paraflavitalea pollutisoli sp. nov., Pollutibacter soli gen. nov. sp. nov., Polluticoccus soli gen. nov. sp. nov., and Terrimonas pollutisoli sp. nov., four new members of the family Chitinophagaceae from polluted soil. Syst Appl Microbiol 2024; 47:126503. [PMID: 38490089 DOI: 10.1016/j.syapm.2024.126503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/03/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
A taxonomic investigation was conducted on four bacterial strains isolated from soil contaminated with polycyclic aromatic hydrocarbons and heavy metals. Phylogenetic analysis revealed that these strains belonged to the family Chitinophagaceae. Examination of the 16S rRNA genes indicated that their sequence identities were below 97.6 % compared to any known and validly nominated bacterial species. The genomes of the four strains ranged from 4.12 to 8.76 Mb, with overall G + C molar contents varying from 41.28 % to 50.39 %. Predominant cellular fatty acids included iso-C15:0, iso-C15:1 G, and iso-C17:0 3-OH. The average nucleotide identity ranged from 66.90 % to 74.63 %, and digital DNA-DNA hybridization was 12.5-12.8 %. Based on the genomic and phenotypic features of the new strains, four novel species and two new genera were proposed within the family Chitinophagaceae. The ecological distributions were investigated by data-mining of NCBI databases, and results showed that additional strains or species of the newly proposed taxa were widely distributed in various environments, including polluted soil and waters. Functional analysis demonstrated that strains H1-2-19XT, JS81T, and JY13-12T exhibited resistance to arsenite (III) and chromate (VI). The proposed names for the four novel species are Paraflavitalea pollutisoli (type strain H1-2-19XT = JCM 36460T = CGMCC 1.61321T), Terrimonas pollutisoli (type strain H1YJ31T = JCM 36215T = CGMCC 1.61343T), Pollutibacter soli (type strain JS81T = JCM 36462T = CGMCC 1.61338T), and Polluticoccus soli (type strain JY13-12T = JCM 36463T = CGMCC 1.61341T).
Collapse
Affiliation(s)
- Ze-Shen Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Kang Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ke-Huan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mei-Ling Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - De-Feng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
3
|
Kumar G, Lal S, Maurya SK, Bhattacherjee AK, Chaudhary P, Gangola S, Rajan S. Exploration of Klebsiella pneumoniae M6 for paclobutrazol degradation, plant growth attributes, and biocontrol action under subtropical ecosystem. PLoS One 2021; 16:e0261338. [PMID: 34914805 PMCID: PMC8675670 DOI: 10.1371/journal.pone.0261338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/30/2021] [Indexed: 01/31/2023] Open
Abstract
In recent times, injudicious use of paclobutrazol (PBZ) in mango orchards deteriorates the soil quality and fertility by persistence nature and causes a serious ecosystem imbalance. In this study, a new Klebsiella pneumoniae strain M6 (MW228061) was isolated from mango rhizosphere and characterized as a potent plant growth promoter, biocontrol, and PBZ degrading agent. The strain M6 efficiently utilizes PBZ as carbon, energy and nitrogen source and degrades up to 98.28% (50 mgL-1 initial conc.) of PBZ at 15th day of incubation in MS medium. In the soil system first order degradation kinetics and linear model suggested 4.5 days was the theoretical half-life (t1/2 value) of PBZ with strain M6. Box Behnken design (BBD) model of Response surface methodology (RSM) showed pH 7.0, 31°C temperature, and 2.0 ml inoculum size (8 x 109 CFU mL-1) was optimized condition for maximum PBZ degradation with strain M6. Plant growth promoting attributes such as Zn, K, PO4 solubilization IAA, HCN and NH3 production of strain M6 showed positive results and were assessed quantitatively. The relation between plant growth promotion and PBZ degradation was analyzed by heat map, principal component analysis (PCA) and, clustal correlation analysis (CCA). Strain M6 was also showing a significant biocontrol activity against pathogenic fungi such as Fusarium oxysporum (MTCC–284), Colletotrichum gloeosporioides (MTCC– 2190), Pythium aphanidermatum (MTCC– 1024), Tropical race 1 (TR -1), and Tropical race 4 (TR -4). Hence, results of the study suggested that strain M6 can be utilized as an effective bio-agent to restore degraded land affected by persistent use of paclobutrazol.
Collapse
Affiliation(s)
- Govind Kumar
- ICAR-Central Institute for Subtropical Horticulture, Lucknow, India
- * E-mail:
| | - Shatrohan Lal
- ICAR-Central Institute for Subtropical Horticulture, Lucknow, India
| | | | | | - Parul Chaudhary
- Department of Animal Biotechnology, NDRI, Karnal, Haryana, India
| | | | - Shailendra Rajan
- ICAR-Central Institute for Subtropical Horticulture, Lucknow, India
| |
Collapse
|
4
|
Zhao H, Li Q, Jin X, Li D, Zhu Z, Li QX. Chiral enantiomers of the plant growth regulator paclobutrazol selectively affect community structure and diversity of soil microorganisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:148942. [PMID: 34311352 DOI: 10.1016/j.scitotenv.2021.148942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Paclobutrazol is a triazole plant growth regulator with a wide range of applications in crop and fruit tree production. Paclobutrazol is used as a racemic mixture in agriculture. However, the effects of paclobutrazol enantiomers on soil microbial community structure and diversity are unclear. In the present study, Illumina high-throughput sequencing was used to study the enantioselective effects of two paclobutrazol enantiomers on soil microbial community. S-paclobutrazol was more persistent than R-paclobutrazol. The half-lives of the S- and R-isomers were 80 d and 50 d, respectively. No interconversion between the two isomers occurred in soils. In addition, the enantiomers had significant enantiomeric effects on soil microbial community and the paclobutrazol degradation was probably attributed to the presence of Pseudomonas and Mycobacterium. Notably, the relative abundance of Fusarium, a genus of filamentous fungi producing gibberellins, could be enantioselectively affected by the chiral enantiomers. Paclobutrazol enantiomers exhibited greater effects on the fungal community structure than bacterial community structure due to the fungicidal activity of paclobutrazol. Finally, R-paclobutrazol had a significant effect on the microbial networks. The findings of the present study suggest that the use of S-paclobutrazol may accomplish both plant growth regulation and the minimization of effects of paclobutrazol on soil microbial communities.
Collapse
Affiliation(s)
- Hongwei Zhao
- Center for Eco-Environment Restoration of Hainan Province & Key Laboratory of A&F Environmental Processes and Ecological Regulation of Hainan Province, College of Environment and Ecology, Hainan University, Renmin Ave. 58, Haikou 570228, China; State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Qiuli Li
- Center for Eco-Environment Restoration of Hainan Province & Key Laboratory of A&F Environmental Processes and Ecological Regulation of Hainan Province, College of Environment and Ecology, Hainan University, Renmin Ave. 58, Haikou 570228, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Xiaotuo Jin
- Center for Eco-Environment Restoration of Hainan Province & Key Laboratory of A&F Environmental Processes and Ecological Regulation of Hainan Province, College of Environment and Ecology, Hainan University, Renmin Ave. 58, Haikou 570228, China
| | - Dong Li
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Zhiqiang Zhu
- College of Tropical Crops, Hainan University, Haikou 570228, China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
5
|
Kumar G, Lal S, Bhatt P, Ram RA, Bhattacherjee AK, Dikshit A, Rajan S. Mechanisms and kinetics for the degradation of paclobutrazol and biocontrol action of a novel Pseudomonas putida strain T7. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 175:104846. [PMID: 33993964 DOI: 10.1016/j.pestbp.2021.104846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 05/07/2023]
Abstract
The present study explores biodegradation kinetics and process optimization of plant growth retardant from triazole group paclobutrazol (PBZ; C15H20ClN3O mol. wt. 293.79 g mol-1) in a batch experiment. A gram-negative rod-shaped bacterium T7 was isolated from PBZ applied agricultural field by enrichment technique and characterized as Pseudomonas putida strain T7. Strain was tested for PBZ biodegradation and plant growth-promoting characteristics. Results revealed that strain T7 utilizes PBZ as a carbon and energy source and showing degradation up to 98.30% on the 15th day. First-order degradation kinetics and a linear model were well fitted and showing a maximum t1/2 value on 9th day. Biodegradation optimization by Box Behnken design (BBD) of Response surface methodology (RSM) showed maximum degradation at pH 7.0, 31 °C temperature, and 2 mL inoculum size (8 × 109 CFU mL-1). The bacterium was also able to solubilize Zn, K, and PO4 and produced a copious amount of IAA, HCN, and Ammonia. The biocontrol activity against plant pathogens like Fusarium oxysporum (MTCC-284), Colletotrichum gloeosporioides (MTCC 2190), Pythium aphanidermatum (MTCC - 1024), Tropical race-1 (TR -1), and Tropical race - 4 (TR-4) showed the great antagonistic effect. Hence, this strain can be employed as an effective bio-agent for eco-friendly cleanup strategies and pathogen suppressive agents in paclobutrazol contaminated soil.
Collapse
Affiliation(s)
- Govind Kumar
- ICAR, Central Institute for Subtropical Horticulture (CISH), Lucknow, India.
| | - Shatrohan Lal
- ICAR, Central Institute for Subtropical Horticulture (CISH), Lucknow, India
| | - Pankaj Bhatt
- SCAU, Integrative Microbiology Research Centre SCAU, Guangzhou, China
| | - R A Ram
- ICAR, Central Institute for Subtropical Horticulture (CISH), Lucknow, India
| | - A K Bhattacherjee
- ICAR, Central Institute for Subtropical Horticulture (CISH), Lucknow, India
| | - Abhay Dikshit
- ICAR, Central Institute for Subtropical Horticulture (CISH), Lucknow, India
| | - Shailendra Rajan
- ICAR, Central Institute for Subtropical Horticulture (CISH), Lucknow, India
| |
Collapse
|
6
|
Jakl M, Kovač I, Ćavar Zeljković S, Jaklová Dytrtová J. Triazole fungicides in soil affect the yield of fruit, green biomass, and phenolics production of Solanum lycopersicum L. Food Chem 2021; 351:129328. [PMID: 33647697 DOI: 10.1016/j.foodchem.2021.129328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/14/2022]
Abstract
A part of the fungicides used in foliar treatment penetrates into the soil. This study describes changes in the bioavailability of (essential) elements in soil, fructification, the amount of green biomass and the production of phenolic compounds related solely to the presence of triazoles (penconazole and cyproconazole) in soil, injected as a single compound or their mixture. The triazoles presence has substantially affected the bioavailability of Fe, Cu and Zn in soil. The amount of green biomass has significantly decreased, whereas the chlorophylls a and b have not been affected. As a potential mark of plant stress, the fruits of the treated variants are significantly bigger. The content of phenolics in tomato peel (e.g. quercetin, quercitrin, hesperidin, naringin, and chlorogenic, salicylic and p-coumaric acid) has been quantified. The biggest changes (increase/decrease) have been observed in the contents of p-coumaric and chlorogenic acid, quercetin and quercitrin.
Collapse
Affiliation(s)
- Michal Jakl
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Agro-Environmental Chemistry and Plant Nutrition, Kamýcká 129, 165 00 Prague - Suchdol, Czech Republic
| | - Ishak Kovač
- Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry, Flemingovo nám. 542/2, 166 10 Prague 6, Czech Republic; Charles University, Faculty of Science, Department of Analytical Chemistry, Hlavova 2030, 128 43 Prague 2, Czech Republic
| | - Sanja Ćavar Zeljković
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 892/29, 783 71 Olomouc, Czech Republic; Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Department of Phytochemistry, Šlechtitelů 241/27, 783 71 Olomouc, Czech Republic
| | - Jana Jaklová Dytrtová
- Czech Academy of Sciences, Institute of Organic Chemistry and Biochemistry, Flemingovo nám. 542/2, 166 10 Prague 6, Czech Republic; Charles University, Faculty of Physical Education and Sport, Department of Physiology and Biochemistry, José Martího 269/31, 162 52 Prague 6, Czech Republic.
| |
Collapse
|
7
|
Guo HM, Zhao Y, Yang MNO, Yang ZH. The potential risks of paclobutrazol residue on yogurt fermentation from the level of chiral enantiomers. J Dairy Sci 2020; 103:7682-7694. [PMID: 32564955 DOI: 10.3168/jds.2019-17988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/09/2020] [Indexed: 01/01/2023]
Abstract
In recent years, pesticide residues in food have increasingly become the focus of public attention. However, the standard system of pesticide maximum residue limits in fermented food is imperfect, which can lead to potential safety risks to consumers. In this context, the aim of the study was to assess the potential effects of paclobutrazol residue on the yogurt fermentation process. We examined the stereoselective behaviors of the 2 paclobutrazol enantiomers from the perspective of chirality during the yogurt fermentation process. The results indicated that no significant degradation occurred for either of the 2 enantiomers (2R, 3R-paclobutrazol, 2S, 3S-paclobutrazol), and no visible enantiomer conversion behavior was observed. In addition, the reason paclobutrazol did not significantly degrade was explained from the perspective of the microbial function. Results from 16S rRNA sequencing indicated that paclobutrazol significantly affected the microbial composition and inhibited metabolic function of microorganisms to exogenous substances, which impeded the degradation of residual pesticide in yogurt. Furthermore, the stable residue of exogenous substance may cause potential food safety problems. Microbial α-diversity analysis indicated that fermentation time played a more important role on diversity than did paclobutrazol concentration. Moreover, Staphylococcus was found in yogurt after treatment with paclobutrazol; Staphylococcus aureus causes dangerous infectious diseases in humans. We devised a method to investigate the presence of pesticide residues during food fermentation and provided a theoretical basis for food safety assessment.
Collapse
Affiliation(s)
- Hao-Ming Guo
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agriculture University, Wuhan, 430070, China
| | - Yue Zhao
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agriculture University, Wuhan, 430070, China
| | - Mei-Nan Ou Yang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agriculture University, Wuhan, 430070, China
| | - Zhong-Hua Yang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agriculture University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Bioinoculants play a significant role in shaping the rhizospheric microbial community: a field study with Cajanus cajan. World J Microbiol Biotechnol 2020; 36:44. [PMID: 32130544 DOI: 10.1007/s11274-020-02818-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/22/2020] [Indexed: 12/11/2022]
Abstract
The present study is an attempt to understand the impact of bioinoculants, Azotobacter chroococcum (A), Bacillus megaterium (B), Pseudomonas fluorescens (P), on (a) soil and plant nutrient status, (b) total resident and active bacterial communities, and (c) genes and transcripts involved in nitrogen cycle, during cultivation of Cajanus cajan. In terms of available macro- and micro-nutrients, triple inoculation of the bioinoculants (ABP) competed well with chemical fertilizer (CF). Their 'non-target' effects were assessed in terms of the abundance and activity of the resident bacterial community by employing denaturing gradient gel electrophoresis (DGGE). The resident bacterial community (16S rRNA gene) was stable, while the active fraction (16S rRNA transcripts) was influenced (in terms of abundance) by the treatments. Quantification of the genes and transcripts involved in N cycle by qPCR revealed an increase in the transcripts of nifH in the soil treated with ABP over CF, with an enhancement of 3.36- and 1.57- fold at flowering and maturity stages of plant growth, respectively. The bioinoculants shaped the resident microflora towards a more beneficial community, which helped in increasing soil N turnover and hence, soil fertility as a whole.
Collapse
|
9
|
Jiang X, Wang Y, Xie H, Li R, Wei J, Liu Y. Environmental behavior of paclobutrazol in soil and its toxicity on potato and taro plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:27385-27395. [PMID: 31325091 DOI: 10.1007/s11356-019-05947-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
The environmental behavior of paclobutrazol in soil and its toxicity were studied by field investigation and an outdoor pot experiment, and the residue of paclobutrazol was detected by gas chromatography-mass spectrometry. Field investigation has found that the residual paclobutrazol in the former succession crop could severely inhibit the growth of succeeding crops of potato; with migration and transformation of residual paclobutrazol in the soil, the stems of potato were thickened with residual amount of 1.23 mg kg-1, the growth was slow, and the height of potato in soil with residual amount of 1.34 mg kg-1 and the control was significantly different. The degradation dynamics of paclobutrazol fits with the first-order degradation kinetics, although T1/2 of paclobutrazol of the taro planting soil was 30.14-46.21 days and the residual paclobutrazol remained detectable even on day 120 after application. Taro leaves were sensitive to the stress of paclobutrazol pollution; the taro leaf thickness increased, the leaf area decreased, the chlorophyll content per area unit of taro leaf showed an obvious increased trend, and SOD and CAT activities and MDA and proline content increased significantly. Paclobutrazol promoted the tillering of taro, and the taro seedlings were dwarfed by 58.01, 63.27, and 75.88% at different concentrations. It indicated that taro had strong stress response ability under paclobutrazol pollution.
Collapse
Affiliation(s)
- Xiulan Jiang
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China
| | - Yanan Wang
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China
| | - Hui Xie
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Ruiqi Li
- Nankai University, Tianjin, 300071, China
| | - Jinling Wei
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China
| | - Yan Liu
- College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|