1
|
Chen X, Bai H, Mo W, Zheng X, Chen H, Yin Y, Liao Y, Chen Z, Shi Q, Zuo Z, Liang Z, Peng H. Lactic Acid Bacteria Bacteriocins: Safe and Effective Antimicrobial Agents. Int J Mol Sci 2025; 26:4124. [PMID: 40362364 PMCID: PMC12071495 DOI: 10.3390/ijms26094124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Antibiotic-resistant bacteria are major contributors to food spoilage, animal diseases, and the emergence of multidrug-resistant (MDR) bacteria in healthcare, highlighting the urgent need for effective treatments. Bacteriocins produced by lactic acid bacteria (LAB) have gained attention for their non-toxic nature and strong antimicrobial properties. LAB-derived bacteriocins have been successfully applied in food preservation and are classified by the U.S. Food and Drug Administration (FDA) as 'food-grade' or 'generally recognized as safe' (GRAS). This review summarizes recent progress in the production, purification, and emerging applications of LAB bacteriocins. It emphasizes their versatility in food preservation, agriculture, and medicine, providing insights into their role in antimicrobial development and functional food innovation.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (X.C.); (H.B.); (H.C.); (Y.Y.)
| | - Huili Bai
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (X.C.); (H.B.); (H.C.); (Y.Y.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.)
| | - Weiliang Mo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (W.M.); (X.Z.); (Q.S.); (Z.Z.)
| | - Xunan Zheng
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (W.M.); (X.Z.); (Q.S.); (Z.Z.)
| | - Hailan Chen
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (X.C.); (H.B.); (H.C.); (Y.Y.)
| | - Yangyan Yin
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (X.C.); (H.B.); (H.C.); (Y.Y.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.)
| | - Yuying Liao
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.)
| | - Zhongwei Chen
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.)
| | - Qingchi Shi
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (W.M.); (X.Z.); (Q.S.); (Z.Z.)
| | - Zecheng Zuo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China; (W.M.); (X.Z.); (Q.S.); (Z.Z.)
| | - Zhengmin Liang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (X.C.); (H.B.); (H.C.); (Y.Y.)
| | - Hao Peng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.)
| |
Collapse
|
2
|
Oliveira FS, da Silva Rodrigues R, Cavicchioli VQ, de Carvalho AF, Nero LA. Influence of different culture media on the antimicrobial activity of Pediococcus pentosaceus ST65ACC against Listeria monocytogenes. Braz J Microbiol 2024; 55:2539-2545. [PMID: 38789904 PMCID: PMC11405628 DOI: 10.1007/s42770-024-01391-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Pediococcus pentosaceus ST65ACC is a bacteriocinogenic lactic acid bacteria (LAB) isolated from Brazilian artisanal cheese that is capable of inhibiting different food pathogens, mainly Listeria monocytogenes. The production of bacteriocins can be influenced by several growth conditions, such as temperature, pH, and medium composition. This study aimed to evaluate the effect of different culture media on the production of bacteriocins and antimicrobial activity of P. pentosaceus ST65ACC on L. monocytogenes Scott A. The strains were inoculated alone and in coculture in four different media: BHI broth, MRS broth, meat broth, and reconstituted skim milk (RSM) 10% (w/v). The culture media were then incubated at 37 °C for 96 h, and count analysis, pH measurement, and bacteriocin production were performed at 0, 24, 48, 72 and 96 h. L. monocytogenes was inhibited to nondetectable levels in coculture with P. pentosaceus ST65ACC in MRS broth within 96 h, consistent with the high production of bacteriocin throughout the analysis period (3,200-12,800 AU/mL). However, lower inhibitory activities of P. pentosaceus ST65ACC on L. monocytogenes Scott A were recorded in BHI, RSM, and meat broth, with low or no production of bacteriocins at the analyzed times. The composition of these culture media may have repressed the production and activity of bacteriocins and, consequently, the antagonist activity of P. pentosaceus ST65ACC on L. monocytogenes Scott A. The results showed that the antimicrobial activity was more effective in MRS broth, presenting greater production of bacteriocins and less variability when compared to the other media analyzed.
Collapse
Affiliation(s)
- Francielly Soares Oliveira
- Departamento de Veterinária, InsPOA- Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Viçosa, 36570 900, MG, Brazil
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570 900, MG, Brazil
| | - Rafaela da Silva Rodrigues
- Departamento de Veterinária, InsPOA- Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Viçosa, 36570 900, MG, Brazil
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570 900, MG, Brazil
| | - Valéria Quintana Cavicchioli
- Centro de Pesquisa em Alimentos, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, 74690 900, GO, Brazil
| | - Antônio Fernandes de Carvalho
- InovaLeite - Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 36570 900, MG, Brazil
| | - Luís Augusto Nero
- Departamento de Veterinária, InsPOA- Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Viçosa, 36570 900, MG, Brazil.
| |
Collapse
|
3
|
Tathode MS, Bonomo MG, Zappavigna S, Mang SM, Bocchetti M, Camele I, Caraglia M, Salzano G. Whole-genome analysis suggesting probiotic potential and safety properties of Pediococcus pentosaceus DSPZPP1, a promising LAB strain isolated from traditional fermented sausages of the Basilicata region (Southern Italy). Front Microbiol 2024; 15:1268216. [PMID: 38638895 PMCID: PMC11024341 DOI: 10.3389/fmicb.2024.1268216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 03/07/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Many lactic acid bacteria (LAB) strains are currently gaining attention in the food industry and various biological applications because of their harmless and functional properties. Given the growing consumer demand for safe food, further research into potential probiotic bacteria is beneficial. Therefore, we aimed to characterize Pediococcus pentosaceus DSPZPP1, a LAB strain isolated from traditional fermented sausages from the Basilicata region of Southern Italy. Methods In this study, we analyzed the whole genome of the P. pentosaceus DSPZPP1 strain and performed in silico characterization to evaluate its applicability for probiotics and use in the food industry. Results and Discussion The whole-genome assembly and functional annotations revealed many interesting characteristics of the DSPZPP1 strain. Sequencing raw reads were assembled into a draft genome of size 1,891,398 bp, with a G + C content of 37.3%. Functional annotation identified 1930 protein-encoding genes and 58 RNAs including tRNA, tmRNA, and 16S, 23S, and 5S rRNAs. The analysis shows the presence of genes that encode water-soluble B-group vitamins such as biotin, folate, coenzyme A, and riboflavin. Furthermore, the analysis revealed that the DSPZPP1 strain can synthesize class II bacteriocin, penocin A, adding importance to the food industry for bio-enriched food. The DSPZPP1 genome does not show the presence of plasmids, and no genes associated with antimicrobial resistance and virulence were found. In addition, two intact bacteriophages were identified. Importantly, the lowest probability value in pathogenicity analysis indicates that this strain is non-pathogenic to humans. 16 s rRNA-based phylogenetic analysis and comparative analysis based on ANI and Tetra reveal that the DSPZPP1 strain shares the closest evolutionary relationship with P. pentosaceus DSM 20336 and other Pediococcus strains. Analysis of carbohydrate active enzymes (CAZymes) identified glycosyl transferases (GT) as a main class of enzymes followed by glycoside hydrolases (GH). Our study shows several interesting characteristics of the isolated DSPZPP1 strain from fermented Italian sausages, suggesting its potential use as a promising probiotic candidate and making it more appropriate for selection as a future additive in biopreservation.
Collapse
Affiliation(s)
- Madhura S. Tathode
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria Grazia Bonomo
- Department of Science, Università degli Studi della Basilicata, Potenza, Italy
- Spinoff TNcKILLERS, Potenza, Italy
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Stefania Mirela Mang
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), Università degli Studi della Basilicata, Potenza, Italy
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, Ariano Irpino, Italy
| | - Ippolito Camele
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), Università degli Studi della Basilicata, Potenza, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Laboratory of Molecular and Precision Oncology, Biogem Scarl, Institute of Genetic Research, Ariano Irpino, Italy
| | - Giovanni Salzano
- Department of Science, Università degli Studi della Basilicata, Potenza, Italy
- Spinoff TNcKILLERS, Potenza, Italy
| |
Collapse
|
4
|
García-López JD, Barbieri F, Baños A, Madero JMG, Gardini F, Montanari C, Tabanelli G. Use of two autochthonous bacteriocinogenic strains as starter cultures in the production of salchichónes, a type of Spanish fermented sausages. Curr Res Food Sci 2023; 7:100615. [PMID: 37881335 PMCID: PMC10594565 DOI: 10.1016/j.crfs.2023.100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
In this work, two autochthonous LAB strains (Lactiplantibacillus paraplantarum BPF2 and Pediococcus acidilactici ST6), isolated from spontaneously fermented sausages produced in Spain, were tested to produce Spanish fermented sausages (salchichón) in pilot plants, due to their promising technological and anti-listerial activity. These products were compared with a sample obtained with a commercial starter (RAP) and a spontaneously fermented control sample. Physico-chemical parameters, microbial counts, metagenomic analysis, biogenic amines content and organoleptic profile of the obtained samples were studied to assess the performances of the native starters. In fact, traditional and artisanal products obtained through spontaneous fermentations can represent an important biodiversity reservoir of strains to be exploited as new potential starter cultures, to improve the safety, quality and local differentiation of traditional products. The data underlined that ST6 strain resulted in a final lower percentage if compared with the other LAB used as starter cultures. The use of starters reduced the BA concentration observed in the sausages obtained with spontaneous fermentation and the BPF2 and ST6 strains were able to decrease the level of products rancidity. Moreover, a challenge test against L. monocytogenes were performed. The data confirmed the effectiveness in the inhibition of L. monocytogenes by the two bacteriocinogenic strains tested, with respect to RAP and control samples, highlighting their ability to produce bacteriocins in real food systems. This work demonstrated the promising application in meat industry of these autochthonous strains as starter cultures to improve sensory differentiation and recognizability of typical fermented sausages.
Collapse
Affiliation(s)
| | - Federica Barbieri
- Department of Agricultural and Food Sciences, University of Bologna, 47521, Cesena, Italy
| | - Alberto Baños
- Department of Microbiology, DOMCA S.A.U, 18620, Alhendín, Spain
| | | | - Fausto Gardini
- Department of Agricultural and Food Sciences, University of Bologna, 47521, Cesena, Italy
| | - Chiara Montanari
- Department of Agricultural and Food Sciences, University of Bologna, 47521, Cesena, Italy
| | - Giulia Tabanelli
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, 47521, Cesena, Italy
- Department of Agricultural and Food Sciences, University of Bologna, 40127, Bologna, Italy
| |
Collapse
|
5
|
Song D, Lee J, Kim K, Oh H, An J, Chang S, Cho H, Park S, Jeon K, Yoon Y, Yoo Y, Cho Y, Cho J. Effects of dietary supplementation of Pediococcus pentosaceus strains from kimchi in weaned piglet challenged with Escherichia coli and Salmonella enterica. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:611-626. [PMID: 37332280 PMCID: PMC10271919 DOI: 10.5187/jast.2023.e31] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 06/20/2023]
Abstract
Escherichia coli (E. coli) and Salmonella enterica (SE) infections in pigs are major source associated with enteric disease such as post weaning diarrhea. The aim of this study was to investigate the effects of Pediococcus pentosaceus in weaned piglets challenged with pathogen bacteria. In Experiment.1 90 weaned piglets with initial body weights of 8.53 ± 0.34 kg were assigned to 15 treatments for 2 weeks. The experiments were conducted two trials in a 2 × 5 factorial arrangement of treatments consisting of two levels of challenge (challenge and non-challenge) with E. coli and SE, respectively and five levels of probiotics (Control, Lactobacillus plantarum [LA], Pediococcus pentosaceus SMFM2016-WK1 [38W], Pediococcus acidilactici K [PK], Lactobacillus reuteri PF30 [PF30]). In Experiment.2 a total of 30 weaned pigs (initial body weight of 9.84 ± 0.85 kg) were used in 4 weeks experiment. Pigs were allocated to 5 groups in a randomized complete way with 2 pens per group and 3 pigs per pen. Supplementation of LA and 38W improved (p < 0.05) growth performance, intestinal pathogen bacteria count, fecal noxious odor and diarrhea incidence. In conclusion, supplementation of 38W strains isolated from white kimchi can act as probiotics by inhibiting E. coli and SE.
Collapse
Affiliation(s)
- Dongcheol Song
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Jihwan Lee
- Department of Poultry Science, University of Georgia (UGA), Athens, GA 30602, United States
| | - Kangheun Kim
- Department of Food Marketing and safety, Kunkuk University, Seoul 05030, Korea
| | - Hanjin Oh
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Jaewoo An
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Seyeon Chang
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Hyunah Cho
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Sehyun Park
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Kyeongho Jeon
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Yohan Yoon
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310, Korea
| | - Yoonjeong Yoo
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310, Korea
| | - Younghyun Cho
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310, Korea
| | - Jinho Cho
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
6
|
Identification, Purification, Characterization and Biopreservation Potential of Antimicrobial Peptide of Pediococcus acidilactici NCDC 252. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-022-10485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Beneficial features of pediococcus: from starter cultures and inhibitory activities to probiotic benefits. World J Microbiol Biotechnol 2023; 39:4. [PMID: 36344843 PMCID: PMC9640849 DOI: 10.1007/s11274-022-03419-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/18/2022] [Indexed: 11/09/2022]
Abstract
Pediococci are lactic acid bacteria (LAB) which have been used for centuries in the production of traditional fermented foods. There fermentative abilities were explored by the modern food processing industry in use of pediococci as starter cultures, enabling the production of fermented foods with distinct characteristics. Furthermore, some pediococci strains can produce bacteriocins and other antimicrobial metabolites (AMM), such as pediocins, which are increasingly being explored as bio-preservatives in various food matrices. Due to their versatility and inhibitory spectrum, pediococci bacteriocins and AMM are being extensively researched not only in the food industry, but also in veterinary and human medicine. Some of the pediococci were evaluated as potential probiotics with different beneficial areas of application associated with human and other animals' health. The main taxonomic characteristics of pediococci species are presented here, as well as and their potential roles and applications as starter cultures, as bio-preservatives and as probiotic candidates.
Collapse
|
8
|
Characterization of novel bacteriocin PB2 and comprehensive detection of the pediocin gene ped-A1 from Pediococcus pentosaceus PB2 strain isolated from a sorghum-based fermented beverage in Nigeria. BIOTECHNOLOGY REPORTS 2022; 36:e00772. [DOI: 10.1016/j.btre.2022.e00772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
|
9
|
Sung W, Lu S, Chen Y, Pan C, Hsiao H. Inhibition of individual and combination of cell free supernatants of phenyllactic acid, pediocin‐ and nisin‐producing lactic acid bacteria against food pathogens and bread spoilage molds. J Food Saf 2022. [DOI: 10.1111/jfs.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wen‐Chieh Sung
- Department of Food Science National Taiwan Ocean University Keelung Taiwan, ROC
- Center of Excellence for the Oceans National Taiwan Ocean University Keelung Taiwan, ROC
| | - Szu‐Hsaun Lu
- Department of Food Science National Taiwan Ocean University Keelung Taiwan, ROC
| | - Yi‐Chen Chen
- Department of Food Science National Taiwan Ocean University Keelung Taiwan, ROC
| | - Chorng‐Liang Pan
- Department of Food Science National Taiwan Ocean University Keelung Taiwan, ROC
| | - Hsin‐I Hsiao
- Department of Food Science National Taiwan Ocean University Keelung Taiwan, ROC
| |
Collapse
|
10
|
Rodrigues Blanco I, José Luduverio Pizauro L, Victor dos Anjos Almeida J, Miguel Nóbrega Mendonça C, de Mello Varani A, Pinheiro de Souza Oliveira R. Pan-genomic and comparative analysis of Pediococcus pentosaceus focused on the in silico assessment of pediocin-like bacteriocins. Comput Struct Biotechnol J 2022; 20:5595-5606. [PMID: 36284702 PMCID: PMC9568690 DOI: 10.1016/j.csbj.2022.09.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/29/2022] Open
Abstract
Bacteriocins are antimicrobial peptides produced by different species of bacteria, especially the Gram-positive lactic acid bacteria (LAB). Pediococcus pentosaceus is widely applied in the industry and stands out as Bacteriocin-Like Inhibitory Substances (BLIS) producer known to inhibit pathogens commonly considered a concern in the food industries. This study aimed to perform in silico comparisons of P. pentosaceus genomes available in the public GenBank database focusing on their pediocin-like bacteriocins repertoire. The pan-genome analysis evidenced a temporal signal in the pattern of gene gain and loss, supporting the hypothesis that the complete genetic repertoire of this group of bacteria is still uncovered. Thirteen bacteriocin genes from Class II and III were predicted in the accessory genome. Four pediocin-like bacteriocins (54% of the detected bacteriocin repertoire) and their accompanying immunity genes are highlighted; penocin A, coagulin A, pediocin PA-1, and plantaricin 423. Additionally, in silico, modeling of the pediocin-like bacteriocins revealed different configurations of the helix motif compared to other physically determined pediocin-like structures. Comparative and phylogenomic analyses support the hypothesis that a dynamic mechanism of bacteriocin acquisition and purging is not dependent on the bacterial isolation source origin. Synteny analysis revealed that while coagulin A, pediocin PA-1, and Plantaricin 423 loci are associated with insertion sequences mainly from the IS30 family and are likely of plasmid origin, penocin A lies in a conserved chromosomal locus. The results presented here provide insights into the unique pediocin-like bacteriocin peptide fold, genomic diversity, and the evolution of the bacteriocin genetic repertoire of P. pentosaceus, shedding new insights into the role of these biomolecules for application in inhibiting bacterial pathogens, and suggesting that prospecting and sequencing new strains is still an alternative to mining for new probiotic compounds.
Collapse
Affiliation(s)
- Iago Rodrigues Blanco
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lucas José Luduverio Pizauro
- Department of Agricultural and Environmental Biotechnology, School of Agricultural and Veterinary Sciences (FCAV), UNESP, Jaboticabal, Brazil
| | - João Victor dos Anjos Almeida
- Department of Agricultural and Environmental Biotechnology, School of Agricultural and Veterinary Sciences (FCAV), UNESP, Jaboticabal, Brazil
| | - Carlos Miguel Nóbrega Mendonça
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alessandro de Mello Varani
- Department of Agricultural and Environmental Biotechnology, School of Agricultural and Veterinary Sciences (FCAV), UNESP, Jaboticabal, Brazil
| | | |
Collapse
|
11
|
Zhang YM, Jiang YH, Li HW, Li XZ, Zhang QL. Purification and characterization of Lactobacillus plantarum-derived bacteriocin with activity against Staphylococcus argenteus planktonic cells and biofilm. J Food Sci 2022; 87:2718-2731. [PMID: 35470896 DOI: 10.1111/1750-3841.16148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/27/2022] [Accepted: 03/21/2022] [Indexed: 01/04/2023]
Abstract
Bacteriocins inhibit various foodborne bacteria in planktonic and biofilm forms. However, bacteriocins with antibacterial and antibiofilm activity against Staphylococcus argenteus, a pathogen that can cause food poisoning, are still poorly known. Here, the novel bacteriocin LSB1 derived from Lactobacillus plantarum CGMCC 1.12934 was purified and characterized extensively. LSB1 had a molecular weight of 1425.78 Da and an amino acid sequence of YIFVTGGVVSSLGK. Moreover, LSB1 exhibited excellent stability under heat and acid-base stress and presented sensitivity to pepsin and proteinase K. LSB1 exhibited an extensive antimicrobial spectrum against both Gram-positive and Gram-negative bacteria. Minimum inhibitory concentration of LSB1 against S. argenteus_70917 was 10.36 µg/ml, which was lower than that of most of the previously found bacteriocins against Staphylococcus strains. Furthermore, LSB1 significantly inhibited S. argenteus_70917 planktonic cells (p < 0.01) and decreased their viability. Scanning electron microscopy analysis revealed that cell membrane permeability of S. argenteus_70917 upon exposure to LSB1 showed leakage of cytoplasmic contents and rupture, leading to cell death. In addition, biofilm formation ability of S. argenteus_70917 was significantly (p < 0.01) impaired by LSB1, with the percent inhibition of 35% at 10 µg/ml and 80% at 20 µg/ml. Overall, this study indicates that LSB1 can be considered a potential antibacterial agent in the control of S. argenteus in both planktonic and biofilm states. PRACTICAL APPLICATION: Foodborne pathogenic bacteria, such as Staphylococcus argenteus, and their biofilms represent potential risks for food safety. In recent years, customers' demand for "natural" products has increased food control. This study describes the novel bacteriocin LSB1 produced by the lactic acid bacterium species Lactobacillus plantarum. LSB1 showed strong antibacterial and antibiofilm activity against S. argenteus as well as thermal and acid-alkaline stability. Furthermore, the mechanisms of action of LSB1 on S. argenteus were preliminarily explored. These results indicate that LSB1 might be potentially used as an effective and natural food preservative.
Collapse
Affiliation(s)
- Yan-Mei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yu-Hang Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Hong-Wei Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiu-Zhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Sciences, Qinghai University, Xining, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
12
|
Oliveira FS, da Silva Rodrigues R, de Carvalho AF, Nero LA. Genomic Analyses of Pediococcus pentosaceus ST65ACC, a Bacteriocinogenic Strain Isolated from Artisanal Raw-Milk Cheese. Probiotics Antimicrob Proteins 2022; 15:630-645. [PMID: 34984631 DOI: 10.1007/s12602-021-09894-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Pediococcus pentosaceus ST65ACC was obtained from a Brazilian artisanal cheese (BAC) and characterized as bacteriocinogenic. This strain presented beneficial properties in previous studies, indicating its potential as a probiotic candidate. In this study, we aimed to carry out a genetic characterization based on whole-genome sequencing (WGS), including taxonomy, biotechnological properties, bacteriocin clusters and safety-related genes. WGS was performed using the Illumina MiSeq platform and the genome was annotated with the Prokaryotic Genome Annotation (Prokka). P. pentosaceus ST65ACC taxonomy was investigated and bacteriocin genes clusters were identified by BAGEL4, metabolic pathways were analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG) and safety-related genes were checked. P. pentosaceus ST65ACC had a total draft genome size of 1,933,194 bp with a GC content of 37.00%, and encoded 1950 protein coding sequences (CDSs), 6 rRNA, 55 tRNA, 1 tmRNA and no plasmids were detected. The analysis revealed absence of a CRISPR/Cas system, bacteriocin gene clusters for pediocin PA-1/AcH and penocin-A were identified. Genes related to beneficial properties, such as stress adaptation genes and adhesion genes, were identified. Furthermore, genes related to biogenic amines and virulence-related genes were not detected. Genes related to antibiotic resistance were identified, but not in prophage regions. Based on the obtained results, the beneficial potential of P. pentosaceus ST65ACC was confirmed, allowing its characterization as a potential probiotic candidate.
Collapse
Affiliation(s)
- Francielly Soares Oliveira
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, 36570 900, Brazil.,Inovaleite - Laboratório de Pesquisa Em Leite E Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, MG, 36570 900, Brazil
| | - Rafaela da Silva Rodrigues
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, 36570 900, Brazil.,Inovaleite - Laboratório de Pesquisa Em Leite E Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, MG, 36570 900, Brazil
| | - Antônio Fernandes de Carvalho
- Inovaleite - Laboratório de Pesquisa Em Leite E Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, MG, 36570 900, Brazil
| | - Luís Augusto Nero
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, 36570 900, Brazil.
| |
Collapse
|
13
|
PATO U, RIFTYAN E, JONNAIDI NN, WAHYUNI MS, FERUNI JA, ABDEL-WAHHAB MA. Isolation, characterization, and antimicrobial evaluation of bacteriocin produced by lactic acid bacteria against Erwinia carotovora. FOOD SCIENCE AND TECHNOLOGY 2022; 42. [DOI: 10.1590/fst.11922] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Qi Y, Huang L, Zeng Y, Li W, Zhou D, Xie J, Xie J, Tu Q, Deng D, Yin J. Pediococcus pentosaceus: Screening and Application as Probiotics in Food Processing. Front Microbiol 2021; 12:762467. [PMID: 34975787 PMCID: PMC8716948 DOI: 10.3389/fmicb.2021.762467] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Lactic acid bacteria (LAB) are vital probiotics in the food processing industry, which are widely spread in food additives and products, such as meat, milk, and vegetables. Pediococcus pentosaceus (P. pentosaceus), as a kind of LAB, has numerous probiotic effects, mainly including antioxidant, cholesterol-lowering, and immune effects. Recently, the applications in the probiotic- fermentation products have attracted progressively more attentions. However, it is necessary to screen P. pentosaceus with abundant functions from diverse sources due to the limitation about the source and species of P. pentosaceus. This review summarized the screening methods of P. pentosaceus and the exploration methods of probiotic functions in combination with the case study. The screening methods included primary screening and rescreening including gastric acidity resistance, bile resistance, adhesion, antibacterial effects, etc. The application and development prospects of P. pentosaceus were described in detail, and the shortcomings in the practical application of P. pentosaceus were evaluated to make better application of P. pentosaceus in the future.
Collapse
Affiliation(s)
- Yining Qi
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Le Huang
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Yan Zeng
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Wen Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | - Diao Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
| | | | - Junyan Xie
- CAS Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Qiang Tu,
| | - Dun Deng
- Tangrenshen Group Co., Ltd., Zhuzhou, China
- Dun Deng,
| | - Jia Yin
- Key Laboratory of Protein Chemistry and Developmental Biology of Fish of Ministry of Education, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Hunan Normal University, Changsha, China
- Jia Yin,
| |
Collapse
|
15
|
Bunse M, Mailänder LK, Lorenz P, Stintzing FC, Kammerer DR. Evaluation of Geum urbanum L. extracts with respect to their antimicrobial potential. Chem Biodivers 2021; 19:e202100850. [PMID: 34882948 DOI: 10.1002/cbdv.202100850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/09/2021] [Indexed: 11/07/2022]
Abstract
Preparations derived from roots and rhizomes of Geum urbanum L. are traditionally used for the treatment of ulcers and irritations of mucous membranes of the mouth, stomach, and intestinal tract. In complementary medicine, fermentation is one of the methods applied to recover plant extracts used for the production of such pharmaceutical preparations. The present study was performed to characterize the secondary metabolites and to evaluate the antimicrobial potential of different G. urbanum root and rhizome extracts. For this purpose, individual metabolites of fresh and fermented G. urbanum root and rhizome extracts were analyzed by HPLC-DAD-MS n and GC-MS. Among others, rare ellagitannin-sulfates could be characterized by LC-MS n . In addition, the antibacterial activity of various extracts of fresh and dried G. urbanum roots and rhizomes against Staphylococcus aureus (ATCC 6538) and Cutibacterium acnes (CP033842.1; FDAARGOS_503 chromosome) were assessed and compared to that of G. rivale. Furthermore, low- and high-molecular tannins were fractionated by column chromatography, demonstrating the latter to exhibit highest antibacterial activity.
Collapse
Affiliation(s)
- Marek Bunse
- WALA Remedies: WALA Heilmittel GmbH, Department of Analytical Development & Research, Section Phytochemical Research, Dorfstrasse 1, 73087, Bad Boll/Eckwälden, GERMANY
| | - Lilo K Mailänder
- WALA Remedies: WALA Heilmittel GmbH, Department of Analytical Development & Research, Section Phytochemical Research, Dorfstrasse 1, 73087, Bad Boll/Eckwälden, GERMANY
| | - Peter Lorenz
- WALA Remedies: WALA Heilmittel GmbH, Department of Analytical Development & Research, Section Phytochemical Research, Dorfstrasse 1, 73087, Bad Boll/Eckwälden, GERMANY
| | - Florian C Stintzing
- WALA Remedies: WALA Heilmittel GmbH, Department of Analytical Development & Research, Section Phytochemical Research, Dorfstrasse 1, 73087, Bad Boll/Eckwälden, GERMANY
| | - Dietmar Rolf Kammerer
- WALA Heilmittel GmbH, Department of Analytical Development & Research, Section Phytochemical Research, Dorfstrasse 1, 73087, Bad Boll, GERMANY
| |
Collapse
|
16
|
Khorshidian N, Khanniri E, Mohammadi M, Mortazavian AM, Yousefi M. Antibacterial Activity of Pediocin and Pediocin-Producing Bacteria Against Listeria monocytogenes in Meat Products. Front Microbiol 2021; 12:709959. [PMID: 34603234 PMCID: PMC8486284 DOI: 10.3389/fmicb.2021.709959] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
One of the most important challenges in the food industry is to produce healthy and safe food products, and this could be achieved through various processes as well as the use of different additives, especially chemical preservatives. However, consumer awareness and concern about chemical preservatives have led researchers to focus on the use of natural antimicrobial compounds such as bacteriocins. Pediocins, which belong to subclass IIa of bacteriocin characterized as small unmodified peptides with a low molecular weight (2.7-17 kDa), are produced by some of the Pediococcus bacteria. Pediocin and pediocin-like bacteriocins exert a broad spectrum of antimicrobial activity against Gram-positive bacteria, especially against pathogenic bacteria, such as Listeria monocytogenes through formation of pores in the cytoplasmic membrane and cell membrane dysfunction. Pediocins are sensitive to most protease enzymes such as papain, pepsin, and trypsin; however, they keep their antimicrobial activity during heat treatment, at low temperatures even at -80°C, and after treatment with lipase, lysozyme, phospholipase C, DNase, or RNase. Due to the anti-listeria activity of pediocin on the one hand and the potential health hazards associated with consumption of meat products on the other hand, this review aimed to investigate the possible application of pediocin in preservation of meat and meat products against L. monocytogenes.
Collapse
Affiliation(s)
- Nasim Khorshidian
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Khanniri
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mohammadi
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir M. Mortazavian
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
17
|
Chung Y, Ryu Y, An BC, Yoon YS, Choi O, Kim TY, Yoon J, Ahn JY, Park HJ, Kwon SK, Kim JF, Chung MJ. A synthetic probiotic engineered for colorectal cancer therapy modulates gut microbiota. MICROBIOME 2021; 9:122. [PMID: 34039418 PMCID: PMC8157686 DOI: 10.1186/s40168-021-01071-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/06/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND Successful chemoprevention or chemotherapy is achieved through targeted delivery of prophylactic agents during initial phases of carcinogenesis or therapeutic agents to malignant tumors. Bacteria can be used as anticancer agents, but efforts to utilize attenuated pathogenic bacteria suffer from the risk of toxicity or infection. Lactic acid bacteria are safe to eat and often confer health benefits, making them ideal candidates for live vehicles engineered to deliver anticancer drugs. RESULTS In this study, we developed an effective bacterial drug delivery system for colorectal cancer (CRC) therapy using the lactic acid bacterium Pediococcus pentosaceus. It is equipped with dual gene cassettes driven by a strong inducible promoter that encode the therapeutic protein P8 fused to a secretion signal peptide and a complementation system. In an inducible CRC cell-derived xenograft mouse model, our synthetic probiotic significantly reduced tumor volume and inhibited tumor growth relative to the control. Mice with colitis-associated CRC induced by azoxymethane and dextran sodium sulfate exhibited polyp regression and recovered taxonomic diversity when the engineered bacterium was orally administered. Further, the synthetic probiotic modulated gut microbiota and alleviated the chemically induced dysbiosis. Correlation analysis demonstrated that specific bacterial taxa potentially associated with eubiosis or dysbiosis, such as Akkermansia or Turicibacter, have positive or negative relationships with other microbial members. CONCLUSIONS Taken together, our work illustrates that an effective and stable synthetic probiotic composed of P. pentosaceus and the P8 therapeutic protein can reduce CRC and contribute to rebiosis, and the validity and feasibility of cell-based designer biopharmaceuticals for both treating CRC and ameliorating impaired microbiota. Video abstract.
Collapse
Affiliation(s)
- Yusook Chung
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do, 10003, Republic of Korea
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yongku Ryu
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do, 10003, Republic of Korea
| | - Byung Chull An
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do, 10003, Republic of Korea
| | - Yeo-Sang Yoon
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do, 10003, Republic of Korea
| | - Oksik Choi
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do, 10003, Republic of Korea
| | - Tai Yeub Kim
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do, 10003, Republic of Korea
| | - Jaekyung Yoon
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jun Young Ahn
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do, 10003, Republic of Korea
| | - Ho Jin Park
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do, 10003, Republic of Korea
| | - Soon-Kyeong Kwon
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Division of Applied Life Science (BK21), Gyeongsang National University, 501 Jinju-daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea
| | - Jihyun F Kim
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Myung Jun Chung
- R&D Center, Cell Biotech, Co., Ltd., 50 Aegibong-ro 409beon-gil, Gaegok-ri, Wolgot-myeon, Gimpo-si, Gyeonggi-do, 10003, Republic of Korea.
| |
Collapse
|
18
|
Jiang S, Cai L, Lv L, Li L. Pediococcus pentosaceus, a future additive or probiotic candidate. Microb Cell Fact 2021; 20:45. [PMID: 33593360 PMCID: PMC7885583 DOI: 10.1186/s12934-021-01537-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Background Pediococcus pentosaceus, a promising strain of lactic acid bacteria (LAB), is gradually attracting attention, leading to a rapid increase in experimental research. Due to increased demand for practical applications of microbes, the functional and harmless P. pentosaceus might be a worthwhile LAB strain for both the food industry and biological applications. Results As an additive, P. pentosaceus improves the taste and nutrition of food, as well as the storage of animal products. Moreover, the antimicrobial abilities of Pediococcus strains are being highlighted. Evidence suggests that bacteriocins or bacteriocin-like substances (BLISs) produced by P. pentosaceus play effective antibacterial roles in the microbial ecosystem. In addition, various strains of P. pentosaceus have been highlighted for probiotic use due to their anti-inflammation, anticancer, antioxidant, detoxification, and lipid-lowering abilities. Conclusions Therefore, it is necessary to continue studying P. pentosaceus for further use. Thorough study of several P. pentosaceus strains should clarify the benefits and drawbacks in the future.
Collapse
Affiliation(s)
- Shiman Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lingzhi Cai
- The Infectious Diseases Department, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
19
|
Khochamit N, Siripornadulsil S, Sukon P, Siripornadulsil W. Bacillus subtilis and lactic acid bacteria improve the growth performance and blood parameters and reduce Salmonella infection in broilers. Vet World 2020; 13:2663-2672. [PMID: 33487985 PMCID: PMC7811549 DOI: 10.14202/vetworld.2020.2663-2672] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/02/2020] [Indexed: 11/16/2022] Open
Abstract
Aim The aim of the study was to determine the potentials and effects of Bacillus subtilis and lactic acid bacteria (LAB) as probiotics on broiler growth, health, and Salmonella infection. Materials and Methods To evaluate the inoculum size applicable for broilers, 1-day-old broilers were orally fed fresh cultures of single strains and a B. subtilis KKU213/Pediococcus pentosaceus NP6 mixture at 108 and 1012 colony-forming unit (CFUs)/mL/chick. The body weight gain (BWG), Salmonella contamination level and total Bacillus and LAB abundances in the crop and intestine were measured. Subsequently, 1-day-old broilers were orally fed of KKU213, CH403, and Pediococcus acidilactici SH8 at 1010 CFUs/mL, followed by inulin. After 35 days, the BWG, Bacillus and LAB abundances in the cecum, blood parameters, and KKU213 colonization were assessed. Results The broilers fed single strains or KKU213+NP6 exhibited a higher BWG and a higher crop LAB abundance than the controls (p<0.05). Probiotic feeding decreased the intestinal Salmonella abundance and correspondingly increased the LAB abundance. The broilers fed the mixed culture (KKU213+CH403+SH8) followed by prebiotics showed lower mortality, higher blood high-density lipoprotein levels, and lower blood uric acid levels than the controls (p<0.0004). Probiotic feeding significantly increased the Bacillus and LAB counts (p<0.05). A CE330 isolate obtained from the cecum after 35 days of KKU213 feeding was closely related to B. subtilis KKU213. Conclusion B. subtilis KKU213 is a potent probiotic strain that can survive, colonize and reduce Salmonella infection in broilers and improve their growth and health. This strain, combined with different LAB can act synergistically in the gut and promote broiler growth.
Collapse
Affiliation(s)
- Nalisa Khochamit
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Surasak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.,Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand.,Center of Excellence on Hazardous Substance Management (HSM), Patumwan, Bangkok, 10330 Thailand
| | - Peerapol Sukon
- Research Group for Preventive Technology in Livestock, Department of Anatomy, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wilailak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.,Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand.,Center of Excellence on Hazardous Substance Management (HSM), Patumwan, Bangkok, 10330 Thailand
| |
Collapse
|
20
|
Mining, heterologous expression, purification and characterization of 14 novel bacteriocins from Lactobacillus rhamnosus LS-8. Int J Biol Macromol 2020; 164:2162-2176. [DOI: 10.1016/j.ijbiomac.2020.08.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
|
21
|
Cui Y, Luo L, Wang X, Lu Y, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Mining, heterologous expression, purification, antibactericidal mechanism, and application of bacteriocins: A review. Compr Rev Food Sci Food Saf 2020; 20:863-899. [PMID: 33443793 DOI: 10.1111/1541-4337.12658] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Bacteriocins are generally considered as low-molecular-weight ribosomal peptides or proteins synthesized by G+ and G- bacteria that inhibit or kill other related or unrelated microorganisms. However, low yield is an important factor restricting the application of bacteriocins. This paper reviews mining methods, heterologous expression in different systems, the purification technologies applied to bacteriocins, and identification methods, as well as the antibacterial mechanism and applications in three different food systems. Bioinformatics improves the efficiency of bacteriocins mining. Bacteriocins can be heterologously expressed in different expression systems (e.g., Escherichia coli, Lactobacillus, and yeast). Ammonium sulfate precipitation, dialysis membrane, pH-mediated cell adsorption/desorption, solvent extraction, macroporous resin column, and chromatography are always used as purification methods for bacteriocins. The bacteriocins are identified through electrophoresis and mass spectrum. Cell envelope (e.g., cell permeabilization and pore formation) and inhibition of gene expression are common antibacterial mechanisms of bacteriocins. Bacteriocins can be added to protect meat products (e.g., beef and sausages), dairy products (e.g., cheese, milk, and yogurt), and vegetables and fruits (e.g., salad, apple juice, and soybean sprouts). The future research directions are also prospected.
Collapse
Affiliation(s)
- Yanlong Cui
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lingli Luo
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Wang
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yingying Lu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yanglei Yi
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuanyuan Shan
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Bianfang Liu
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuan Zhou
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- Lab of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
22
|
Abdelhamid AG, El-Dougdoug NK. Controlling foodborne pathogens with natural antimicrobials by biological control and antivirulence strategies. Heliyon 2020; 6:e05020. [PMID: 32995651 PMCID: PMC7511826 DOI: 10.1016/j.heliyon.2020.e05020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/02/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Foodborne diseases represent a global health threat besides the great economic losses encountered by the food industry. These hazards necessitate the implementation of food preservation methods to control foodborne pathogens, the causal agents of human illnesses. Until now, most control methods rely on inhibiting the microbial growth or eliminating the pathogens by applying lethal treatments. Natural antimicrobials, which inhibit microbial growth, include traditional chemicals, naturally occurring antimicrobials, or biological preservation (e.g. beneficial microbes, bacteriocins, or bacteriophages). Although having great antimicrobial effectiveness, challenges due to the adaptation of foodborne pathogens to such control methods are becoming apparent. Such adaptation enables the survival of the pathogens in foods or food-contact environments. This imperative concern inspires contemporary research and food industry sector to develop technologies which do not target microbial growth but disarming microbial virulence factors. These technologies, referred to as "antivirulence", render the microbe non-capable of causing the disease with very limited or no opportunities for the pathogenic microorganisms to develop resistance. For the sake of safer and fresh-like foods, with no effect on the sensory properties of foods, a combination of two or more natural antimicrobials or with other stressors, is now widespread, to preserve foods. This review introduces and critically describes the traditional versus the emerging uses of natural antimicrobials for controlling foodborne pathogens in foods. Development of biological control strategies using natural antimicrobials proved to be effective in inhibiting microbial growth in foods and allowing improved food safety. In the meanwhile, discovery of new antivirulence agents could be a transformative strategy in food preservation in the far future.
Collapse
Affiliation(s)
- Ahmed G. Abdelhamid
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13511, Egypt
| | - Noha K. El-Dougdoug
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha, 13511, Egypt
| |
Collapse
|
23
|
Dubey V, Mishra AK, Ghosh AR. Cell adherence efficacy of probiotic Pediococcus pentosaceus GS4 (MTCC 12683) and demonstrable role of its surface layer protein (Slp). J Proteomics 2020; 226:103894. [PMID: 32652219 DOI: 10.1016/j.jprot.2020.103894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/08/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
The current study examined the cell adherence property of probiotic Pediococcus pentosaceus GS4 (MTCC12683) with the characterization and functionality in adherence of its surface layer protein (GS4-Slp). The Slp of P. pentosaceus GS4 was extracted purified and detected using SDS-PAGE (98 kDa) and size exclusion chromatography. The cell adherence property of probiotic GS4 (Slp+/Slp-) was evaluated on buccal cells and HCT-116. Purified Slp was found neutralized with raised anti-Slp showing reduced adherence to HCT-116 as evident from SEM analysis. The structure of GS4-Slp was determined by MALDI-TOF analysis, CD analysis, atomic force microscopy (AFM), and FT-IR spectrometry. In Silico approach revealed its indirect similarity with cell membrane protein of Helicobacter pylori. Results thus reveal that GS4 has the potential of the production of 98 kDa Slp which facilitates the cell adherence property. This added probiotic attribute will enhance the probiotic potentials of P. pentosaceus GS4 to use it biotechnologically. SIGNIFICANCE: Probiotic Pediococcus pentosaceus GS4 facilitates demonstrable colonization by the elaboration of Slp. This property imparts a value to the strain and claims to be more useful biotechnologically.
Collapse
Affiliation(s)
- Vinay Dubey
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Alok Kumar Mishra
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Asit Ranjan Ghosh
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|