1
|
Zhang D, Kukkar D, Bhatt P, Kim KH, Kaur K, Wang J. Novel nanomaterials-based combating strategies against drug-resistant bacteria. Colloids Surf B Biointerfaces 2025; 248:114478. [PMID: 39778220 DOI: 10.1016/j.colsurfb.2024.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Numerous types of contemporary antibiotic treatment regimens have become ineffective with the increasing incidence of drug tolerance. As a result, it is pertinent to seek novel and innovative solutions such as antibacterial nanomaterials (NMs) for the prohibition and treatment of hazardous microbial infections. Unlike traditional antibiotics (e.g., penicillin and tetracycline), the unique physicochemical characteristics (e.g., size dependency) of NMs endow them with bacteriostatic and bactericidal potential. However, it is yet difficult to mechanistically predict or decipher the networks of molecular interaction (e.g., between NMs and the biological systems) and the subsequent immune responses. In light of such research gap, this review outlines various mechanisms accountable for the inception of drug tolerance in bacteria. It also delineates the primary factors governing the NMs-induced molecular mechanisms against microbes, specifically drug-resistant bacteria along with the various NM-based mechanisms of antibacterial activity. The review also explores future directions and prospects for NMs in combating drug-resistant bacteria, while addressing challenges to their commercial viability within the healthcare industry.
Collapse
Affiliation(s)
- Daohong Zhang
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, College of Food Engineering, Ludong University, Yantai, Shandong 264025, China
| | - Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, India; University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India.
| | - Poornima Bhatt
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, India; University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| | - Kamalpreet Kaur
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, Punjab 140406, India
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
2
|
Moubayed NMS, Alsabbagh R, Smiline GAS, Gunasekaran S, Alshihri S, Sabour A. Evaluation of phyto-gallic acid as a potential inhibitor of Staphylococcus aureus efflux pump mediated tetracycline resistance: an in-vitro and in-silico study. Nat Prod Res 2025; 39:625-632. [PMID: 38733626 DOI: 10.1080/14786419.2024.2349810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/01/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024]
Abstract
Plants contain many bioactive compounds with potent antibacterial and efflux pump inhibitory activity (EPI). In this study, gallic acid extracted from pomegranate molasses by analytical HPLC holds promise as an EPI drug for Staphylococcus aureus mediated tetracycline resistance, it lowered the bacterial resistance and reversed the mechanism via tet family efflux pump, using molecular technique and in-silico molecular docking analysis. Extracted gallic acid combined with tetracycline demonstrated a significant decrease in the minimal inhibitory concentration MIC compared to its single activity. Similarly, little growth and lower fluorescence of S. aureus were observed on ethidium bromide (2.5 mg/mL) agar plates, indicating a reversible efflux pump mechanism and a potent EPI activity. Molecular docking demonstrated a promising affinity binding energy between gallic acid and tet efflux genes, opening a new baseline in bacterial infection treatment. PCR for tetK and Qac A/B genes failed to show any relation between tet genes and gallic acid.
Collapse
Affiliation(s)
- Nadine M S Moubayed
- Department of Botany and Microbiology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Ruba Alsabbagh
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Girija A S Smiline
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences [SIMATS], Saveetha University, Chennai, Tamilnadu, India
| | - Shoba Gunasekaran
- Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College (Autonomous), University of Madras, Chennai, Tamil Nadu, India
| | - Sameeha Alshihri
- Department of Botany and Microbiology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Amal Sabour
- Department of Botany and Microbiology, Science College, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Abay GK, Shfare MT, Teklu TG, Kidane KM, Gebremeskel TK, Kahsay AG, Gezae KE, Muthupandian S, Degene TA. Extended-spectrum β-lactamase production and antimicrobial resistance among Enterobacteriaceae causing clinical infections in Africa: a systematic review and meta-analysis (2012-2020). Eur J Med Res 2025; 30:14. [PMID: 39773330 PMCID: PMC11706086 DOI: 10.1186/s40001-024-02267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Worldwide, antimicrobial resistance (AMR) has grown to represent a serious threat to the diagnosis, management, and prevention of bacterial diseases. Due to their multidrug resistance attributes, the WHO has classified extended-spectrum-β-lactamase-producing Enterobacteriaceae (ESBL-PE)-associated infections as infections of critical significance, posing a serious risk to human health. Thus, the goal of this systematic review and meta-analysis was to assess the pooled prevalence of ESBL-PE and AMR among strains causing clinical infections in Africa. METHODS In this systematic review and meta-analysis, two investigators independently made an electronic search in Google Scholar and PubMed databases using related keywords and corresponding "MeSH." terms for the PubMed. The accessed studies were screened, assessed for eligibility, and critically evaluated as per the PRISMA guidelines. The prevalence and 95% confidence intervals (CI) for ESBL-PE in Africa were evaluated using a random-effects model of a meta-analysis. As a visual and statistical way assessment, the funnel plot and Egger's test were utilized to assess the risk of bias or publication bias, with a statistically significant level of bias being determined at p < 0.05. RESULTS Twenty-six studies were included in the meta-analysis. Among the included studies done in Africa, the overall pooled proportion of ESBL-PE was reported to be 28% (95% CI 25-31%). ESBL-PE prevalence differed by region, the pooled estimates for East and North Africa were 29% (95% CI 20-38%) and 19% (95% CI 6-33%), respectively. The greatest sub-group analysis of pooled estimates among bacterial isolates was found in Klebsiella. pneumoniae, at 73% (95% CI 62-85%), while Proteus mirabilis had the lowest, at 40% (95% CI 1-81%). CONCLUSIONS In Africa, ESBL-PE is noticeably prevalent. The included studies demonstrated a significant variation in ESBL-PE resistance among the countries. This illustrates the necessity of actively monitoring antimicrobial resistance in Africa to develop interventions aimed at halting the spread of ESBL-PE.
Collapse
Affiliation(s)
- Getahun Kahsay Abay
- Department of Medical Microbiology & Immunology, College of Health Sciences, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Mebrahtu Teweldemedhin Shfare
- Department of Medical Microbiology & Immunology, College of Health Sciences, Mekelle University, Mekelle, Tigray, Ethiopia.
| | - Teklay Gebrecherkos Teklu
- Department of Medical Microbiology & Immunology, College of Health Sciences, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Kibriti Mehari Kidane
- Department of Medical Microbiology & Immunology, College of Health Sciences, Mekelle University, Mekelle, Tigray, Ethiopia
- Tigray Health Research Institute, Mekelle, Tigray, Ethiopia
| | - Tsega Kahsay Gebremeskel
- Department of Medical Microbiology & Immunology, College of Health Sciences, Mekelle University, Mekelle, Tigray, Ethiopia
- College of Health Sciences, Adigrat University, Adigrat, Tigray, Ethiopia
| | - Atsebaha Gebrekidan Kahsay
- Department of Medical Microbiology & Immunology, College of Health Sciences, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Kebede Embaye Gezae
- Department of Biostatistics, School of Public Health, College of Health Sciences, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Saravanan Muthupandian
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
- Prince Fahad bin Sultan Chair for Biomedical Research, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Tsehaye Asmelash Degene
- Department of Medical Microbiology & Immunology, College of Health Sciences, Mekelle University, Mekelle, Tigray, Ethiopia
| |
Collapse
|
4
|
Ifedinezi OV, Nnaji ND, Anumudu CK, Ekwueme CT, Uhegwu CC, Ihenetu FC, Obioha P, Simon BO, Ezechukwu PS, Onyeaka H. Environmental Antimicrobial Resistance: Implications for Food Safety and Public Health. Antibiotics (Basel) 2024; 13:1087. [PMID: 39596781 PMCID: PMC11591122 DOI: 10.3390/antibiotics13111087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobial resistance (AMR) is a serious global health issue, aggravated by antibiotic overuse and misuse in human medicine, animal care, and agriculture. This study looks at the different mechanisms that drive AMR, such as environmental contamination, horizontal gene transfer, and selective pressure, as well as the severe implications of AMR for human and animal health. This study demonstrates the need for concerted efforts across the scientific, healthcare, agricultural, and policy sectors to control the emergence of AMR. Some crucial strategies discussed include developing antimicrobial stewardship (AMS) programs, encouraging targeted narrow-spectrum antibiotic use, and emphasizing the significance of strict regulatory frameworks and surveillance systems, like the Global Antimicrobial Resistance and Use Surveillance System (GLASS) and the Access, Watch, and Reserve (AWaRe) classification. This study also emphasizes the need for national and international action plans in combating AMR and promotes the One Health strategy, which unifies environmental, animal, and human health. This study concludes that preventing the spread of AMR and maintaining the effectiveness of antibiotics for future generations requires a comprehensive, multidisciplinary, and internationally coordinated strategy.
Collapse
Affiliation(s)
| | - Nnabueze Darlington Nnaji
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
- Department of Microbiology, University of Nigeria, Nsukka 410001, Nigeria
| | | | | | | | | | - Promiselynda Obioha
- Microbiology Research Unit, School of Human Sciences, London Metropolitan University, 166-220 Holloway Road, London N7 8DB, UK
| | - Blessing Oteta Simon
- Department of Public Health Sciences, National Open University of Nigeria, Abuja 900108, Nigeria
| | | | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
5
|
Naveed M, Waseem M, Mahkdoom I, Ali N, Asif F, Hassan JU, Jamil H. Transient comparison of techniques to counter multi-drug resistant bacteria: prime modules in curation of bacterial infections. FRONTIERS IN ANTIBIOTICS 2024; 2:1309107. [PMID: 39816650 PMCID: PMC11732137 DOI: 10.3389/frabi.2023.1309107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/04/2023] [Indexed: 01/18/2025]
Abstract
Multidrug-resistant organisms are bacteria that are no longer controlled or killed by specific drugs. One of two methods causes bacteria multidrug resistance (MDR); first, these bacteria may disguise multiple cell genes coding for drug resistance to a single treatment on resistance (R) plasmids. Second, increased expression of genes coding for multidrug efflux pumps, which extrude many drugs, can cause MDR. Antibiotic resistance is a big issue since some bacteria may withstand almost all antibiotics. These bacteria can cause serious sickness, making them a public health threat. Methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), Multidrug resistant Mycobacterium tuberculosis (TB), and CRE are gut bacteria that resist antibiotics. Antimicrobial resistance is rising worldwide, increasing clinical and community morbidity and mortality. Superbugs have made antibiotic resistance in some environmental niches even harder to control. This study introduces new medicinal plants, gene-editing methods, nanomaterials, and bacterial vaccines that will fight MDR bacteria in the future.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Waseem
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Izma Mahkdoom
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Nouman Ali
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Farrukh Asif
- National Institute of Biotechnology and Genetic Engineering, Faisalabad, Punjab, Pakistan
| | - Jawad ul Hassan
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Hamza Jamil
- Department of Biotechnology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| |
Collapse
|
6
|
Martin ALAR, Pereira RLS, Rocha JE, Farias PAM, Freitas TS, de Lemos Caldas FR, Figueredo FG, Sampaio NFL, Ribeiro-Filho J, Menezes IRDA, Brancaglion GA, de Paulo DC, Carvalho DT, Lima MA, Coutinho HDM, Fonteles MMF. In vitro and in silico evidences about the inhibition of MepA efflux pump by coumarin derivatives. Microb Pathog 2023; 182:106246. [PMID: 37454945 DOI: 10.1016/j.micpath.2023.106246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The discovery of antibiotics has significantly transformed the outcomes of bacterial infections in the last decades. However, the development of antibiotic resistance mechanisms has allowed an increasing number of bacterial strains to overcome the action of antibiotics, decreasing their effectiveness against infections they were developed to treat. This study aimed to evaluate the antibacterial activity of synthetic coumarins Staphylococcus aureus in vitro and analyze their interaction with the MepA efflux pump in silico. The Minimum Inhibitory Concentration (MIC) determination showed that none of the test compounds have antibacterial activity. However, all coumarin derivatives decreased the MIC of the standard efflux inhibitor ethidium bromide, indicating antibacterial synergism. On the other hand, the C14 derivative potentiated the antibacterial activity of ciprofloxacin against the resistant strain. In silico analysis showed that C9, C11, and C13 coumarins showed the most favorable interaction with the MepA efflux pump. Nevertheless, due to the present in silico and in vitro investigation limitations, further experimental research is required to confirm the therapeutic potential of these compounds in vivo.
Collapse
Affiliation(s)
- Ana Luíza A R Martin
- Federal University of Ceará - UFC, Brazil; Faculty of Medicine Estácio Juazeiro do Norte - Estácio Juazeiro do Norte, Brazil
| | | | | | - Pablo A M Farias
- Faculty of Medicine Estácio Juazeiro do Norte - Estácio Juazeiro do Norte, Brazil
| | | | | | - Fernando G Figueredo
- Regional University of Cariri - URCA, Brazil; Faculty of Medicine Estácio Juazeiro do Norte - Estácio Juazeiro do Norte, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Varela MF, Stephen J, Bharti D, Lekshmi M, Kumar S. Inhibition of Multidrug Efflux Pumps Belonging to the Major Facilitator Superfamily in Bacterial Pathogens. Biomedicines 2023; 11:1448. [PMID: 37239119 PMCID: PMC10216197 DOI: 10.3390/biomedicines11051448] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Bacterial pathogens resistant to multiple structurally distinct antimicrobial agents are causative agents of infectious disease, and they thus constitute a serious concern for public health. Of the various bacterial mechanisms for antimicrobial resistance, active efflux is a well-known system that extrudes clinically relevant antimicrobial agents, rendering specific pathogens recalcitrant to the growth-inhibitory effects of multiple drugs. In particular, multidrug efflux pump members of the major facilitator superfamily constitute central resistance systems in bacterial pathogens. This review article addresses the recent efforts to modulate these antimicrobial efflux transporters from a molecular perspective. Such investigations can potentially restore the clinical efficacy of infectious disease chemotherapy.
Collapse
Affiliation(s)
- Manuel F. Varela
- Department of Biology, Eastern New Mexico University, Station 33, Portales, NM 88130, USA
| | - Jerusha Stephen
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India; (J.S.); (D.B.); (M.L.); (S.K.)
| | - Deeksha Bharti
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India; (J.S.); (D.B.); (M.L.); (S.K.)
| | - Manjusha Lekshmi
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India; (J.S.); (D.B.); (M.L.); (S.K.)
| | - Sanath Kumar
- ICAR-Central Institute of Fisheries Education (CIFE), Mumbai 400061, India; (J.S.); (D.B.); (M.L.); (S.K.)
| |
Collapse
|
8
|
Hui YJ, Chen H, Peng XC, Li LG, Di MJ, Liu H, Hu XH, Yang Y, Zhao KL, Li TF, Yu TT, Wang WX. Up-regulation of ABCG2 by MYBL2 deletion drives Chlorin e6-mediated photodynamic therapy resistance in colorectal cancer. Photodiagnosis Photodyn Ther 2023; 42:103558. [PMID: 37030434 DOI: 10.1016/j.pdpdt.2023.103558] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/10/2023]
Abstract
OBJECTIVE Photodynamic therapy (PDT) is an effective therapeutic strategy for colorectal cancer at an early stage. However, malignant cells' resistance to photodynamic agents can lead to treatment failure. MYBL2 (B-Myb) is an oncogene in colorectal carcinogenesis and development, for which little research has focused on its effect on drug resistance. MATERIALS AND METHODS In the present work, a colorectal cancer cell line with a stable knockdown of MYBL2 (ShB-Myb) was constructed first. Chlorin e6 (Ce6) was utilized to induced PDT. The anti-cancer efficacy was measured by CCK-8, PI staining, and Western blots. The drug uptake of Ce6 was assayed by flow cytometry and confocal microscopy. The ROS generation was detected by the CellROX probe. DDSB and DNA damage were assayed through comet experiment and Western blots. The over-expression of MYBL2 was conducted by MYBL2 plasmid. RESULTS The findings indicated that the viability of ShB-Myb treated with Ce6-PDT was not decreased compared to control SW480 cells (ShNC), which were resistant to PDT. Further investigation revealed reduced photosensitizer enrichment and mitigated oxidative DNA damage in colorectal cancer cells with depressed MYBL2. It turned out that SW480 cells knocking down MYBL2 showed phosphorylation of NF-κB and led to up-regulation of ABCG2 expression thereupon. When MYBL2 was replenished back in MYBL2-deficient colorectal cancer cells, phosphorylation of NF-κB was blocked and ABCG2 expression up-regulation was suppressed. Additionally, replenishment of MYBL2 also increased the enrichment of Ce6 and the efficacy of PDT. CONCLUSION In summary, MYBL2 absence in colorectal cancer contributes to drug resistance by activating NF-κB to up-regulate ABCG2 and thereby leading to photosensitizer Ce6 efflux. This study provides a novel theoretical basis and strategy for how to effectively improve the anti-tumor efficacy of PDT.
Collapse
Affiliation(s)
- Yuan-Jian Hui
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Jiefang road No. 238, Wuhan 430060, Hubei Province, China; Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin south road No. 32, Shiyan 442000, Hubei Province, China
| | - Hao Chen
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin south road No. 30, Shiyan 442000, Hubei Province, China
| | - Xing-Chun Peng
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin south road No. 30, Shiyan 442000, Hubei Province, China
| | - Liu-Gen Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin south road No. 30, Shiyan 442000, Hubei Province, China
| | - Mao-Jun Di
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin south road No. 32, Shiyan 442000, Hubei Province, China
| | - Hui Liu
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin south road No. 32, Shiyan 442000, Hubei Province, China
| | - Xu-Hao Hu
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin south road No. 32, Shiyan 442000, Hubei Province, China
| | - Yan Yang
- Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Renmin south road No. 32, Shiyan 442000, Hubei Province, China
| | - Kai-Liang Zhao
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Jiefang road No. 238, Wuhan 430060, Hubei Province, China
| | - Tong-Fei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin south road No. 30, Shiyan 442000, Hubei Province, China.
| | - Ting-Ting Yu
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Jiefang road No. 238, Wuhan 430060, Hubei Province, China; Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin south road No. 30, Shiyan 442000, Hubei Province, China.
| | - Wei-Xing Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Jiefang road No. 238, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
9
|
Study of chloroquine susceptibility potential of plants using pseudomonas aeruginosa as in vitro model. 3 Biotech 2022; 12:329. [PMID: 36285247 PMCID: PMC9587148 DOI: 10.1007/s13205-022-03382-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
Chloroquine (CQ) is mainly known for antimalarial activity but due to lower sensitivity, it has not been well explored in the microbial disease treatment. In the present investigation, we attempted to enhance the CQ sensitivity in Pseudomonas aeruginosa. Presence of efflux pump is well demonstrated in bacterial system which plays an important role in drug sensitivity and resistance in bacteria and also serves other functions. Taking the advantage of presence of efflux pump in Pseudomonas aeruginosa, we made an attempt to sensitize the Pseudomonas aeruginosa with various plant extracts and phytochemicals for the development of CQ sensitivity. Ten rationally selected plant extracts were screened for the development of chloroquine sensitivity in P. aeruginosa. The chloroquine susceptibility assay was demonstrated by combining CQ and verapamil (a known efflux pump inhibitor) as a standard in an in vitro assay system. Results were quite encouraging as methanolic extracts of Syzygium aromaticum, Zingiber officinale and Curcuma longa were able to enhance chloroquine sensitivity in P. aeruginosa by increasing the zone of inhibition in well-defined assay system. These plant extracts were finally analysed for the presence of various phytochemicals. The Syzygium aromaticum extract showed the presence of phytochemicals, such as quinones, phenol, triterpenoid, saponins, tannins, alkaloids and flavonoids. On the other hand, the methanolic extract of Zingiber officinale and Curcuma longa showed the presence of saponins, tannins, alkaloids and flavonoids in the extract. Towards the identification of active principle of selected plant extract for CQ sensitivity enhancement, thin-layer chromatography was performed and various phytocomponent bands were isolated. Flavonoid (Rf 0.44) in Syzygium aromaticum, alkaloid (Rf 0.43) in Zingiber officinale and phenol (Rf 0.62) in Curcuma longa were found responsible for the enhancement of CQ susceptibility in P. aeruginosa. This interesting finding confirmed the concept that a prior course or combination of plant extracts or phytochemicals with chloroquine can be effective against P. aeruginosa. Present investigation successfully presented the proof of concept for the enhancement of chloroquine sensitivity in bacterial system by modulating an efflux pump. Concept can be explored for repurposing chloroquine for new applications.
Collapse
|
10
|
Transcriptome analysis reveals reasons for the low tolerance of Clostridium tyrobutyricum to furan derivatives. Appl Microbiol Biotechnol 2022; 107:327-339. [DOI: 10.1007/s00253-022-12281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022]
|
11
|
Shang C, Bu J, Song C. Preparation, Antimicrobial Properties under Different Light Sources, Mechanisms and Applications of TiO 2: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175820. [PMID: 36079203 PMCID: PMC9457460 DOI: 10.3390/ma15175820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 05/27/2023]
Abstract
Traditional antimicrobial methods, such as antibiotics and disinfectants, may cause adverse effects, such as bacterial resistance and allergic reactions. Photocatalysts based on titanium dioxide (TiO2) have shown great potential in the field of antimicrobials because of their high efficiency, lack of pollution, and lack of side effects. This paper focuses on the antimicrobial activity of TiO2 under different light sources. To improve the photocatalytic efficiency of TiO2, we can reduce electron-hole recombination and extend the photocatalytic activity to the visible light region by doping with different ions or compounds and compounding with polymers. We can also improve the surface properties of materials, increase the contact area with microorganisms, and further enhance the resistance to microorganisms. In addition, we also reviewed their main synthesis methods, related mechanisms, and main application fields to provide new ideas for the enhancement of photocatalytic microorganism performance and application popularization in the future.
Collapse
|
12
|
Nejati L, Maram NS, Ahmady AZ. Preparation of Gentamicin Sulfate Nanoparticles using Eudragit RS-100 and Evaluation of Their Physicochemical Properties. INTERNATIONAL JOURNAL OF NANOSCIENCE 2021. [DOI: 10.1142/s0219581x21500496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Improving permeability and absorption of drugs are critical research challenges in pharmaceutical science. Gentamicin sulfate is an aminoglycoside antibiotic, which is very active against gram-negative bacteria; however, it has very poor bioavailability. This study aimed to prepare gentamicin nanoparticles with the intention of increased bioavailability. Accordingly, Eudragit RS-100 nanoparticles loaded with gentamicin sulfate were prepared by the double emulsification and solvent evaporation method, a proper technique for encapsulating hydrophilic molecules. Nanoparticles’ suspensions with polymer to drug ratios of 1:1 ([Formula: see text] and 2:1 ([Formula: see text]) were prepared, lyophilized and evaluated for their production yield, physicochemical properties and morphology. The mean particle size was 195.67[Formula: see text]nm and 228[Formula: see text]nm for [Formula: see text] and [Formula: see text], respectively. The formulations’ loading efficiencies were relatively high (85.73 for [Formula: see text] and 85.20 for [Formula: see text]). The nanoparticles’ surface charge (+40.5[Formula: see text]mV) was sufficient to inhibit their aggregation and facilitate the nanoparticles’ absorption through the gastrointestinal tract. The results of differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR) revealed that drug and polymer stabilized each other by physical interactions between their functional groups. Both formulations presented an initial burst drug release of nearly 20% after 30[Formula: see text]min in phosphate buffer (pH = 7.4). After 24[Formula: see text]h, [Formula: see text] did not release the drug completely, while [Formula: see text] released the whole drug. Overall, nanoparticles with proper characteristics were obtained. This study puts forward the necessity of conducting further research in order to explore the intestinal absorption of these nanoparticles and the possibility of being utilized for oral administration of gentamicin sulfate.
Collapse
Affiliation(s)
- Ladan Nejati
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Shakiba Maram
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amanollah Zarei Ahmady
- Marine Pharmaceutical Sciences Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|