1
|
Radhakrishnan N, Krishnasamy C. Isolation and characterization of salt-stress-tolerant rhizosphere soil bacteria and their effects on plant growth-promoting properties. Sci Rep 2024; 14:24909. [PMID: 39438497 PMCID: PMC11496690 DOI: 10.1038/s41598-024-75022-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
PGPR has a higher potential impact on agricultural crops. It enhances plant growth and development in a variety of adverse environmental conditions, including biotic and abiotic stresses. The PGPR is commercially vital since it is more efficient, safe for the environment, and beneficial to the economy. Nowadays, salt stress has an impact on the agricultural ecosystem. Salt-tolerant PGPR can directly stimulate plant growth and development by producing a variety of metabolites and phytohormones. The current study looked at the isolation of salt-tolerant bacterial species and their ability to stimulate plant development. Four bacterial species were chosen for their better salt stress tolerance (0-5%). They were identified by 16S rRNA sequencing: Solibacillus silvestris BR1, Peribacillus frigoritolerans BR2, Paenibacillus taichungensis CR1, and Solibacillus isronensis CR2. These strains were positive production of indole acetic acid with varying incubation periods (19.66 ± 1.528 to 646.111 ± 8.058 µg/mL), salt stress (ranging from 29.556 ± 1.171 to 147.8111 ± 2.086 µg/mL), phosphate solubilization (0.145 ± 0.011 to 0.921 ± 0.007 µg/mL), ammonium production (0.299 ± 0.047 to 1.202 ± 0.142 µg/mL), HCN production (0.308 ± 0.051 to 4.269 ± 0.069 µg/mL), and siderophore production (0.190 ± 0.064 to 1.543 ± 0.108 µg/mL) for control strains were used without salt stress. The production level was expressed using a standard curve containing various standards.
Collapse
Affiliation(s)
| | - Chitra Krishnasamy
- Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India.
| |
Collapse
|
2
|
Das S, Chakdar H, Kumar A, Singh R, Saxena AK. Chasmophyte associated stress tolerant bacteria confer drought resilience to chickpea through efficient nutrient mining and modulation of stress response. Sci Rep 2024; 14:12189. [PMID: 38806526 PMCID: PMC11133442 DOI: 10.1038/s41598-024-58695-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/29/2024] [Indexed: 05/30/2024] Open
Abstract
In the present study, ten (10) selected bacteria isolated from chasmophytic wild Chenopodium were evaluated for alleviation of drought stress in chickpea. All the bacterial cultures were potential P, K and Zn solubilizer. About 50% of the bacteria could produce Indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The bacteria showed wide range of tolerance towards pH, salinity, temperature and osmotic stress. Bacillus paralicheniformis L38, Pseudomonas sp. LN75, Enterobacter hormachei subsp. xiangfengensis LJ89, B. paramycoides L17 and Micrococcus luteus LA9 significantly improved growth and nutrient (N, P, K, Fe and Zn) content in chickpea under water stress during a green house experiment conducted following a completely randomized design (CRD). Application of Microbacterium imperiale LJ10, B. stercoris LN74, Pseudomonas sp. LN75, B. paralicheniformis L38 and E. hormachei subsp. xiangfengensis LJ89 reduced the antioxidant enzymes under water stress. During field experiments conducted following randomized block design (RBD), all the bacterial inoculations improved chickpea yield under water stress. Highest yield (1363 kg ha-1) was obtained in plants inoculated with Pseudomonas sp. LN75. Pseudomonas sp. LN75, B. paralicheniformis L38 and E. hormachei subsp. xiangfengensis LJ89 have potential as microbial stimulants to alleviate the water stress in chickpea. To the best of our knowledge this is the first report of using chasmophyte associated bacteria for alleviation of water stress in a crop plant.
Collapse
Affiliation(s)
- Sudipta Das
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Adarsh Kumar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India
| | - Rajni Singh
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India.
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, Uttar Pradesh, 275103, India.
| |
Collapse
|
3
|
da Silva LJR, da Silva Sandim A, da Silva APR, Deus ACF, Antonangelo JA, Büll LT. Evaluating the agronomic efficiency of alternative phosphorus sources applied in Brazilian tropical soils. Sci Rep 2024; 14:8526. [PMID: 38609406 PMCID: PMC11015031 DOI: 10.1038/s41598-024-58911-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Understanding the efficacy of alternative phosphorus (P) sources in tropical soils is crucial for sustainable farming, addressing resource constraints, mitigating environmental impact, improving crop productivity, and optimizing soil-specific solutions. While the topic holds great importance, current literature falls short in providing thorough, region-specific studies on the effectiveness of alternative P sources in Brazilian tropical soils for maize cultivation. Our aim was to assess the agronomic efficiency of alternative P sources concerning maize crop (Zea mays L.) attributes, including height, shoot dry weight, stem diameter, and nutrient accumulation, across five Brazilian tropical soils. In greenhouse conditions, we carried out a randomized complete block design, investigating two factors (soil type and P sources), evaluating five tropical soils with varying clay contents and three alternative sources of P, as well as a commercial source and a control group. We evaluated maize crop attributes such as height, dry weight biomass, and nutrient accumulation, P availability and agronomic efficiency. Our results showed that, although triple superphosphate (TSP) exhibited greater values than alternative P sources (precipitated phosphorus 1, precipitated phosphorus 2 and reactive phosphate) for maize crop attributes (e.g., height, stem diameter, shoot dry weight and phosphorus, nitrogen, sulfur, calcium and magnesium accumulation). For instance, PP1 source increased nutrient accumulation for phosphorus (P), nitrogen (N), and sulfur (S) by 37.05% and 75.98% (P), 34.39% and 72.07% (N), and 41.94% and 72.69% (S) in comparison to PP2 and RP, respectively. Additionally, PP1 substantially increased P availability in soils with high clay contents 15 days after planting (DAP), showing increases of 61.90%, 99.04%, and 38.09% greater than PP2, RP, and TSP. For Ca and Mg accumulation, the highest values were found in the COxisol2 soil when PP2 was applied, Ca = 44.31% and 69.48%; and Mg = 46.23 and 75.79%, greater than PP1 and RP, respectively. Finally, the highest values for relative agronomic efficiency were observed in COxisol2 when PP1 was applied. The precipitated phosphate sources (PP1 and PP2) exhibited a similar behavior to that of the commercial source (TSP), suggesting their potential use to reduce reliance on TSP fertilization, especially in soils with low clay contents. This study emphasized strategies for soil P management, aimed at assisting farmers in enhancing maize crop productivity while simultaneously addressing the effectiveness of alternative P sources of reduced costs.
Collapse
Affiliation(s)
- Lucas Jónatan Rodrigues da Silva
- Department of Forest Science, Soils and Environment, College of Agronomic Sciences, São Paulo State University, Botucatu, SP, 18610-307, Brazil.
| | - Aline da Silva Sandim
- Department of Forest Science, Soils and Environment, College of Agronomic Sciences, São Paulo State University, Botucatu, SP, 18610-307, Brazil
| | - Ana Paula Rodrigues da Silva
- Department of Forest Science, Soils and Environment, College of Agronomic Sciences, São Paulo State University, Botucatu, SP, 18610-307, Brazil
| | - Angélica Cristina Fernandes Deus
- Department of Plant Protection, Rural Engineering and Soils, College of Engineering, São Paulo State University, Ilha Solteira, SP, 15385-000, Brazil
| | | | - Leonardo Theodoro Büll
- Department of Forest Science, Soils and Environment, College of Agronomic Sciences, São Paulo State University, Botucatu, SP, 18610-307, Brazil
| |
Collapse
|
4
|
Rafique E, Mumtaz MZ, Ullah I, Rehman A, Qureshi KA, Kamran M, Rehman MU, Jaremko M, Alenezi MA. Potential of mineral-solubilizing bacteria for physiology and growth promotion of Chenopodium quinoa Willd. FRONTIERS IN PLANT SCIENCE 2022; 13:1004833. [PMID: 36299778 PMCID: PMC9589155 DOI: 10.3389/fpls.2022.1004833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Nutrient deficiency in wild plant species, including quinoa (Chenopodium quinoa Willd), can be overcome by applying mineral-solubilizing bacteria. Quinoa is a gluten-free, nutritious food crop with unique protein content. The present study aimed to characterize mineral-solubilizing rhizobacterial strains and to evaluate their plant growth-promoting potential in quinoa seedlings. More than sixty rhizobacterial strains were isolated from the quinoa rhizosphere and found eighteen strains to be strong phosphate solubilizers. Most of these bacterial strains showed zinc solubilization, and more than 80% of strains could solubilize manganese. The selected strains were identified as Bacillus altitudinis Cq-3, Pseudomonas flexibilis Cq-32, Bacillus pumilus Cq-35, Pseudomonas furukawaii Cq-40, Pontibacter lucknowensis Cq-48, and Ensifer sp. Cq-51 through 16S rRNA partial gene sequencing. Mainly, these strains showed the production of organic acids, including malic, gluconic, tartaric, ascorbic, lactic, and oxalic acids in insoluble phosphorus amended broth. All strains showed production of gluconic acids, while half of the strains could produce malic, ascorbic, lactic, and oxalic acids. These strains demonstrated the production of indole-3-acetic acid in the presence as well as in the absence of L-tryptophan. The bacterial strains also demonstrated their ability to promote growth and yield attributes, including shoot length, root length, leave numbers, root and shoot dry biomass, spike length, and spikes numbers of quinoa in pots and field trials. Increased physiological attributes, including relative humidity, quantum flux, diffusive resistance, and transpiration rate, were observed due to inoculation with mineral solubilizing bacterial strains under field conditions. P. lucknowensis Cq-48, followed by P. flexibilis Cq-32, and P. furukawaii Cq-40 showed promising results to promote growth, yield, and physiological attributes. The multi-traits characteristics and plant growth-promoting ability in the tested bacterial strains could provide an opportunity for formulating biofertilizers that could promote wild quinoa growth and physiology.
Collapse
Affiliation(s)
- Ejaz Rafique
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Aneela Rehman
- Department of Microbiology, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Kamal Ahmad Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Mujaddad Ur Rehman
- Department of Microbiology, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | |
Collapse
|
5
|
Phosphate-Solubilizing Bacteria Isolated from Phosphate Solid Sludge and Their Ability to Solubilize Three Inorganic Phosphate Forms: Calcium, Iron, and Aluminum Phosphates. Microorganisms 2022; 10:microorganisms10050980. [PMID: 35630425 PMCID: PMC9147023 DOI: 10.3390/microorganisms10050980] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 02/06/2023] Open
Abstract
Biofertilizers are a key component of organic agriculture. Bacterial biofertilizers enhance plant growth through a variety of mechanisms, including soil compound mobilization and phosphate solubilizing bacteria (PSB), which convert insoluble phosphorus to plant-available forms. This specificity of PSB allows them to be used as biofertilizers in order to increase P availability, which is an immobile element in the soil. The objective of our study is to assess the capacity of PSB strains isolated from phosphate solid sludge to solubilize three forms of inorganic phosphates: tricalcium phosphate (Ca3(PO4)2), aluminum phosphate (AlPO4), and iron phosphate (FePO4), in order to select efficient solubilization strains and use them as biofertilizers in any type of soil, either acidic or calcareous soil. Nine strains were selected and they were evaluated for their ability to dissolve phosphate in the National Botanical Research Institute’s Phosphate (NBRIP) medium with each form of phosphate (Ca3(PO4)2, AlPO4, and FePO4) as the sole source of phosphorus. The phosphate solubilizing activity was assessed by the vanadate-molybdate method. All the strains tested showed significantly (p ≤ 0.05) the ability to solubilize the three different forms of phosphates, with a variation between strains, and all strains solubilized Ca3(PO4)2 more than FePO4 and AlPO4.
Collapse
|