1
|
Coja T, Adriaanse P, Choi J, Finizio A, Giraudo M, Kuhl T, Metruccio F, McVey E, Paparella M, Pieper S, Scanziani E, Teodorovic I, Van der Brink P, Wilks M, Marinovich M, Ferilli F, Gobbi A, Panzarea M, Vianello G, Lava R. Statement concerning the review of the approval of the basic substances chitosan and chitosan hydrochloride when used in plant protection. EFSA J 2025; 23:e9318. [PMID: 40182011 PMCID: PMC11966830 DOI: 10.2903/j.efsa.2025.9318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
The European Commission asked EFSA to provide an opinion according to Article 23(6) of Regulation (EC) No 1107/2009, in conjunction with Article 29 of Regulation (EC) No 178/2002, regarding the approved plant protection uses of chitosan and chitosan hydrochloride as basic substances. The Panel on Plant Protection Products and their Residues (PPR) was not provided with new dossiers but collated available scientific and technical knowledge and used a weight of evidence approach and experts' judgement for its appraisal. The statement has considered the possibility for extrapolation of the toxicological properties between chitosan and chitosan hydrochloride, and whether both substances can be expected to be of no toxicological concern; a comparison between the estimated levels of chitosan and chitosan hydrochloride resulting from the approved uses as basic substances and the level of chitosan expected to naturally occur in the environment. This last comparison served to verify whether the approved uses as basic substances might lead to an exceedance of the expected natural background levels in any of the environmental compartments (quantitative for the soil compartment and (semi)quantitative for the freshwater compartment); and accordingly, whether there was a need to advise on the safety of chitosan and chitosan hydrochloride to non-target species occurring in the impacted environmental compartments. Overall, the PPR Panel concluded that toxicological properties can be extrapolated between chitosan and chitosan hydrochloride and that no toxicological concerns were identified. The estimated levels of chitosan and chitosan hydrochloride in the environment following application in accordance with their approved uses as basic substances would be within the same range, or below, the expected natural background exposure levels in soil and freshwaters. Considering the available ecotoxicological data and the environmental fate assessment, further consideration in relation to the safety to non-target organisms was considered not necessary. Missing information alongside related uncertainties have been identified and considered in the overall weight of the evidence.
Collapse
|
2
|
Zeng H, Wu J, Yu C. Biotransformation of agar extraction waste into cultivation matrix using an adaptively evolved Paenibacillus mucilaginosus strain. World J Microbiol Biotechnol 2025; 41:108. [PMID: 40148699 DOI: 10.1007/s11274-025-04332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Industrial agar extraction waste (AEW), which consists of resistant K-rich perlite and agar-dominated seaweed residues, poses environmental challenges. In this study, we isolated K-solubilizing bacteria from an AEW storage yard and identified the adaptively evolved strain, ZK03-Aga1, with efficient K-solubilizing and agar-utilizing properties. Co-fermentation of ZK03-Aga1 with AEW significantly enhanced the production of oligosaccharides, K, and soluble solids. These products, combined with a commercial soilless matrix, form a composite matrix that has been validated for fertility through bok choy planting experiments. The results showed increased bok choy yield, energy, protein, trace element, and chlorophyll content. Bacterial community composition analysis indicated an increase in nitrogen-fixing and organic matter-degrading bacteria. This suggests that AEW nutrients, via ZK03-Aga1 fermentation, directly benefit crops, improving yield, quality, and microbial structure for sustainable fertility. This study presents an efficient method for reusing AEW and mitigating its environmental impacts.
Collapse
Affiliation(s)
- Hanting Zeng
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jie Wu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Chundong Yu
- School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
3
|
Han J, Ullah M, Andoh V, Khan MN, Feng Y, Guo Z, Chen H. Engineering Bacterial Chitinases for Industrial Application: From Protein Engineering to Bacterial Strains Mutation! A Comprehensive Review of Physical, Molecular, and Computational Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23082-23096. [PMID: 39388625 DOI: 10.1021/acs.jafc.4c06856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Bacterial chitinases are integral in breaking down chitin, the natural polymer in crustacean and insect exoskeletons. Their increasing utilization across various sectors such as agriculture, waste management, biotechnology, food processing, and pharmaceutical industries highlights their significance as biocatalysts. The current review investigates various scientific strategies to maximize the efficiency and production of bacterial chitinases for industrial use. Our goal is to optimize the heterologous production process using physical, molecular, and computational tools. Physical methods focus on isolating, purifying, and characterizing chitinases from various sources to ensure optimal conditions for maximum enzyme activity. Molecular techniques involve gene cloning, site-directed mutation, and CRISPR-Cas9 gene editing as an approach for creating chitinases with improved catalytic activity, substrate specificity, and stability. Computational approaches use molecular modeling, docking, and simulation techniques to accurately predict enzyme-substrate interactions and enhance chitinase variants' design. Integrating multidisciplinary strategies enables the development of highly efficient chitinases tailored for specific industrial applications. This review summarizes current knowledge and advances in chitinase engineering to serve as an indispensable guideline for researchers and industrialists seeking to optimize chitinase production for various uses.
Collapse
Affiliation(s)
- Jianda Han
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Mati Ullah
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Vivian Andoh
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Muhammad Nadeem Khan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, P. R. China
| | - Yong Feng
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Zhongjian Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| |
Collapse
|
4
|
Unuofin JO, Odeniyi OA, Majengbasan OS, Igwaran A, Moloantoa KM, Khetsha ZP, Iwarere SA, Daramola MO. Chitinases: expanding the boundaries of knowledge beyond routinized chitin degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38045-38060. [PMID: 38789707 PMCID: PMC11195638 DOI: 10.1007/s11356-024-33728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Chitinases, enzymes that degrade chitin, have long been studied for their role in various biological processes. They play crucial roles in the moulting process of invertebrates, the digestion of chitinous food, and defense against chitin-bearing pathogens. Additionally, chitinases are involved in physiological functions in crustaceans, such as chitinous food digestion, moulting, and stress response. Moreover, chitinases are universally distributed in organisms from viruses to mammals and have diverse functions including tissue degradation and remodeling, nutrition uptake, pathogen invasion, and immune response regulation. The discovery of these diverse functions expands our understanding of the biological significance and potential applications of chitinases. However, recent research has shown that chitinases possess several other functions beyond just chitin degradation. Their potential as biopesticides, therapeutic agents, and tools for bioremediation underscores their significance in addressing global challenges. More importantly, we noted that they may be applied as bioweapons if ethical regulations regarding production, engineering and application are overlooked.
Collapse
Affiliation(s)
- John Onolame Unuofin
- Sustainable Energy and Environment Research Group (SEERG), Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa.
| | | | | | - Aboi Igwaran
- The Life Science Center Biology, School of Sciences and Technology, Örebro University, 701 82, Örebro, Sweden
| | - Karabelo MacMillan Moloantoa
- Department of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu Natal, Private Bag X540001, Durban, 4000, South Africa
| | - Zenzile Peter Khetsha
- Department of Agriculture, Central University of Technology, Free State, Private Bag X20539, Bloemfontein, 9300, South Africa
| | - Samuel Ayodele Iwarere
- Sustainable Energy and Environment Research Group (SEERG), Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa
| | - Michael Olawale Daramola
- Sustainable Energy and Environment Research Group (SEERG), Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa
| |
Collapse
|
5
|
Celebi Ö, Bahadir T, Şimşek İ, Aydın F, Kahve Hİ, Tulun Ş, Büyük F, Celebi H. Surface defects due to bacterial residue on shrimp shell. Int J Biol Macromol 2024; 263:130353. [PMID: 38403225 DOI: 10.1016/j.ijbiomac.2024.130353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
The changes in the surface chemistry and morphological structure of chitin forms obtained from shrimp shells (ShpS) with and without microorganisms were evaluated. Total mesophilic aerobic bacteria (TMAB), estimated Pseudomonas spp. and Enterococcus spp. were counted in Shp-S by classical cultural counting on agar medium, where the counts were 6.56 ± 0.09, 6.30 ± 0.12, and 3.15 ± 0.03 CFU/g, respectively. Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy (SEM)/Energy dispersed X-ray (EDX) were used to assess the surface chemistry/functional groups and morphological structure for ChTfree (non-microorganism), and ChTmo (with microorganisms). ChTfree FTIR spectra presented a detailed chitin structure by OH, NH, and CO stretching vibrations, whereas specific peaks of chitin could not be detected in ChTmo. Major differences were also found in SEM analysis for ChTfree and ChTmo. ChTfree had a flat, prominent micropore, partially homogeneous structure, while ChTmo had a layered, heterogeneous, complex dense fibrous, and lost pores form. The degree of deacetylation was calculated for ChTfree and ChTmo according to FTIR and EDX data. The results suggest that the degree of deacetylation decreases in the presence of microorganisms, affecting the production of beneficial components negatively. The findings were also supported by the molecular docking model.
Collapse
Affiliation(s)
- Özgür Celebi
- Department of Microbiology, Faculty of Veterinary Medicine Kafkas University, 36000 Kars, Turkey
| | - Tolga Bahadir
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, 68100 Aksaray, Turkey
| | - İsmail Şimşek
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, 68100 Aksaray, Turkey
| | - Furkan Aydın
- Department of Food Engineering, Faculty of Engineering, Aksaray University, 68100 Aksaray, Turkey
| | - Halil İbrahim Kahve
- Department of Food Engineering, Faculty of Engineering, Aksaray University, 68100 Aksaray, Turkey
| | - Şevket Tulun
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, 68100 Aksaray, Turkey
| | - Fatih Büyük
- Department of Microbiology, Faculty of Veterinary Medicine Kafkas University, 36000 Kars, Turkey
| | - Hakan Celebi
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, 68100 Aksaray, Turkey.
| |
Collapse
|
6
|
Zhang Q, Xia T, Wang AY, Liu Y, Li NY, Yi L, Lu ZJ, Yu HZ. Alternative splicing of chitin deacetylase 2 regulates chitin and fatty acid metabolism in Asian citrus psyllid, Diaphorina citri. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22050. [PMID: 37622383 DOI: 10.1002/arch.22050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Chitin plays an important role in the development and molting of insects. The key genes involved in chitin metabolism were considered promising targets for pest control. In this study, two splice variants of chitin deacetylase 2 (CDA2) from Diaphorina citri were identified, including DcCDA2a and DcCDA2b. Bioinformatics analysis revealed that DcCDA2a and DcCDA2b encoded 550 and 544 amino acid residues with a signal peptide, respectively. Spatio-temporal expression patterns analysis showed that DcCDA2a and DcCDA2b were highly expressed in D. citri wing and nymph stages. Moreover, DcCDA2a and DcCDA2b expression levels were induced by 20-hydroxyecdysone (20E). Silencing DcCDA2a by RNA interference (RNAi) significantly disrupted the D. citri molting and increased D. citri mortality and malformation rate, whereas inhibition of DcCDA2b resulted in a semimolting phenotype. Furthermore, silencing DcCDA2a and DcCDA2b significantly suppressed D. citri chitin and fatty acid metabolism. Our results indicated that DcCDA2 might play crucial roles in regulating D. citri chitin and fatty acid metabolism, and it could be used as a potential target for controlling D. citri.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Tao Xia
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Ai-Yun Wang
- Department of Citrus Pest Control, Fruit Bureau of Xinfeng County, Ganzhou, China
| | - Yan Liu
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Ning-Yan Li
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Long Yi
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
- Department of Citrus Pest Control, National Navel Orange Engineering Research Center, Ganzhou, China
| | - Zhan-Jun Lu
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
- Department of Citrus Pest Control, National Navel Orange Engineering Research Center, Ganzhou, China
| | - Hai-Zhong Yu
- Department of Plant Pathology, College of Life Sciences, Gannan Normal University, Ganzhou, China
- Department of Citrus Pest Control, National Navel Orange Engineering Research Center, Ganzhou, China
| |
Collapse
|
7
|
Thakur D, Bairwa A, Dipta B, Jhilta P, Chauhan A. An overview of fungal chitinases and their potential applications. PROTOPLASMA 2023; 260:1031-1046. [PMID: 36752884 DOI: 10.1007/s00709-023-01839-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 01/30/2023] [Indexed: 06/07/2023]
Abstract
Chitin, the world's second most abundant biopolymer after cellulose, is composed of β-1,4-N-acetylglucosamine (GlcNAc) residues. It is the key structural component of many organisms, including crustaceans, mollusks, marine invertebrates, algae, fungi, insects, and nematodes. There has been a significant increase in the generation of chitinous waste from seafood businesses, resulting in a big amount of scrap. Although several organisms, such as plants, crustaceans, insects, nematodes, and animals, produce chitinases, microorganisms are promising candidates and a sustainable option that mediates chitin degradation. Fungi are the dominant group of chitinase producers among microorganisms. In fungi, chitinases are involved in morphogenesis, cell division, autolysis, chitin acquisition for nutritional purposes, and mycoparasitism. Many efficient chitinolytic fungi with potential applications have been identified in a variety of environments, including soil, water, marine wastes, and plants. The current review highlights the key sources of chitinolytic fungi and the characterization of fungal chitinases. It also discusses the applications of fungal chitinases and the cloning of fungal chitinase genes.
Collapse
Affiliation(s)
- Deepali Thakur
- Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Aarti Bairwa
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Bhawna Dipta
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India.
| | - Prakriti Jhilta
- Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| | - Anjali Chauhan
- Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, Himachal Pradesh, India
| |
Collapse
|