1
|
Zhang X, Zheng C, Ge W, Li X, Wang X, Sun Y, Wu X. Preparation and analysis of quinoa active protein (QAP) and its mechanism of inhibiting Candida albicans from a transcriptome perspective. PeerJ 2025; 13:e18961. [PMID: 39963196 PMCID: PMC11831975 DOI: 10.7717/peerj.18961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
The globe cultivation and industrial production of quinoa have been steadily increasing. Nevertheless, the full potential of quinoa's nutritional and economic benefits remains underexploited. This study investigates the isolation and purification of quinoa active protein (QAP) through the precipitation method using ammonium sulfate from a phosphate extraction solution. The purification process involved gel filtration chromatography with Sephadex G-75 and Sephadex G-50 columns to obtain QAP fractions exhibiting inhibitory effects against Candida albicans (C. albicans). A comprehensive series of experiments was undertaken to examine the antifungal properties of these fractions. Proteomic analysis was employed to elucidate the composition of the active proteins. Furthermore, the activities of succinate dehydrogenase, Ca2+-Mg2+-ATPase, and catalase in C. albicans following treatment with QAP were quantified using an enzyme-linked immunosorbent assay. The effects of QAP on the cell morphology of C. albicans cultured on Spider agar medium was further investigated using scanning electron microscopy (SEM). Furthermore, RNA-seq analysis was conducted to investigate the alterations in gene expression in C. albicans cells subjected to QAP treatment. To elucidate the functional significance of these expression changes, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were performed. Quantitative real-time polymerase chain reaction was subsequently employed to validate the observed changes in gene expression. Our findings demonstrate that QAP exhibits inhibitory effects against C. albicans, with a minimum inhibitory concentration of 182 µg/mL. Through proteomic analysis, a definitive set of 18 active quinoa proteins was identified. At the molecular level, genes associated with hyphal development, cell wall and membrane integrity, cellular respiration, and energy metabolism were found to be enriched. Protein-protein interaction (PPI) analysis revealed that these QAP inhibit the growth of C. albicans hyphae, compromise cell wall and membrane integrity, and suppress oxidative phosphorylation. These disruptions collectively impair normal cellular metabolic activities, thereby exerting an inhibitory effect on C. albicans.
Collapse
Affiliation(s)
- Xufei Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan Province, China
| | - Chunmei Zheng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan Province, China
| | - Wenxuan Ge
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan Province, China
| | - Xueying Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan Province, China
| | - Xiuzhang Wang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan Province, China
| | - Yanxia Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan Province, China
| | - Xiaoyong Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Guo H, Liu Y, Wu X, Cai M, Jiang M, Hu H. Study on the inhibitory effect of fermentation extract of Microporus vernicipes on Candida albicans. Int Microbiol 2024; 27:1181-1193. [PMID: 38147155 DOI: 10.1007/s10123-023-00467-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Candida albicans is one of the most common species of Candida, which cause various mucosal and systemic infectious diseases. However, the resistance rate to existing clinical antifungal drugs gradually increases in C. albicans. Therefore, new antifungal drugs must be developed to solve the current problem. This study discovered that the solid fermented ethyl acetate crude extract of Microporus vernicipes had inhibitory activity on C. albicans. This study determined that the Mv5 components had significantly inhibited the activity of C. albicans using column chromatography separation component screening. The components included 23 compounds of fatty acids and their derivatives, alkaloids, phenols, and other classes using ultra-high performance liquid chromatography tandem high-resolution mass spectrometry (UHPLC-HR-MS) analysis, with fatty acids constituting the primary components. The mechanism of action showed that the minimum inhibitory concentration (MIC) of Mv5 components against C. albicans was 15.63 μg/mL, while minimum fungicidal concentration (MFC) was 31.25 μg/mL. Mv5 components can inhibit the early biofilm formation and destroy the mature biofilm structure. It can inhibit the germ tube growth of C. albicans, thereby inhibiting the transformation of yeast morphology to hyphae. We detected 193 differentially expressed genes, including 156 upregulated and 37 downregulated genes in the Mv5 components of the MIC concentration group. We detected 391 differentially expressed genes, including 334 upregulated and 57 downregulated expression genes in the MFC concentration group. Among these differentially expressed genes, the genes related to mycelium and biofilm formation were significantly downregulated. GO enrichment analysis presented that single-organism process metabolic process, and cellular processes were the biological processes with the most gene enrichment. Kyoto Encyclopedia of Genes and Genomes (KEGG)of Mv5 components were mainly enriched in metabolic pathways, such as meiosis yeast and amino acid metabolism. Therefore, it is believed that the fermentation extract of M. vernicipes inhibits C. albicans, which can provide clues for developing effective antifungal drugs.
Collapse
Affiliation(s)
- Huiyang Guo
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, 157011, Heilongjiang, China
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yuanchao Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiaoxian Wu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Manjun Cai
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Ming Jiang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, 157011, Heilongjiang, China.
| | - Huiping Hu
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
3
|
Gryzinska M, Kot B, Dudzinska E, Biernasiuk A, Jakubczak A, Malm A, Andraszek K. Changes in the Level of DNA Methylation in Candida albicans under the Influence of Physical and Chemical Factors. Int J Mol Sci 2023; 24:15873. [PMID: 37958861 PMCID: PMC10647513 DOI: 10.3390/ijms242115873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
The effects of physical factors such as radiation (electromagnetic, microwave, infrared, laser, UVC, and X-ray) and high temperature, as well as chemical factors (controlled atmosphere) on the level of global DNA cytosine methylation in C. albicans ATCC 10231 cells were investigated. Prolonged exposure to each type of radiation significantly increased the DNA methylation level. In addition, the global methylation level in C. albicans cells increased with the incubation temperature. An increase in the percentage of methylated DNA was also noted in C. albicans cells cultured in an atmosphere with reduced O2. In contrast, in an atmosphere containing more than 3% CO2 and in anaerobic conditions, the DNA methylation level decreased relative to the control. This study showed that prolonged exposure to various types of radiation and high temperature as well as reduced O2 in the atmosphere caused a significant increase in the global DNA methylation level. This is most likely a response protecting DNA against damage, which at the same time can lead to epigenetic disorders, and in consequence can adversely affect the functioning of the organism.
Collapse
Affiliation(s)
- Magdalena Gryzinska
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Barbara Kot
- Institute of Biological Sciences, University of Siedlce, 08-110 Siedlce, Poland
| | - Ewa Dudzinska
- Department of Dietetics and Nutrition Education, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Anna Biernasiuk
- Chair and Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (A.B.); (A.M.)
| | - Andrzej Jakubczak
- Institute of Biological Basis of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Anna Malm
- Chair and Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland; (A.B.); (A.M.)
| | - Katarzyna Andraszek
- Institute of Animal Science and Fisheries, University of Siedlce, 08–110 Siedlce, Poland;
| |
Collapse
|