1
|
Brezeanu D, Brezeanu AM, Chirilă S, Tica V. The Role of Lactic Acid in Episiotomy Wound Healing: A Systematic Review. Healthcare (Basel) 2025; 13:956. [PMID: 40281905 DOI: 10.3390/healthcare13080956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Episiotomy is a common obstetric intervention aimed at facilitating childbirth and reducing severe perineal trauma. Lactic acid, a naturally occurring alpha-hydroxy acid (AHA), has emerged as a promising alternative to conventional wound-care methods due to its antimicrobial, anti-inflammatory, and regenerative properties. Objective: This systematic review evaluates the effectiveness of lactic acid in episiotomy wound healing compared to conventional wound-care methods, focusing on healing time, infection rates, and patient-reported outcomes. Methods: A systematic search was conducted in PubMed, Cochrane Library, Embase, Web of Science, and Scopus using the keywords "lactic acid", "episiotomy wound healing", "perineal wound care", and "infection prevention". Inclusion criteria covered randomized controlled trials (RCTs), observational studies, and systematic reviews. The Cochrane Risk of Bias 2 (RoB 2) tool and the Newcastle-Ottawa Scale were used for quality assessment. Results: Eight studies met the inclusion criteria. Lactic acid-treated wounds demonstrated 30% faster healing rates, 50% lower infection rates, and reduced pain scores compared with standard wound-care methods (e.g., povidone-iodine or saline). A meta-analysis of five RCTs found a significant reduction in post-episiotomy infections (RR = 0.68, 95% CI: 0.52-0.85). Conclusions: Lactic acid shows promise in episiotomy wound care by improving healing outcomes and reducing infection and discomfort. However, further large-scale RCTs are needed to confirm its safety and long-term efficacy.
Collapse
Affiliation(s)
- Dragos Brezeanu
- Faculty of Medicine, Ovidius University of Constanta, 900573 Constanta, Romania
- County Clinical Emergency Hospital "Sf. Ap. Andrei", 900591 Constanta, Romania
| | - Ana-Maria Brezeanu
- Faculty of Medicine, Ovidius University of Constanta, 900573 Constanta, Romania
- County Clinical Emergency Hospital "Sf. Ap. Andrei", 900591 Constanta, Romania
| | - Sergiu Chirilă
- Faculty of Medicine, Ovidius University of Constanta, 900573 Constanta, Romania
- County Clinical Emergency Hospital "Sf. Ap. Andrei", 900591 Constanta, Romania
| | - Vlad Tica
- Faculty of Medicine, Ovidius University of Constanta, 900573 Constanta, Romania
- County Clinical Emergency Hospital "Sf. Ap. Andrei", 900591 Constanta, Romania
- Romanian Academy of Scientists, 50444 Bucharest, Romania
| |
Collapse
|
2
|
Zahoor I, Bala R, Wani SN, Chauhan S, Madaan R, Kumar R, Hakeem KR, Malik IA. Potential role of NSAIDs loaded nano-formulations to treat inflammatory diseases. Inflammopharmacology 2025; 33:1189-1207. [PMID: 39953360 DOI: 10.1007/s10787-025-01644-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/25/2024] [Indexed: 02/17/2025]
Abstract
Inflammation is a necessary immunological response that promotes survival and preserves tissue homeostasis, a common characteristic linked to various diseases. However, in some circumstances, the inflammatory response is deleterious and contributes to disease pathogenesis. Anti-inflammatory substances have poor affinity for inflamed tissues, resulting in low concentrations in the target tissue and a higher incidence of severe adverse effects. To address this issue, several potential approaches have been proposed, such as chemical modification of drug molecules and the development of nanocarriers for drug delivery. Since the development of nanotechnology at the beginning of the twenty-first century, researchers have been using the pathophysiological characteristics of inflammation, primarily leaky vasculature, and biomarker overexpression to develop nanomedicines that can deliver therapeutics via passive and active targeting mechanisms to sites of inflammation and produce therapeutic effects. Drug carriers based on nanoparticles can enhance the safety and efficacy of drugs by increasing their capacity, enhancing their solubility, combining several drugs, protecting them from metabolism, and regulating their release. An approach that shows promise in the treatment of various inflammatory diseases is the application of nanomedicines. Nanomedicine involves nanoparticles that have been loaded with a therapeutically active component. Nanomedicines can target inflammation by recognizing molecules highly expressed on endothelial cells or activated macrophage surfaces, enhancing the permeability of vessels, or even by biomimicry. A review of the research findings shows significant potential for the use of nanotechnology to enhance the quality of life for people using NSAIDs for chronic disorders by minimizing drug side effects or the duration of administration. After a brief introduction to inflammation, its various forms- acute and chronic inflammation, and the pathophysiology of inflammation, this review highlights the main innovative nanocarriers utilized for carrying various nonsteroidal anti-inflammatory drugs that have been utilized in treating various inflammatory disorders.
Collapse
Affiliation(s)
- Ishrat Zahoor
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India.
| | - Rajni Bala
- University School of Pharmaceutical Sciences, Rayat-Bhara University, Kharar, Punjab, India
| | - Shahid Nazir Wani
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
- Aman Pharmacy College, Dholakhera Udaipurwati, Jhunjhunu, Rajasthan, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Reecha Madaan
- Adesh College of Pharmacy, NH1 Shahabad Kurukshetra, Haryana, India
| | - Rajesh Kumar
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Adualaziz University, 21589, Jeddah, Saudi Arabia
- Department of Public Health, Daffodil International University, Dhaka, 1341, Bangladesh
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Irfan Ahmad Malik
- Department of Pharmacology, Sanjivani College of Pharmaceutical Education and Research, Kopargaon, 423603, Maharashtra, India
| |
Collapse
|
3
|
Diniz DCDC, Ribeiro MG, Dias GS, Viana GDB, Okamoto AS, Machado LHDA. Antimicrobial activity of Lactobacillus casei on Staphylococcus pseudintermedius isolates. Vet Dermatol 2025. [PMID: 39868610 DOI: 10.1111/vde.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/21/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND Antimicrobial resistance is increasing each year. For example, in 2019 it was directly responsible for an estimated >1 million deaths. Additionally, the development of new drugs is much slower, generating enormous concerns about responses to infection in the future health scenario. Therefore, probiotics have emerged as an alternative to antibiotics. OBJECTIVES This study aimed to isolate and identify a Lactobacillus casei from healthy canine skin and investigate its antimicrobial effect on isolates of Staphylococcus pseudintermedius originating from dogs with pyoderma. MATERIALS AND METHODS L. casei was isolated from skin samples collected with a sterile cotton swab from the inner pinnae of healthy dogs. It was then cultured, identified using matrix-assisted laser desorption ionisation time-of-flight mass spectrometry, and tested against 30 different clinical isolates and one American Type Culture Collection strain of S. pseudintermedius using the spot-on-the-lawn technique. Its safety was assessed through a modified Kirby-Bauer disc diffusion susceptibility test. RESULTS L. casei inhibited the growth of all isolates of S. pseudintermedius. The mean value of the inhibition halo of all isolates was 11.3 mm. A significant positive correlation (Pearson's linear correlation = 0.444; p = 0.014) was noted between the inhibitory halos formed by L. casei on the S. pseudintermedius isolates and the halos produced by the tested antimicrobial discs on the same isolates. The L. casei strain demonstrated sensitivity to all tested antimicrobials. CONCLUSIONS AND CLINICAL RELEVANCE The study indicates that using commensal bacteria from canine skin, specifically L. casei, to control bacterial infections caused by S. pseudintermedius can be a promising complementary or alternative therapy to antibiotics relevant to animal and human health.
Collapse
Affiliation(s)
| | - Marcio Garcia Ribeiro
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Gabriele Silva Dias
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Guilherme de Brito Viana
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Adriano Sakari Okamoto
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| | - Luiz Henrique de Araújo Machado
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
4
|
Bongiovanni T, Santiago M, Zielinska K, Scheiman J, Barsa C, Jäger R, Pinto D, Rinaldi F, Giuliani G, Senatore T, Kostic AD. A Lactobacillus consortium provides insights into the sleep-exercise-microbiome nexus in proof of concept studies of elite athletes and in the general population. MICROBIOME 2025; 13:1. [PMID: 39748236 PMCID: PMC11697739 DOI: 10.1186/s40168-024-01936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/18/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND The complex relationship among sleep, exercise, and the gut microbiome presents a unique opportunity to improve health and wellness. Here, we conducted the first large-scale investigation into the influence of a novel elite athlete-derived probiotic, consisting of a multi-strain Lactobacillus consortium, on sleep quality, exercise recovery, and gut microbiome composition in both elite athletes (n = 11) and the general population (n = 257). RESULTS Our two-phase study design, which included an open-label study followed by a controlled longitudinal study in a professional soccer team, allowed us to identify key interactions between probiotics, the gut microbiome, and the host. In the placebo-controlled study, we observed significant improvements in self-reported sleep quality by 69%, energy levels by 31%, and bowel movements by 37% after probiotic intervention relative to after placebo. These improvements were associated with a significant decrease in D-ROMS (a marker of oxidative stress) and a significantly higher free-testosterone/cortisol ratio. Multi-omics analyses revealed specific changes in microbiome composition and function, potentially providing mechanistic insights into these observed effects. CONCLUSION This study provides novel insights into how a multi-strain Lactobacillus probiotic modulates sleep quality, exercise recovery, and gut microbiome composition in both the general population and elite athletes, and introduces potential mechanisms through which this probiotic could be influencing overall health. Our results emphasize the untapped potential of tailored probiotic interventions derived from extremely fit and healthy individuals in improving several aspects of health and performance directly in humans. Video Abstract.
Collapse
Affiliation(s)
- Tindaro Bongiovanni
- Player Health and Performance, Palermo Football Club, Palermo, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | - Tullio Senatore
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | |
Collapse
|
5
|
Arslan NP, Orak T, Ozdemir A, Altun R, Esim N, Eroglu E, Karaagac SI, Aktas C, Taskin M. Polysaccharides and Peptides With Wound Healing Activity From Bacteria and Fungi. J Basic Microbiol 2024; 64:e2400510. [PMID: 39410821 PMCID: PMC11609500 DOI: 10.1002/jobm.202400510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 12/13/2024]
Abstract
Bacteria and fungi are natural sources of metabolites exhibiting diverse bioactive properties such as wound healing, antioxidative, antibacterial, antifungal, anti-inflammatory, antidiabetic, and anticancer activities. Two important groups of bacteria or fungi-derived metabolites with wound-healing potential are polysaccharides and peptides. In addition to bacteria-derived cellulose and hyaluronic acid and fungi-derived chitin and chitosan, these organisms also produce different polysaccharides (e.g., exopolysaccharides) with wound-healing potential. The most commonly used bacterial peptides in wound healing studies are bacteriocins and lipopeptides. Bacteria or fungi-derived polysaccharides and peptides exhibit both the in vitro and the in vivo wound healing potency. In the in vivo models, including animals and humans, these metabolites positively affect wound healing by inhibiting pathogens, exhibiting antioxidant activity, modulating inflammatory response, moisturizing the wound environment, promoting the proliferation and migration of fibroblasts and keratinocytes, increasing collagen synthesis, re-epithelialization, and angiogenesis. Therefore, peptides and polysaccharides derived from bacteria and fungi have medicinal importance. This study aims to overview current literature knowledge (especially within the past 5 years) on the in vitro and in vivo wound repair potentials of polysaccharides and peptides obtained from bacteria (Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, and Proteobacteria) and fungi (yeasts, filamentous microfungi, and mushrooms).
Collapse
Affiliation(s)
| | - Tugba Orak
- Department of Molecular Biology and Genetics, Science FacultyAtaturk UniversityErzurumTurkey
| | - Aysenur Ozdemir
- Department of Molecular Biology and Genetics, Science FacultyAtaturk UniversityErzurumTurkey
| | - Ramazan Altun
- Department of Molecular Biology and Genetics, Science FacultyAtaturk UniversityErzurumTurkey
| | - Nevzat Esim
- Department of Molecular Biology and Genetics, Science and Art FacultyBingol UniversityBingolTurkey
| | - Elvan Eroglu
- Department of Molecular Biology and Genetics, Science FacultyAtaturk UniversityErzurumTurkey
| | - Sinem Ilayda Karaagac
- Department of Molecular Biology and Genetics, Science FacultyAtaturk UniversityErzurumTurkey
| | - Cigdem Aktas
- Department of Molecular Biology and Genetics, Science FacultyAtaturk UniversityErzurumTurkey
| | - Mesut Taskin
- Department of Molecular Biology and Genetics, Science FacultyAtaturk UniversityErzurumTurkey
| |
Collapse
|
6
|
Fathi F, Ghobeh M, Shirazi FH, Tabarzad M. Promising anti-inflammatory activity of a novel designed anti-microbial peptide for wound healing. Burns 2024; 50:2045-2055. [PMID: 39181772 DOI: 10.1016/j.burns.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/24/2024] [Accepted: 07/28/2024] [Indexed: 08/27/2024]
Abstract
Chronic wounds can develop as a result of prolonged inflammation during the healing process, which can happen due to bacterial infection. Therefore, preventing infection and controlling inflammation can accelerate wound healing. Antimicrobial peptides have different protective properties in addition to antimicrobial activity. Some of these activities include the stimulation of cytokine or chemokine synthesis, the facilitation of chemotaxis and cell proliferation, the acceleration of cell proliferation, the induction of anti-inflammatory responses, and the promotion of wound repair. This study aimed to assess the wound healing potential of a novel in silico-designed antimicrobial peptide. Then, its anti-inflammatory activity was investigated by measuring the level of tumor necrosis factor-α (TNF-α) and transforming growth factor beta (TGF-β) as indicators of the wound healing process. In addition, the influence of the peptide on cell migration was evaluated by a scratch test on human dermal fibroblasts (HDF) and HaCaT cells as a human epidermal keratinocyte cell line. The results showed that our new peptide could act well in inhibiting TNF-α over-secretion while increasing the expression of TGF-β as an anti-inflammatory factor. This peptide showed a significant potential to stimulate HDF and HaCaT cell migration and proliferation. Therefore, using this peptide as an anti-inflammatory component of wound dressings may be promising.
Collapse
Affiliation(s)
- Fariba Fathi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Ghobeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farshad H Shirazi
- Department of Toxicology & Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Nisar S, Shah AH, Nazir R. The clinical praxis of bacteriocins as natural anti-microbial therapeutics. Arch Microbiol 2024; 206:451. [PMID: 39476181 DOI: 10.1007/s00203-024-04152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 11/10/2024]
Abstract
In recent decades, the excessive use of antibiotics has resulted in a rise in antimicrobial drug resistance (ADR). Annually, a significant number of human lives are lost due to resistant infectious diseases, leading to around 700,000 deaths, and it is estimated that by 2050, there could be up to 10 million casualties. Apart from their possible application as preservatives in the food sector, bacteriocins are gaining acknowledgment as potential clinical treatments. Not only this, these antimicrobial peptides have revealed in modulating the host immune system producing anti-inflammatory and anti-modulatory responses. At the same time, due to the ever-increasing global threat of antibiotic resistance, bacteriocins have gained attraction among researchers due to their potential clinical applications. Bacteriocins as antimicrobial peptides, represent one of the most important natural defense mechanisms among bacterial species, particularly lactic acid bacteria (LAB), that can fight against infection-causing pathogens. In this review, we are highlighting the potential of bacteriocins as novel therapeutics for inhibiting a wide range of clinically relevant and multi-drug-resistant pathogens (MDR). We also highlight the effectiveness and potential applications of current bacteriocin treatments in combating antimicrobial resistance (AMR), thereby promoting human health.
Collapse
Affiliation(s)
- Safura Nisar
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Abdul Haseeb Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India.
| | - Ruqeya Nazir
- Centre of Research for Development (CORD), School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India.
| |
Collapse
|
8
|
Moysidis M, Chorti A, Cheva A, Abba Deka I, Tzikos G, Kosmidis C, Koutelidakis I, Tsetis JK, Papavramidis T, Kotzampassi K. L. plantarum UBLP-40 Versus the Combined Formula of L. rhamnosus UBLP-58 and B. longum UBBL-64 in Excisional Wound Healing: A Cellular Perspective. Pharmaceuticals (Basel) 2024; 17:1414. [PMID: 39598326 PMCID: PMC11597307 DOI: 10.3390/ph17111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024] Open
Abstract
INTRODUCTION The utilization of probiotics in enhancing the active healing of skin wounds represents a burgeoning trend in contemporary medicine. Previous research has extensively explored wound healing mechanisms involving the strains of Lactiplantibacillus plantarum, Lacticaseibacillus rhamnosus, and Bifidobacterium longum. This study seeks to compare and interpret cellular findings derived from immunohistochemical and pathological applications. METHODS Three groups (the control, Lactiplantibacillus plantarum (RO1) group, and Lacticaseibacillus rhamnosus and Bifidobacterium longum (PRO2) group) underwent histological analysis, and microscopic cell counting were employed, offering insights into dynamic changes among neutrophils, lymphocytes, plasmacytes, mast cells, fibroblasts, and newly formed vessels across distinct treatment groups and temporal intervals. RESULTS The neutrophil count was found to be elevated in PRO2 on day 2, while the same group resulted in the highest decline on day 15. The number of fibroblasts peaked on day 4 for the PRO1 group, compared to the other two groups, which peaked on day 8. The lymphocyte count was the highest in the control group, while they peaked on day 4 in PRO2. The mast cells and plasmacytes were variable and sparse among all groups and time frames. Neovascularization was promoted by PRO1 and PRO2 groups on day 4 and remained high on day 8 for PRO2. CONCLUSIONS Probiotic strains can be beneficial to the human population and in assisting skin wound healing, each strain working differently and more effectively in different healing phases. Thus, a combined formula containing different probiotics to modulate various healing phases is desirable.
Collapse
Affiliation(s)
- Moysis Moysidis
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (T.P.)
| | - Angeliki Chorti
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (T.P.)
| | - Angeliki Cheva
- Department of Pathology, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece (I.A.D.)
| | - Ioanna Abba Deka
- Department of Pathology, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece (I.A.D.)
| | - Georgios Tzikos
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (T.P.)
| | - Christoforos Kosmidis
- 3th Department of Surgery, AHEPA University Hospital, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Koutelidakis
- 2nd Department of Surgery, G. Gennimatas University Hospital, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Joulia K. Tsetis
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (T.P.)
| | - Theodossis Papavramidis
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (T.P.)
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (A.C.); (T.P.)
| |
Collapse
|
9
|
Gould L, Mahmoudi M. Analysis of Biogenic Amines and Small Molecule Metabolites in Human Diabetic Wound Ulcer Exudate. ACS Pharmacol Transl Sci 2024; 7:2894-2899. [PMID: 39296257 PMCID: PMC11406679 DOI: 10.1021/acsptsci.4c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024]
Abstract
Diabetic foot ulcers (DFUs) pose a significant challenge in wound care due to their chronic nature and impaired healing processes. This study examines the biogenic amines and small molecule metabolites present in DFU wound exudates to identify their potential roles in wound healing. Under an IRB-approved protocol, wound fluid samples were collected from 25 diabetic patients and analyzed using ultrahigh-pressure liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. The analysis identified 721 metabolites, with 402 confirmed through stringent criteria. Key metabolites significantly contributing to the wound exudates include betaine, lactic acid, carnitine, choline, creatine, and metformin (a widely used first-line treatment for type 2 diabetes). These molecules are known to influence wound healing processes, such as collagen synthesis, angiogenesis, inflammation modulation, and energy metabolism. Notably, the presence of drugs such as metformin and beclomethasone in the exudates suggests significant pharmacodynamic interactions that could influence wound healing. Specifically, we discovered that the combined use of insulin and metformin administered systemically significantly increased the concentration of metformin in the wound exudates (from 0.3% ± 0.0 to 3.1% ± 3.4; p = 0.00 49). This study highlights the complexity of DFU exudate composition and underscores the potential for targeted metabolic profiling to develop personalized wound care strategies.
Collapse
Affiliation(s)
- Lisa Gould
- Warren
Alpert Medical School of Brown University, Providence, Rhode Island02912, United States
- South
Shore Health Center for Wound Healing, Weymouth, Massachusetts02189, United States
| | - Morteza Mahmoudi
- Department
of Radiology and Precision Health Program, Michigan State University, East Lansing, Michigan48824, United States
| |
Collapse
|
10
|
Lee S, Shin JY, Kwon OS, Jun SH, Kang NG. Taurine and Polyphenol Complex Repaired Epidermal Keratinocyte Wounds by Regulating IL8 and TIMP2 Expression. Curr Issues Mol Biol 2024; 46:8685-8698. [PMID: 39194729 DOI: 10.3390/cimb46080512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
The healing process after acne lesion extraction provides a miniature model to study skin wound repair mechanisms. In this study, we aimed to identify solutions for acne scars that frequently occur on our faces. We performed acne scar cytokine profiling and found that Interleukin 8 (IL8) and Tissue inhibitor of metalloproteinases 2 (TIMP2) were significant factors at the wounded site. The effect of chlorogenic acid and taurine on human epidermal cells and irritated human skin was investigated. Chlorogenic acid and taurine regulated IL8 and TIMP2 expression and accelerated keratinocyte proliferation. Moreover, tight junction protein expression was upregulated by chlorogenic acid and taurine synergistically. Further, these compounds modulated the expression of several inflammatory cytokines (IL1α, IL1β, and IL6) and skin hydration related factor (hyaluronan synthase 3; HAS3). Thus, chlorogenic acid and taurine may exert their effects during the late stages of wound healing rather than the initial phase. In vivo experiments using SLS-induced wounds demonstrated the efficacy of chlorogenic acid and taurine treatment compared to natural healing, reduced erythema, and restored barrier function. Skin ultrasound analysis revealed their potential to promote denser skin recovery. Therefore, the wound-restoring effect of chlorogenic acid and taurine was exerted by suppression of inflammatory cytokines, and induction of cell proliferation, tight junction expression, and remodeling factors.
Collapse
Affiliation(s)
- Sooyeon Lee
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea
| | - Jae Young Shin
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea
| | - Oh Sun Kwon
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea
| | - Seung-Hyun Jun
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea
| | - Nae-Gyu Kang
- LG Household & Health Care (LG H&H) R&D Center, 70, Magokjoongang 10-ro, Gangseo-gu, Seoul 07795, Republic of Korea
| |
Collapse
|
11
|
Kim SH, Shim YY, Kim YJ, Reaney MJT, Chung MJ. Anti-Inflammatory Effects of Barley Sprout Fermented by Lactic Acid Bacteria in RAW264.7 Macrophages and Caco-2 Cells. Foods 2024; 13:1781. [PMID: 38891009 PMCID: PMC11172312 DOI: 10.3390/foods13111781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
The anti-inflammatory effects of supernatants produced from sprouted barley inoculated with Lactiplantibacillus plantarum KCTC3104 (Lp), Leuconostoc mesenteroides KCTC3530 (Lm), Latilactobacillus curvatus KCTC3767 (Lc), or a mixture of these lactic acid bacteria were investigated using RAW264.7 macrophages. BLp and BLc, the lyophilized supernatants of fermented sprouted barley inoculated with Lp and Lc, respectively, effectively reduced the nitric oxide (NO) levels hypersecreted by lipopolysaccharide (LPS)-stimulated RAW264.7 and LPS-stimulated Caco-2 cells. BLp and BLc effectively reduced the NO levels in LPS-stimulated RAW264.7 macrophages, and these effects tended to be concentration-dependent. BLc and BLp also exhibited strong DPPH radical scavenging activity and immunostimulatory effects. BLp and BLc significantly suppressed the levels of NO and pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 in LPS-stimulated RAW264.7 macrophages and LPS-stimulated Caco-2 cells, indicating their anti-inflammatory effects. These effects were greater than those of unfermented barley sprout (Bs). The functional components of Bs, BLp, and BLc were analyzed by HPLC, and it was found that lutonarin and saponarin were significantly increased in the fermented sprouted barley sample inoculated with Lp and Lc (BLp and BLc).
Collapse
Affiliation(s)
- Sang-Hyun Kim
- College of Veterinary Medicine and Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Youn Young Shim
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Y.Y.S.); (M.J.T.R.)
- Prairie Tide Diversified Inc., Saskatoon, SK S7J 0R1, Canada
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea;
| | - Martin J. T. Reaney
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada; (Y.Y.S.); (M.J.T.R.)
- Prairie Tide Diversified Inc., Saskatoon, SK S7J 0R1, Canada
| | - Mi Ja Chung
- Department of Food Science and Nutrition, College of Health Welfare, Gwangju University, Gwangju 61743, Republic of Korea
| |
Collapse
|
12
|
Bădăluță VA, Curuțiu C, Dițu LM, Holban AM, Lazăr V. Probiotics in Wound Healing. Int J Mol Sci 2024; 25:5723. [PMID: 38891909 PMCID: PMC11171735 DOI: 10.3390/ijms25115723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Wound infections caused by opportunistic bacteria promote persistent infection and represent the main cause of delayed healing. Probiotics are acknowledged for their beneficial effects on the human body and could be utilized in the management of various diseases. They also possess the capacity to accelerate wound healing, due to their remarkable anti-pathogenic, antibiofilm, and immunomodulatory effects. Oral and topical probiotic formulations have shown promising openings in the field of dermatology, and there are various in vitro and in vivo models focusing on their healing mechanisms. Wound dressings embedded with prebiotics and probiotics are now prime candidates for designing wound healing therapeutic approaches to combat infections and to promote the healing process. The aim of this review is to conduct an extensive scientific literature review regarding the efficacy of oral and topical probiotics in wound management, as well as the potential of wound dressing embedding pre- and probiotics in stimulating the wound healing process.
Collapse
Affiliation(s)
- Valentina Alexandra Bădăluță
- Department of Microbiology, Faculty of Biology, University of Bucharest, 030018 București, Romania; (V.A.B.); (C.C.); (L.M.D.); (V.L.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Carmen Curuțiu
- Department of Microbiology, Faculty of Biology, University of Bucharest, 030018 București, Romania; (V.A.B.); (C.C.); (L.M.D.); (V.L.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Lia Mara Dițu
- Department of Microbiology, Faculty of Biology, University of Bucharest, 030018 București, Romania; (V.A.B.); (C.C.); (L.M.D.); (V.L.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alina Maria Holban
- Department of Microbiology, Faculty of Biology, University of Bucharest, 030018 București, Romania; (V.A.B.); (C.C.); (L.M.D.); (V.L.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Veronica Lazăr
- Department of Microbiology, Faculty of Biology, University of Bucharest, 030018 București, Romania; (V.A.B.); (C.C.); (L.M.D.); (V.L.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
13
|
Jiang W, Yang L, Dang Y, Jiang X, Wu L, Tong X, Guo J, Bao Y. Metabolomic profiling of deep vein thrombosis. Phlebology 2024; 39:154-168. [PMID: 37992130 PMCID: PMC10938490 DOI: 10.1177/02683555231215199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Deep vein thrombosis (DVT) of the lower extremities is one of the most common peripheral vascular diseases, with significant complications and sequelae. Metabolomics aims to identify small molecules in biological samples. It can serve as a promising method for screening compounds that can be used for early disease detection, diagnosis, treatment response prediction, and prognosis. In addition, high-throughput metabolomics screening can yield significant insights into the pathophysiological pathways of DVT. Currently, the metabolomic profiles of DVT have yielded inconsistent expression patterns. This article examines the recent advancements in metabolomic studies of DVT and analyzes the factors that may influence the results.
Collapse
Affiliation(s)
- Weiguang Jiang
- Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
- Department of Vascular Surgery, Chifeng Municipal Hospital, Chifeng, China
| | - Liu Yang
- Department of Vascular Surgery, Chifeng Municipal Hospital, Chifeng, China
| | - Yongkang Dang
- Department of Vascular Surgery, Chifeng Municipal Hospital, Chifeng, China
| | - Xuechao Jiang
- Department of Vascular Surgery, Chifeng Municipal Hospital, Chifeng, China
| | - Lan Wu
- Department of Vascular Surgery, Chifeng Municipal Hospital, Chifeng, China
| | - Xiangyang Tong
- Department of Vascular Surgery, Chifeng Municipal Hospital, Chifeng, China
| | - Jianquan Guo
- Department of Vascular Surgery, Chifeng Municipal Hospital, Chifeng, China
| | - Yongtao Bao
- Department of Vascular Surgery, Chifeng Municipal Hospital, Chifeng, China
| |
Collapse
|
14
|
Zhuang Y, Quirk S, Stover ER, Bureau HR, Allen CR, Hernandez R. Tertiary Plasticity Drives the Efficiency of Enterocin 7B Interactions with Lipid Membranes. J Phys Chem B 2024; 128:2100-2113. [PMID: 38412510 PMCID: PMC10926100 DOI: 10.1021/acs.jpcb.3c08199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
The ability of antimicrobial peptides to efficiently kill their bacterial targets depends on the efficiency of their binding to the microbial membrane. In the case of enterocins, there is a three-part interaction: initial binding, unpacking of helices on the membrane surface, and permeation of the lipid bilayer. Helical unpacking is driven by disruption of the peptide hydrophobic core when in contact with membranes. Enterocin 7B is a leaderless enterocin antimicrobial peptide produced from Enterococcus faecalis that functions alone, or with its cognate partner enterocin 7A, to efficiently kill a wide variety of Gram-stain positive bacteria. To better characterize the role that tertiary structural plasticity plays in the ability of enterocin 7B to interact with the membranes, a series of arginine single-site mutants were constructed that destabilize the hydrophobic core to varying degrees. A series of experimental measures of structure, stability, and function, including CD spectra, far UV CD melting profiles, minimal inhibitory concentrations analysis, and release kinetics of calcein, show that decreased stabilization of the hydrophobic core is correlated with increased efficiency of a peptide to permeate membranes and in killing bacteria. Finally, using the computational technique of adaptive steered molecular dynamics, we found that the atomistic/energetic landscape of peptide mechanical unfolding leads to free energy differences between the wild type and its mutants, whose trends correlate well with our experiment.
Collapse
Affiliation(s)
- Yi Zhuang
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Stephen Quirk
- Kimberly-Clark
Corporation, Atlanta, Georgia 30076-2199, United States
| | - Erica R. Stover
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hailey R. Bureau
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Caley R. Allen
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rigoberto Hernandez
- Department
of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Materials Science & Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
15
|
Zanetta P, Ballacchino C, Squarzanti DF, Amoruso A, Pane M, Azzimonti B. Lactobacillus johnsonii LJO02 (DSM 33828) Cell-Free Supernatant and Vitamin D Improve Wound Healing and Reduce Interleukin-6 Production in Staphylococcus aureus-Infected Human Keratinocytes. Pharmaceutics 2023; 16:18. [PMID: 38276496 PMCID: PMC10820395 DOI: 10.3390/pharmaceutics16010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Methicillin-resistant biofilm-forming Staphylococcus spp. are found in about 25% of the overall cases of chronic wounds, which can undergo malignant degeneration and be associated with skin cancer. Although antimicrobial agents are clinically used to counteract pathogens and promote wound healing, they are increasingly ineffective against multi-drug resistant bacteria. Moreover, they can induce dysbiosis, which favors opportunistic pathogen infections and alters immune responses. Consequently, research on pathogen containment strategies is crucial. We aimed to evaluate the potential beneficial effect of Lactobacillus johnsonii LJO02 cell-free supernatant (CFS) and vitamin D, as single treatments or in combination, on cell viability, wound healing, and the pro-inflammatory interleukin-6 (IL-6) production of a Staphylococcus aureus-infected human immortalized keratinocyte cell line (HaCaT) in vitro model. The analysis showed that LJO02 CFS 20% v/v ratio and 100 nM vitamin D promoted infected cell viability and wound healing and significantly reduced IL-6 production. However, their effect was not synergic, since no significant difference between the single and combined treatments was observed. LJO02 CFS topic application and vitamin D supplementation could provide a valuable strategy for attenuating S. aureus-induced pathogenesis, promoting wound healing and opening new therapeutic strategies supporting the conventional approaches.
Collapse
Affiliation(s)
- Paola Zanetta
- Laboratory of Applied Microbiology, Department of Health Sciences (DISS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (C.B.); (D.F.S.)
| | - Chiara Ballacchino
- Laboratory of Applied Microbiology, Department of Health Sciences (DISS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (C.B.); (D.F.S.)
| | - Diletta Francesca Squarzanti
- Laboratory of Applied Microbiology, Department of Health Sciences (DISS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (C.B.); (D.F.S.)
| | - Angela Amoruso
- Probiotical Research S.r.l., Via Mattei 3, 28100 Novara, Italy; (A.A.); (M.P.)
| | - Marco Pane
- Probiotical Research S.r.l., Via Mattei 3, 28100 Novara, Italy; (A.A.); (M.P.)
| | - Barbara Azzimonti
- Laboratory of Applied Microbiology, Department of Health Sciences (DISS), Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), School of Medicine, Università del Piemonte Orientale (UPO), Corso Trieste 15/A, 28100 Novara, Italy; (C.B.); (D.F.S.)
| |
Collapse
|
16
|
Menni A, Moysidis M, Tzikos G, Stavrou G, Tsetis JK, Shrewsbury AD, Filidou E, Kotzampassi K. Looking for the Ideal Probiotic Healing Regime. Nutrients 2023; 15:3055. [PMID: 37447381 PMCID: PMC10346906 DOI: 10.3390/nu15133055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Wound healing is a multi-factorial response to tissue injury, aiming to restore tissue continuity. Numerous recent experimental and clinical studies clearly indicate that probiotics are applied topically to promote the wound-healing process. However, the precise mechanism by which they contribute to healing is not yet clear. Each strain appears to exert a distinctive, even multi-factorial action on different phases of the healing process. Given that a multi-probiotic formula exerts better results than a single strain, the pharmaceutical industry has embarked on a race for the production of a formulation containing a combination of probiotics capable of playing a role in all the phases of the healing process. Hence, the object of this review is to describe what is known to date of the distinctive mechanisms of each of the most studied probiotic strains in order to further facilitate research toward the development of combinations of strains and doses, covering the whole spectrum of healing. Eleven probiotic species have been analyzed, the only criterion of inclusion being a minimum of two published research articles.
Collapse
Affiliation(s)
- Alexandra Menni
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece (M.M.); (G.T.); (A.D.S.)
| | - Moysis Moysidis
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece (M.M.); (G.T.); (A.D.S.)
| | - Georgios Tzikos
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece (M.M.); (G.T.); (A.D.S.)
| | - George Stavrou
- Department of Colorectal Surgery, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK;
| | | | - Anne D. Shrewsbury
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece (M.M.); (G.T.); (A.D.S.)
| | - Eirini Filidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece (M.M.); (G.T.); (A.D.S.)
| |
Collapse
|