1
|
Patil H, Vemula SK, Narala S, Lakkala P, Munnangi SR, Narala N, Jara MO, Williams RO, Terefe H, Repka MA. Hot-Melt Extrusion: from Theory to Application in Pharmaceutical Formulation-Where Are We Now? AAPS PharmSciTech 2024; 25:37. [PMID: 38355916 DOI: 10.1208/s12249-024-02749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Hot-melt extrusion (HME) is a globally recognized, robust, effective technology that enhances the bioavailability of poorly soluble active pharmaceutical ingredients and offers an efficient continuous manufacturing process. The twin-screw extruder (TSE) offers an extremely resourceful customizable mixer that is used for continuous compounding and granulation by using different combinations of conveying elements, kneading elements (forward and reverse configuration), and distributive mixing elements. TSE is thus efficiently utilized for dry, wet, or melt granulation not only to manufacture dosage forms such as tablets, capsules, or granule-filled sachets, but also for designing novel formulations such as dry powder inhalers, drying units for granules, nanoextrusion, 3D printing, complexation, and amorphous solid dispersions. Over the past decades, combined academic and pharmaceutical industry collaborations have driven novel innovations for HME technology, which has resulted in a substantial increase in published articles and patents. This article summarizes the challenges and models for executing HME scale-up. Additionally, it covers the benefits of continuous manufacturing, process analytical technology (PAT) considerations, and regulatory requirements. In summary, this well-designed review builds upon our earlier publication, probing deeper into the potential of twin-screw extruders (TSE) for various new applications.
Collapse
Affiliation(s)
- Hemlata Patil
- Department of Product Development, Catalent Pharma Solutions, 14 Schoolhouse Road, Somerset, New Jersey, 08873, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA
| | - Preethi Lakkala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA
| | - Siva Ram Munnangi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA
| | - Nagarjuna Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA
| | - Miguel O Jara
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas, 78712, USA
| | - Robert O Williams
- Molecular Pharmaceutics and Drug Delivery Division, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, Texas, 78712, USA
| | - Hibreniguss Terefe
- Department of Product Development, Catalent Pharma Solutions, 14 Schoolhouse Road, Somerset, New Jersey, 08873, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi, 38677, USA.
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, Oxford, Mississippi, 38677, USA.
| |
Collapse
|
2
|
Vasoya JM, Lee HL, Lee T, Serajuddin ATM. Continuous Synthesis of Cinnarizine Salt with Malic Acid by Applying Green Chemistry Using Water-Assisted Twin Screw Extrusion. Mol Pharm 2023; 20:5160-5172. [PMID: 37646101 DOI: 10.1021/acs.molpharmaceut.3c00511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Organic solvent-free process or green chemistry is needed for manufacturing pharmaceutical salts to avoid various environmental, safety, and manufacturing cost issues involved. In this study, a cinnarizine (CNZ) salt with malic acid at a 1:1 molar ratio was successfully prepared by twin screw extrusion (TSE) with water assistance. The feasibility of salt formation was first evaluated by screening several carboxylic acids by neat grinding (NG) and liquid-assisted grinding (LAG) using a mortar and pestle, which indicated that malic acid and succinic acid could form salts with CNZ. Further studies on salt formation were conducted using malic acid. The examination by hot-stage microscopy revealed that the addition of water could facilitate the formation and crystallization of CNZ-malic acid salt even though CNZ is poorly water-soluble. The feasibility of salt formation was confirmed by determining the pH-solubility relationship between CNZ and malic acid, where a pHmax of 2.7 and a salt solubility of 2.47 mg/mL were observed. Authentic salt crystals were prepared by solution crystallization from organic solvents for examining crystal properties and structure by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR) spectroscopy, solid-state 13C and 15N nuclear magnetic resonance (NMR), and single-crystal X-ray diffraction (SXD). These techniques also established that a salt, and not a cocrystal, was indeed formed. The CNZ salt crystals were then prepared by TSE of a 1:1 CNZ-malic acid mixture, where the addition of small amounts of water resulted in a complete conversion of the mixture into the salt form. The salts prepared by solvent crystallization and water-assisted TSE had identical properties, and their moisture sorption profiles were also similar, indicating that TSE is a viable method for salt preparation by green chemistry. Since TSE can be conducted in a continuous manner, the results of the present investigation, if combined with other continuous processes, suggest the possibility of continuous manufacturing of drug products from the synthesis of active pharmaceutical ingredients (APIs) to the production of final dosage forms.
Collapse
Affiliation(s)
- Jaydip M Vasoya
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
| | - Hung Lin Lee
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
- Department of Chemical and Materials Engineering, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 320317, Taiwan, ROC
| | - Tu Lee
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
- Department of Chemical and Materials Engineering, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 320317, Taiwan, ROC
| | - Abu T M Serajuddin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York 11439, United States
| |
Collapse
|
3
|
Mandati P, Nyavanandi D, Narala S, Alzahrani A, Vemula SK, Repka MA. A Comparative Assessment of Cocrystal and Amorphous Solid Dispersion Printlets Developed by Hot Melt Extrusion Paired Fused Deposition Modeling for Dissolution Enhancement and Stability of Ibuprofen. AAPS PharmSciTech 2023; 24:203. [PMID: 37783961 DOI: 10.1208/s12249-023-02666-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
The primary focus of the research is to study the role of cocrystal and amorphous solid dispersion approaches for enhancing solubility and preserving the stability of a poorly soluble drug, i.e., ibuprofen (IBP). First, the solvent-assisted grinding approach determined the optimum molar ratio of the drug and the coformer (nicotinamide (NIC)). Later, the polymeric filaments of cocrystals and amorphous solid dispersions were developed using the hot melt extrusion (HME) process, and the printlets were fabricated using the fused deposition modeling (FDM) additive manufacturing process. In addition, the obtained filaments were also milled and compressed into tablets as reference samples. The formation of cocrystals and amorphous solid dispersions was evaluated and confirmed using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and powder X-ray diffraction (PXRD) analysis. The drug release profiles of 3D printlets with 50% infill were found to be faster and are in line with the release profiles of compressed tablets. In addition, the 3D-printed cocrystal formulation was stable for 6 months at accelerated conditions. However, the 3D printlets of amorphous solid dispersions and compressed tablets failed to retain stability attributed to the recrystallization of the drug and loss in tablet mechanical properties. This shows the suitability of a cocrystal platform as a novel approach for developing stable formulations of poorly soluble drug substances over amorphous solid dispersions.
Collapse
Affiliation(s)
- Preethi Mandati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Dinesh Nyavanandi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Abdullah Alzahrani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Sateesh Kumar Vemula
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, Mississippi, 38677, USA.
- Pii Center for Pharmaceutical Technology, The University of Mississippi, University, Mississippi, 38677, USA.
| |
Collapse
|
4
|
Shao S, Bonner D, Twamley B, Singh A, Healy AM. One Step In Situ Co-Crystallization of Dapsone and Polyethylene Glycols during Fluidized Bed Granulation. Pharmaceutics 2023; 15:2330. [PMID: 37765298 PMCID: PMC10535358 DOI: 10.3390/pharmaceutics15092330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Several studies have demonstrated the feasibility of in situ co-crystallization in different pharmaceutical processes such as spray drying, hot melt extrusion, and fluidized bed granulation (FBG) to produce co-crystal-in-excipient formulations. However, no previous studies have examined such a one step in situ co-crystallization process for co-crystal formulations where the coformer is a polymer. In the current study, we explored the use of FBG to produce co-crystal granules of dapsone (DAP) and different molecular weight polyethylene glycols (PEGs). Solvent evaporation (SE) was proven to generate DAP-PEGs co-crystals at a particular weight ratio of 55:45 w/w between DAP and PEG, which was subsequently used in FBG, using microcrystalline cellulose and hydroxypropyl methyl cellulose as filler excipient and binder, respectively. FBG could generate co-crystals with higher purity than SE. Granules containing DAP-PEG 400 co-crystal could be prepared without any additional binder. DAP-PEG co-crystal granules produced by FBG demonstrated superior pharmaceutical properties, including flow properties and tableting properties, compared to DAP and DAP-PEG co-crystals prepared by SE. Overall, in situ co-crystallization via FBG can effectively produce API-polymer co-crystals and enhance the pharmaceutical properties.
Collapse
Affiliation(s)
- Shizhe Shao
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland; (S.S.); (D.B.)
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - David Bonner
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland; (S.S.); (D.B.)
| | - Brendan Twamley
- School of Chemistry, Trinity College Dublin, D02 PN40 Dublin, Ireland;
| | | | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland; (S.S.); (D.B.)
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
5
|
Nugrahani I, Herawati D, Wibowo MS. The Benefits and Challenges of Antibiotics-Non-Steroidal Anti-Inflammatory Drugs Non-Covalent Reaction. Molecules 2023; 28:molecules28093672. [PMID: 37175082 PMCID: PMC10179822 DOI: 10.3390/molecules28093672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/09/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
Recently, non-covalent reactions have emerged as approaches to improve the physicochemical properties of active pharmaceutical ingredients (API), including antibiotics and non-steroidal anti-inflammatory drugs (NSAIDs). This review aimed to present and discuss the non-covalent reaction products of antibiotics, including salt and neutral multi-component solid forms, by framing their substituents and molar ratios, manufacturing techniques, characterization methods, benefits, potency changes, and toxicity, and is completed with an analysis of the development of computational models used in this field. Based on the data, NSAIDs are the most-developed drugs in multi-component system preparations, followed by antibiotics, i.e., antituberculosis and fluoroquinolones. They have reacted with inorganic elements, excipients, nutraceuticals, natural products, and other drugs. However, in terms of treatments for common infections, fluoroquinolones are more frequently used. Generally, NSAIDs are acquired on an over-the-counter basis, causing inappropriate medication. In addition, the pKa differences between the two groups of medicine offer the potential for them to react non-covalently. Hence, this review highlights fluoroquinolone-NSAID multi-component solid systems, which offer some benefits. These systems can increase patient compliance and promote the appropriate monitoring of drug usage; the dual drug multi-component solids have been proven to improve the physicochemical properties of one or both components, especially in terms of solubility and stability. In addition, some reports show an enhancement of the antibiotic activity of the products. However, it is important to consider the possibility of activity changes, interaction, and toxicity when using drug combinations. Hence, these aspects also are discussed in this review. Finally, we present computational modeling, which has been utilized broadly to support multi-component system designs, including coformer screening, preparation methods, and structural modeling, as well as to predict physicochemical properties, potency, and toxicity. This integrated review is expected to be useful for further antibiotic-NSAID multi-component system development.
Collapse
Affiliation(s)
- Ilma Nugrahani
- School of Pharmacy, Bandung Institute of Technology, Bandung 40132, Indonesia
| | - Diar Herawati
- School of Pharmacy, Bandung Institute of Technology, Bandung 40132, Indonesia
| | | |
Collapse
|
6
|
Shi Q, Chen H, Wang Y, Wang R, Xu J, Zhang C. Amorphous Solid Dispersions: Role of the Polymer and Its Importance in Physical Stability and In Vitro Performance. Pharmaceutics 2022; 14:pharmaceutics14081747. [PMID: 36015373 PMCID: PMC9413000 DOI: 10.3390/pharmaceutics14081747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
Amorphous solid dispersions stabilized by one or more polymer(s) have been widely used for delivering amorphous drugs with poor water solubilities, and they have gained great market success. Polymer selection is important for preparing robust amorphous solid dispersions, and considerations should be given as to how the critical attributes of a polymer can enhance the physical stability, and the in vitro and in vivo performances of a drug. This article provides a comprehensive overview for recent developments in the understanding the role of polymers in amorphous solid dispersions from the aspects of nucleation, crystal growth, overall crystallization, miscibility, phase separation, dissolution, and supersaturation. The critical properties of polymers affecting the physical stability and the in vitro performance of amorphous solid dispersions are also highlighted. Moreover, a perspective regarding the current research gaps and novel research directions for better understanding the role of the polymer is provided. This review will provide guidance for the rational design of polymer-based amorphous pharmaceutical solids with desired physicochemical properties from the perspective of physical stability and in vitro performance.
Collapse
Affiliation(s)
- Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
- Correspondence: (Q.S.); (C.Z.)
| | - Haibiao Chen
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Ruoxun Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Jia Xu
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Chen Zhang
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
- Correspondence: (Q.S.); (C.Z.)
| |
Collapse
|
7
|
Kumar Bandaru R, Rout SR, Kenguva G, Gorain B, Alhakamy NA, Kesharwani P, Dandela R. Recent Advances in Pharmaceutical Cocrystals: From Bench to Market. Front Pharmacol 2021; 12:780582. [PMID: 34858194 PMCID: PMC8632238 DOI: 10.3389/fphar.2021.780582] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 12/02/2022] Open
Abstract
The pharmacokinetics profile of active pharmaceutical ingredients (APIs) in the solid pharmaceutical dosage forms is largely dependent on the solid-state characteristics of the chemicals to understand the physicochemical properties by particle size, size distribution, surface area, solubility, stability, porosity, thermal properties, etc. The formation of salts, solvates, and polymorphs are the conventional strategies for altering the solid characteristics of pharmaceutical compounds, but they have their own limitations. Cocrystallization approach was established as an alternative method for tuning the solubility, permeability, and processability of APIs by introducing another compatible molecule/s into the crystal structure without affecting its therapeutic efficacy to successfully develop the formulation with the desired pharmacokinetic profile. In the present review, we have grossly focused on cocrystallization, particularly at different stages of development, from design to production. Furthermore, we have also discussed regulatory guidelines for pharmaceutical industries and challenges associated with the design, development and production of pharmaceutical cocrystals with commercially available cocrystal-based products.
Collapse
Affiliation(s)
- Ravi Kumar Bandaru
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Bhubaneswar Campus, Bhubaneswar, India
| | - Smruti Rekha Rout
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Bhubaneswar Campus, Bhubaneswar, India
| | - Gowtham Kenguva
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Bhubaneswar Campus, Bhubaneswar, India
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology-Indian Oil Bhubaneswar Campus, Bhubaneswar, India
| |
Collapse
|