1
|
Yang X, Wang H, Yu C. The Mechanism of APOBEC3B in Hepatitis B Virus Infection and HBV Related Hepatocellular Carcinoma Progression, Therapeutic and Prognostic Potential. Infect Drug Resist 2024; 17:4477-4486. [PMID: 39435460 PMCID: PMC11492903 DOI: 10.2147/idr.s484265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors globally. Prominent factors include chronic hepatitis B (CHB) and chronic hepatitis C (CHC) virus infections, exposure to aflatoxin, alcohol abuse, diabetes, and obesity. The prevalence of hepatitis B (HBV) is substantial, and the significant proportion of asymptomatic carriers heightens the challenge in diagnosing and treating hepatocellular carcinoma (HCC), necessitating further and more comprehensive research. Apolipoprotein B mRNA editing catalytic polypeptide (APOBEC) family members are single-stranded DNA cytidine deaminases that can restrict viral replication. The APOBEC-related mutation pattern constitutes a primary characteristic of somatic mutations in various cancer types such as lung, breast, bladder, head and neck, cervix, and ovary. Symptoms in the early stages of HCC are often subtle and nonspecific, posing challenges in treatment and monitoring. Furthermore, this article primarily focuses on the established specific mechanism of action of the APOBEC3B (A3B) gene in the onset and progression of HBV-related HCC (HBV-HCC) through stimulating mutations in HBV, activating Interleukin-6 (IL-6) and promoting reactive oxygen species(ROS) production, while also exploring the potential for A3B to serve as a therapeutic target and prognostic indicator in HBV-HCC.
Collapse
Affiliation(s)
- Xiaochen Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Huanqiu Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chengbo Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
2
|
Yang G, Wan P, Zhang Y, Tan Q, Qudus MS, Yue Z, Luo W, Zhang W, Ouyang J, Li Y, Wu J. Innate Immunity, Inflammation, and Intervention in HBV Infection. Viruses 2022; 14:2275. [PMID: 36298831 PMCID: PMC9609328 DOI: 10.3390/v14102275] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 07/30/2023] Open
Abstract
Hepatitis B virus (HBV) infection is still one of the most dangerous viral illnesses. HBV infects around 257 million individuals worldwide. Hepatitis B in many individuals ultimately develops hepatocellular carcinoma (HCC), which is the sixth most common cancer and the third leading cause of cancer-related deaths worldwide. The innate immunity acts as the first line of defense against HBV infection through activating antiviral genes. Along with the immune responses, pro-inflammatory cytokines are triggered to enhance the antiviral responses, but this may result in acute or chronic liver inflammation, especially when the clearance of virus is unsuccessful. To a degree, the host innate immune and inflammatory responses dominate the HBV infection and liver pathogenesis. Thus, it is crucial to figure out the signaling pathways involved in the activation of antiviral factors and inflammatory cytokines. Here, we review the interplay between HBV and the signal pathways that mediates innate immune responses and inflammation. In addition, we summarize current therapeutic strategies for HBV infection via modulating innate immunity or inflammation. Characterizing the mechanisms that underlie these HBV-host interplays might provide new approaches for the cure of chronic HBV infection.
Collapse
Affiliation(s)
- Ge Yang
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Pin Wan
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Yaru Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Qiaoru Tan
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Muhammad Suhaib Qudus
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhaoyang Yue
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Wei Luo
- Clinical Research Institute, The First People’s Hospital, Foshan 528000, China
| | - Wen Zhang
- Guangdong Longfan Biological Science and Technology, Foshan 528315, China
| | - Jianhua Ouyang
- Guangdong Longfan Biological Science and Technology, Foshan 528315, China
| | - Yongkui Li
- Foshan Institute of Medical Microbiology, Foshan 528315, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Guangdong Longfan Biological Science and Technology, Foshan 528315, China
| | - Jianguo Wu
- Foshan Institute of Medical Microbiology, Foshan 528315, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
3
|
Forkhead O Transcription Factor 4 Restricts HBV Covalently Closed Circular DNA Transcription and HBV Replication through Genetic Downregulation of Hepatocyte Nuclear Factor 4 Alpha and Epigenetic Suppression of Covalently Closed Circular DNA via Interacting with Promyelocytic Leukemia Protein. J Virol 2022; 96:e0054622. [PMID: 35695580 PMCID: PMC9278149 DOI: 10.1128/jvi.00546-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear located hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) remains the key obstacle to cure chronic hepatitis B (CHB). In our previous investigation, it was found that FoxO4 could inhibit HBV core promoter activity through downregulating the expression of HNF4α. However, the exact mechanisms whereby FoxO4 inhibits HBV replication, especially its effect on cccDNA, remain unclear. Here, our data further revealed that FoxO4 could effectively inhibit cccDNA mediated transcription and HBV replication without affecting cccDNA level. Mechanistic study showed that FoxO4 could cause epigenetic suppression of cccDNA. Although FoxO4-mediated downregulation of HNF4α contributed to inhibiting HBV core promoter activity, it had little effect on cccDNA epigenetic regulation. Further, it was found that FoxO4 could colocalize within promyelocytic leukemia protein (PML) nuclear bodies and interact with PML. Of note, PML was revealed to be critical for FoxO4-mediated inhibition of cccDNA epigenetic modification and of the following cccDNA transcription and HBV replication. Furthermore, FoxO4 was found to be downregulated in HBV-infected hepatocytes and human liver tissues, and it was negatively correlated with cccDNA transcriptional activity in CHB patients. Together, these findings highlight the role of FoxO4 in suppressing cccDNA transcription and HBV replication via genetic downregulation of HNF4α and epigenetic suppression of cccDNA through interacting with PML. Targeting FoxO4 may present as a new therapeutic strategy against chronic HBV infection. IMPORTANCE HBV cccDNA is a determining factor for viral persistence and the main obstacle for a cure of chronic hepatitis B. Strategies that target cccDNA directly are therefore of great importance in controlling persistent HBV infection. In present investigation, we found that FoxO4 could efficiently suppress cccDNA transcription and HBV replication without affecting the level of cccDNA itself. Further, our data revealed that FoxO4 might inhibit cccDNA function via a two-part mechanism: one is to epigenetically suppress cccDNA transcription via interacting with PML, and the other is to inhibit HBV core promoter activity via the genetic downregulation of HNF4α. Of note, HBV might dampen the expression of FoxO4 for its own persistent infection. We propose that manipulation of FoxO4 may present as a potential therapeutic strategy against chronic HBV infection.
Collapse
|
4
|
Lei Q, Li T, Kong L, Li L, Ding X, Wang X, Zhang X, Qin B. HBV-Pol is crucial for HBV-mediated inhibition of inflammasome activation and IL-1β production. Liver Int 2019; 39:2273-2284. [PMID: 31419377 DOI: 10.1111/liv.14214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Hepatitis B virus (HBV) infection is the most critical factor underlying liver cirrhosis and hepatocellular carcinoma worldwide. IL-1β and IL-18, generated by activation of the inflammasome/caspase-1 signaling pathway, play important roles in the control and clearance of HBV. However, the specific relationship between the inflammasome response and IFN-α resistance or viral persistence is yet to be established. METHODS Blood samples of patients and supernatant fractions of HBV cell lines were collected for analysis and the effects on inflammasome activation and IL-1β production evaluated via enzyme-linked immunosorbent assay (ELISA), western blot, quantitative RT-PCR and immunofluorescence. RESULTS IL-1β and IL-18 levels produced in sera of IFN-α non-responders were significantly lower than those of responders and normal donors. Additionally, expression of IL-1β and inflammasome components was decreased in peripheral blood mononuclear cells (PBMC) of non-responders, compared with those of responders. In vitro experiments on HepG2, HepG2.2.15 and HepAD38 cell lines showed that HBV induces a significant decrease in IL-1β production through inhibiting activation of the NF-κB signaling and inflammasome/caspase-1 pathways. And hepatitis B virus polymerase (HBV-Pol) appeared crucial for these inhibitory effects of HBV. CONCLUSION IL-1β production is suppressed in HBV carriers and IFN-α non-responders. HBV induces a significant decrease in IL-1β production through inhibiting the NF-κB signaling and inflammasome pathways, for which HBV-Pol is a crucial requirement. Trial approval number: 20 173 402.
Collapse
Affiliation(s)
- Qingsong Lei
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Oncology Radiotherapy Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Tianju Li
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Infectious Diseases, Chongqing Ninth Peoples Hospital, Chongqing, China
| | - Lingna Kong
- School of Nursing, Chongqing Medical University, Chongqing, China
| | - Lin Li
- Department of hepatic diseases, Chongqing Tranditional Chinese Medicine Hospital, Chongqing, China
| | - Xiaolin Ding
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaolin Wang
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaomei Zhang
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Qin
- Department of Infectious Diseases, Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Yao Z, Jia X, Megger DA, Chen J, Liu Y, Li J, Sitek B, Yuan Z. Label-Free Proteomic Analysis of Exosomes Secreted from THP-1-Derived Macrophages Treated with IFN-α Identifies Antiviral Proteins Enriched in Exosomes. J Proteome Res 2018; 18:855-864. [DOI: 10.1021/acs.jproteome.8b00514] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhenlan Yao
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Xiaofang Jia
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Dominik A. Megger
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 50 Virchowstraße 179, 45147 Essen, Germany
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Yuyi Liu
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Jianhua Li
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Barbara Sitek
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
The regulatory role of protein phosphorylation in human gammaherpesvirus associated cancers. Virol Sin 2017; 32:357-368. [PMID: 29116588 PMCID: PMC6704201 DOI: 10.1007/s12250-017-4081-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022] Open
Abstract
Activation of specific sets of protein kinases by intracellular signal molecules
has become more and more apparent in the past decade. Phosphorylation, one of key
posttranslational modification events, is activated by kinase or regulatory protein
and is vital for controlling many physiological functions of eukaryotic cells such
as cell proliferation, differentiation, malignant transformation, and signal
transduction mediated by external stimuli. Moreovers, the reversible modification of
phosphorylation and dephosphorylation can result in different features of the target
substrate molecules including DNA binding, protein-protein interaction, subcellular
location and enzymatic activity, and is often hijacked by viral infection.
Epstein-Barr virus (EBV) and Kaposi’s sarcomaassociated herpesvirus (KSHV), two
human oncogenic gamma-herpesviruses, are shown to tightly associate with many
malignancies. In this review, we summarize the recent progresses on understanding of
molecular properties and regulatory modes of cellular and viral proteins
phosphorylation influenced by these two tumor viruses, and highlight the potential
therapeutic targets and strategies against their related cancers. ![]()
Collapse
|
7
|
Sun Z, Chang B, Gao M, Zhang J, Zou Z. IL-33-ST2 Axis in Liver Disease: Progression and Challenge. Mediators Inflamm 2017; 2017:5314213. [PMID: 29180837 PMCID: PMC5664344 DOI: 10.1155/2017/5314213] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/20/2017] [Indexed: 12/16/2022] Open
Abstract
The new member of the IL-1 family, interleukin-33 (IL-33), participates in the progression of a variety of diseases through binding with its receptor ST2. Recently, much clinical evidence and experimental data have indicated that IL-33 is associated with various liver diseases. This review primarily addresses the relationship between IL-33 and several hepatic diseases. IL-33 can alleviate high-fat diet- (HFD-) induced hepatic steatosis and insulin resistance, and IL-33 acts as an alarmin, which quickly triggers the immune system to respond to virus invasion and toxic damage to the liver. However, when liver injury is chronic, IL-33 promotes Th2 reactions and hepatic stellate cell (HSC) activity, facilitating progression to liver fibrosis. The complicated functions of IL-33 should be considered before its clinical application.
Collapse
Affiliation(s)
- Zijian Sun
- Center of Non-Infectious Liver Diseases, Peking University 302 Clinical Medical School, Beijing, China
| | - Binxia Chang
- Center of Non-Infectious Liver Diseases, Beijing 302 Hospital, Beijing, China
| | - Miaomiao Gao
- Center of Non-Infectious Liver Diseases, Peking University 302 Clinical Medical School, Beijing, China
| | - Jiyuan Zhang
- Treatment and Research Center for Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | - Zhengsheng Zou
- Center of Non-Infectious Liver Diseases, Peking University 302 Clinical Medical School, Beijing, China
| |
Collapse
|
8
|
Emery JS, Feld JJ. Treatment of hepatitis B virus with combination therapy now and in the future. Best Pract Res Clin Gastroenterol 2017; 31:347-355. [PMID: 28774417 DOI: 10.1016/j.bpg.2017.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/16/2017] [Indexed: 02/06/2023]
Abstract
Chronic Hepatitis B continues as a significant public health problem despite the availability of safe and effective antivirals and a highly effective protective vaccine. Current therapy, however rarely leads to cure and lifelong therapy is often required, contributing to poor uptake and ongoing morbidity. New insights into the hepatitis B viral life cycle and the host immune response have expanded the potential targets for drug therapies with interesting antiviral candidates and novel immunotherapeutic approaches in early stage development. Yet, HBV persistence is multifactorial - due to an intrahepatic reservoir and ongoing HBV-mediated immune dysregulation, making "cure" unlikely to be realized through even the most efficacious monotherapy. Building on the success seen in the treatment of hepatitis C (HCV) and human immunodeficiency virus (HIV), combination therapy may be an essential strategy to improve efficacy and decrease viral breakthrough. Combinations acting on immune and viral targets are particularly attractive. However, creating synergy while balancing efficacy and safety remains a clear challenge. Various approaches to combination therapy are reviewed, highlighting strengths and challenges of each potential strategy. Overall, combination therapies are attractive as the next step towards cure and are a key strategy for achieving treatment with finite durations and durable endpoints.
Collapse
Affiliation(s)
- Joel S Emery
- Toronto Centre for Liver Disease, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jordan J Feld
- Toronto Centre for Liver Disease, University Health Network, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Yu X, Lan P, Hou X, Han Q, Lu N, Li T, Jiao C, Zhang J, Zhang C, Tian Z. HBV inhibits LPS-induced NLRP3 inflammasome activation and IL-1β production via suppressing the NF-κB pathway and ROS production. J Hepatol 2017; 66:693-702. [PMID: 28027970 DOI: 10.1016/j.jhep.2016.12.018] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Hepatitis B virus (HBV) has developed strategies to evade immune responses. However, the mechanisms involved remain unclear. The NLRP3 inflammasome plays crucial roles in antiviral host defense and its downstream factor IL-1β has been shown to inhibit HBV infection in vivo. This study aims to assess whether HBV can affect the NLRP3 inflammasome signaling pathways and shed light on the underlying mechanisms HBV utilizes to evade host innate immune responses. METHODS HBV inhibition of the lipopolysaccharide (LPS)-induced NLRP3 inflammasome activation was evaluated by Western blot, quantitative RT-PCR, flow cytometry and immunofluorescence. RESULTS Kupffer cells expressed significantly more NLRP3 and IL-1β after LPS stimulation; whereas, chronic HBV infection suppressed LPS-induced NLRP3 and pro-IL-1β expression as well as IL-1β maturation. This inhibitory activity is mediated by HBeAg, and is involved in the inhibition of NF-κB signal pathway and reactive oxygen species (ROS) production. The inhibitory effect of HBeAg was confirmed in patients with chronic hepatitis B (CHB) and hepatocellular carcinoma by comparing the levels of IL-1β and NLRP3-related proteins in para-carcinoma tissues from HBeAg-positive or negative patients. Moreover, chronic HBV infection increases the susceptibility of mice to S. typhimurium infection, possibly via inhibiting the NLRP3 inflammasome activation and IL-1β production. CONCLUSIONS HBeAg inhibits LPS-induced NLRP3 inflammasome activation and IL-1β production via suppressing NF-κB pathway and ROS production. This finding provides a novel mechanism for HBV-mediated suppression of innate immune responses, and identifies new therapeutic targets for chronic HBV infection and related diseases. LAY SUMMARY HBeAg suppresses LPS-induced NLRP3 inflammasome activation and IL-1β production in two ways, one is to repress NLRP3 and pro-IL-1β expression via inhibiting NF-κB phosphorylation, and the other is to repress caspase-1 activation and IL-1β maturation via inhibiting ROS production. This effect contributes to the HBV persistence and immune tolerance.
Collapse
Affiliation(s)
- Xin Yu
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Peixiang Lan
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Xuben Hou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Qiuju Han
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Nan Lu
- Institute of Diagnostics, School of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Tao Li
- Division of Liver Diseases, Shandong Provincial Hospital, Jinan 250001, Shandong, China
| | - Chenwei Jiao
- Department of Pediatric Surgery, Shandong Provincial Hospital, Jinan 250001, Shandong, China
| | - Jian Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China
| | - Cai Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, China.
| | - Zhigang Tian
- Institute of Immunology, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China.
| |
Collapse
|
10
|
Huan SL, Zhao JG, Wang ZL, Gao S, Wang K. Relevance of serum interleukin-33 and ST2 levels and the natural course of chronic hepatitis B virus infection. BMC Infect Dis 2016; 16:200. [PMID: 27180842 PMCID: PMC4868038 DOI: 10.1186/s12879-016-1543-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 05/06/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Interleukin-33 (IL-33) and ST2 have been demonstrated to be associated with liver damage. However, their potential value in hepatitis B virus (HBV) infection remains unknown. This study was designed to investigate the change of serum IL-33 and ST2 levels in the natural course of chronic HBV infection. METHODS A total of 120 patients with chronic hepatitis B (CHB), 20 chronic hepatitis B virus carriers in immunotolerant phase and 28 healthy controls were enrolled in this study. All patients with CHB were divided into four groups according to their serum ALT levels. The serum levels of IL-33 and ST2 of all participants were determined by enzyme-linked immunosorbent assay, and compared between each two out of those six groups. RESULTS No significant differences were found in serum levels of IL-33 and ST2 between the group of CHB with ALT 1-2 upper limit of normal and the healthy controls (P = 0.354 for IL-33 and P = 0.815 for ST2). Other than that, there were significant differences when serum levels of IL-33 and ST2 were compared between any other two out of those six groups (P < 0.05, respectively). The overall correlation analysis indicated that changes of serum IL-33 and ST2 levels were positively associated with ALT levels in patients with chronic HBV infection (rs = 0.879, P < 0.001 for IL-33 and rs = 0.923, P < 0.001 for ST2). No significant differences were found when the serum levels of ALT, IL-33 and ST2 were compared between patients with HBeAg-positive CHB and HBeAg-negative CHB. CONCLUSIONS Our study revealed that the serum levels of IL-33 and ST2 varied in different courses of chronic hepatitis B virus infection. The serum levels of IL-33 and ST2 elevated as serum ALT levels increased in patients with CHB. They might indicate liver damage for patients with CHB, just like ALT.
Collapse
Affiliation(s)
- Shu-Ling Huan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Ji-Guang Zhao
- Department of clinical laboratory, Qingdao Municipal Infectious Disease Hospital, Qingdao, 266033, Shandong, China
| | - Zhen-Li Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China.
- Institute of Hepatology, Shandong University, Wenhuaxi Road 107#, Jinan, 250012, Shandong, China.
| |
Collapse
|
11
|
Wang L, Wang K, Zou ZQ. Crosstalk between innate and adaptive immunity in hepatitis B virus infection. World J Hepatol 2015; 7:2980-2991. [PMID: 26730277 PMCID: PMC4691701 DOI: 10.4254/wjh.v7.i30.2980] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/11/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major public health problem worldwide. HBV is not directly cytotoxic to infected hepatocytes; the clinical outcome of infection results from complicated interactions between the virus and the host immune system. In acute HBV infection, initiation of a broad, vigorous immune response is responsible for viral clearance and self-limited inflammatory liver disease. Effective and coordinated innate and adaptive immune responses are critical for viral clearance and the development of long-lasting immunity. Chronic hepatitis B patients fail to mount efficient innate and adaptive immune responses to the virus. In particular, HBV-specific cytotoxic T cells, which are crucial for HBV clearance, are hyporesponsiveness to HBV infection. Accumulating experimental evidence obtained from the development of animal and cell line models has highlighted the importance of innate immunity in the early control of HBV spread. The virus has evolved immune escape strategies, with higher HBV loads and HBV protein concentrations associated with increasing impairment of immune function. Therefore, treatment of HBV infection requires inhibition of HBV replication and protein expression to restore the suppressed host immunity. Complicated interactions exist not only between innate and adaptive responses, but also among innate immune cells and different components of adaptive responses. Improved insight into these complex interactions are important in designing new therapeutic strategies for the treatment HBV infection. In this review, we summarize the current knowledge regarding the cross-talk between the innate and adaptive immune responses and among different immunocytes in HBV infection.
Collapse
Affiliation(s)
- Li Wang
- Li Wang, Zhi-Qiang Zou, Infectious Disease Hospital of Yantai, Yantai 264001, Shandong Province, China
| | - Kai Wang
- Li Wang, Zhi-Qiang Zou, Infectious Disease Hospital of Yantai, Yantai 264001, Shandong Province, China
| | - Zhi-Qiang Zou
- Li Wang, Zhi-Qiang Zou, Infectious Disease Hospital of Yantai, Yantai 264001, Shandong Province, China
| |
Collapse
|
12
|
Hepatitis B virus spliced variants are associated with an impaired response to interferon therapy. Sci Rep 2015; 5:16459. [PMID: 26585041 PMCID: PMC4653653 DOI: 10.1038/srep16459] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/14/2015] [Indexed: 02/08/2023] Open
Abstract
During hepatitis B virus (HBV) replication, spliced HBV genomes and splice-generated proteins have been widely described, however, their biological and clinical significance remains to be defined. Here, an elevation of the proportion of HBV spliced variants in the sera of patients with chronic hepatitis B (CHB) is shown to correlate with an impaired respond to interferon-α (IFN-α) therapy. Transfection of the constructs encoding the three most dominant species of spliced variants into cells or ectopic expression of the two major spliced protein including HBSP and N-terminal-truncated viral polymerase protein result in strong suppression of IFN-α signaling transduction, while mutation of the major splicing-related sites of HBV attenuates the viral anti-IFN activities in both cell and mouse models. These results have associated the productions of HBV spliced variants with the failure response to IFN therapy and illuminate a novel mechanism where spliced viral products are employed to resist IFN-mediated host defense.
Collapse
|
13
|
Ramos-Lopez O, Martinez-Lopez E, Roman S, Fierro NA, Panduro A. Genetic, metabolic and environmental factors involved in the development of liver cirrhosis in Mexico. World J Gastroenterol 2015; 21:11552-11566. [PMID: 26556986 PMCID: PMC4631960 DOI: 10.3748/wjg.v21.i41.11552] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/29/2015] [Accepted: 09/14/2015] [Indexed: 02/06/2023] Open
Abstract
Liver cirrhosis (LC) is a chronic illness caused by inflammatory responses and progressive fibrosis. Globally, the most common causes of chronic liver disease include persistent alcohol abuse, followed by viral hepatitis infections and nonalcoholic fatty liver disease. However, regardless of the etiological factors, the susceptibility and degree of liver damage may be influenced by genetic polymorphisms that are associated with distinct ethnic and cultural backgrounds. Consequently, metabolic genes are influenced by variable environmental lifestyle factors, such as diet, physical inactivity, and emotional stress, which are associated with regional differences among populations. This Topic Highlight will focus on the genetic and environmental factors that may influence the metabolism of alcohol and nutrients in the setting of distinct etiologies of liver disease. The interaction between genes and environment in the current-day admixed population, Mestizo and Native Mexican, will be described. Additionally, genes involved in immune regulation, insulin sensitivity, oxidative stress and extracellular matrix deposition may modulate the degree of severity. In conclusion, LC is a complex disease. The onset, progression, and clinical outcome of LC among the Mexican population are influenced by specific genetic and environmental factors. Among these are an admixed genome with a heterogenic distribution of European, Amerindian and African ancestry; a high score of alcohol consumption; viral infections; a hepatopathogenic diet; and a high prevalence of obesity. The variance in risk factors among populations suggests that intervention strategies directed towards the prevention and management of LC should be tailored according to such population-based features.
Collapse
|
14
|
CRISPR/Cas9-based tools for targeted genome editing and replication control of HBV. Virol Sin 2015; 30:317-25. [PMID: 26511989 DOI: 10.1007/s12250-015-3660-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/14/2015] [Indexed: 12/25/2022] Open
Abstract
Hepatitis B virus (HBV) infection remains a major global health problem because current therapies rarely eliminate HBV infections to achieve a complete cure. A different treatment paradigm to effectively clear HBV infection and eradicate latent viral reservoirs is urgently required. In recent years, the development of a new RNA-guided gene-editing tool, the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9) system, has greatly facilitated site-specific mutagenesis and represents a very promising potential therapeutic tool for diseases, including for eradication of invasive pathogens such as HBV. Here, we review recent advances in the use of CRISPR/Cas9, which is designed to target HBV specific DNA sequences to inhibit HBV replication and to induce viral genome mutation, in cell lines or animal models. Advantages, limitations and possible solutions, and proposed directions for future research are discussed to highlight the opportunities and challenges of CRISPR/Cas9 as a new, potentially curative therapy for chronic hepatitis B infection.
Collapse
|
15
|
Chen J, Wu M, Liu K, Zhang W, Li Y, Zhou X, Bai L, Yuan Z. New insights into hepatitis B virus biology and implications for novel antiviral strategies. Natl Sci Rev 2015. [DOI: 10.1093/nsr/nwv044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Hepatitis B virus (HBV), a small DNA virus with a unique replication mode, can cause chronic hepatitis (CHB), which is characterized by the persistence of the viral covalently closed circular DNA that serves as the template for HBV replication and the production of large amounts of secreted HBV surface antigen (HBsAg) that is present in excess of the levels of infectious virus. Despite the success of currently approved antiviral treatments for CHB patients, including interferon and nucleotide analogs, which suppress HBV replication and reduce the risk of CHB-related liver diseases, these therapies fail to eradicate the virus in most of the patients. With the development of the cell and animal models for HBV study, a better understanding of the HBV life cycle has been achieved and a series of novel antiviral strategies that target different stages of HBV replication have been designed to overcome the viral factors that contribute to HBV persistence. Such basic HBV research advancements and therapeutic developments are the subject of this review.
Collapse
Affiliation(s)
- Jieliang Chen
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Min Wu
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Kuancheng Liu
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Institutes of Medical Microbiology and Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Wen Zhang
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yaming Li
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaohui Zhou
- Research Unit, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lu Bai
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, and Department of Medical Microbiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Institutes of Medical Microbiology and Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
16
|
Hepatitis B virus polymerase disrupts K63-linked ubiquitination of STING to block innate cytosolic DNA-sensing pathways. J Virol 2014; 89:2287-300. [PMID: 25505063 DOI: 10.1128/jvi.02760-14] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The cellular innate immune system recognizing pathogen infection is essential for host defense against viruses. In parallel, viruses have developed a variety of strategies to evade the innate immunity. The hepatitis B virus (HBV), a DNA virus that causes chronic hepatitis, has been shown to inhibit RNA helicase RIG-I-mediated interferon (IFN) induction. However, it is still unknown whether HBV could affect the host DNA-sensing pathways. Here we report that in transiently HBV-transfected Huh7 cells, the stably HBV-producing cell line HepAD38, and HBV-infected HepaRG cells and primary human hepatocytes, HBV markedly interfered with IFN-β induction and antiviral immunity mediated by the stimulator of interferon genes (STING), which has been identified as a central factor in foreign DNA recognition and antiviral innate immunity. Screening analysis demonstrated that the viral polymerase (Pol), but not other HBV-encoded proteins, was able to inhibit STING-stimulated interferon regulatory factor 3 (IRF3) activation and IFN-β induction. Moreover, the reverse transcriptase (RT) and the RNase H (RH) domains of Pol were identified to be responsible for the inhibitory effects. Furthermore, Pol was shown to physically associate with STING and dramatically decrease the K63-linked polyubiquitination of STING via its RT domain without altering the expression level of STING. Taken together, these observations suggest that besides its inherent catalytic function, Pol has a role in suppression of IFN-β production by direct interaction with STING and subsequent disruption of its K63-linked ubiquitination, providing a new mechanism for HBV to counteract the innate DNA-sensing pathways. IMPORTANCE Although whether and how HBV infection induces the innate immune responses are still controversial, it has become increasingly clear that HBV has developed strategies to counteract the pattern recognition receptor-mediated signaling pathways. Previous studies have shown that type I IFN induction activated by the host RNA sensors could be inhibited by HBV. However, it remains unknown whether HBV as a DNA virus utilizes evasion mechanisms against foreign DNA-elicited antiviral signaling. In recent years, the cytosolic DNA sensor and key adaptor STING has been demonstrated to be essential in multiple foreign DNA-elicited innate immune signalings. Here, for the first time, we report STING as a new target of HBV to antagonize IFN induction and identify the viral polymerase responsible for the inhibitory effect, thus providing an additional molecular mechanism by which HBV evades the innate immunity; this implies that in addition to its inherent catalytic function, HBV polymerase is a multifunctional immunomodulatory protein.
Collapse
|
17
|
Lu M, Wen Y. Interaction of viruses with host immune system and immunomodulation in chronic viral infections. Virol Sin 2014; 29:1-2. [PMID: 24470264 DOI: 10.1007/s12250-014-3437-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Mengji Lu
- Institute for Virology, University Hospital of Essen, University Duisburg-Essen, 45122, Essen, Germany,
| | | |
Collapse
|