1
|
Li LL, Ma XH, Nan XW, Wang JL, Zhao J, Sun XM, Li JS, Zheng GS, Duan ZJ. Diversity of Hepatitis E Viruses in Rats in Yunnan Province and the Inner Mongolia Autonomous Region of China. Viruses 2025; 17:490. [PMID: 40284933 PMCID: PMC12031282 DOI: 10.3390/v17040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 04/29/2025] Open
Abstract
Hepatitis E virus (HEV) is one of the most common pathogens causing acute hepatitis. Rat HEV, a member of the genus Rocahepevirus, infects mainly rat but can also cause human zoonotic infection. A survey of the virome of rats via next-generation sequencing (NGS) was performed in Yunnan Province and Inner Mongolia in China. Further screening of rat HEV was conducted by nested PCR. The complete genome of six representative strains were obtained by NGS and RT-PCR. The virome analysis revealed that multiple reads were annotated as Hepeviridae. The screening results showed that HEV was detected in 9.6% (34 of 355) of the rat samples and phylogenetically classified into three lineages. The sequences from Yunnan clustered with Rocahepevirus ratti, named the YnRHEV group, and those from Inner Mongolia were separated into two lineages, named the NmRHEV-1 and NmRHEV-2 groups. Complete sequence analysis showed that YnRHEV had very high sequence identity to a human HEV strain identified in immunosuppressed patients (88.7% to 94.3%), a reminder of the risk of cross-species transmission of rodent HEV. Notably, NmRHEV-1 and the most closely related rat HEV, RtCb-HEV/HeB2014, were divergent from other HEV. The phylogenetic analyses and lower sequence identities of the complete genome suggested the NmRHEV-1 to be a novel putative genus of the subfamily Orthohepevirinae. NmRHEV-2 shared the highest sequence identities (70.6% to 72.0%) with the species Rocahepevirus eothenomi, which may represent a putative novel genotype. This study revealed high genetic diversity of Hepeviridae in rats in China and a potentially zoonotic Rocahepevirus ratti strain.
Collapse
Affiliation(s)
- Li-Li Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Beijing 102206, China; (L.-L.L.); (X.-M.S.); (J.-S.L.)
- NHC Key Laboratory for Medical Virology and Viral Diseases, Beijing 102206, China
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China;
| | - Xiao-Hua Ma
- GANSU Provincial Centers for Disease Control and Prevention, Lanzhou 730000, China;
| | - Xiao-Wei Nan
- Inner Mongolia Autonomous Region Center for Disease Control and Prevention (Inner Mongolia Autonomous Region Academy of Preventive Medicine), Hohhot 010080, China;
| | - Jing-Lin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China;
| | - Jing Zhao
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China;
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Xiao-Man Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Beijing 102206, China; (L.-L.L.); (X.-M.S.); (J.-S.L.)
- NHC Key Laboratory for Medical Virology and Viral Diseases, Beijing 102206, China
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China;
| | - Jin-Song Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Beijing 102206, China; (L.-L.L.); (X.-M.S.); (J.-S.L.)
- NHC Key Laboratory for Medical Virology and Viral Diseases, Beijing 102206, China
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China;
| | - Gui-Sen Zheng
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Zhao-Jun Duan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Beijing 102206, China; (L.-L.L.); (X.-M.S.); (J.-S.L.)
- NHC Key Laboratory for Medical Virology and Viral Diseases, Beijing 102206, China
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China;
| |
Collapse
|
2
|
Wang B, Cronin P, Mah MG, Yang XL, Su YCF. Genetic Diversity and Molecular Evolution of Hepatitis E Virus Within the Genus Chirohepevirus in Bats. Viruses 2025; 17:339. [PMID: 40143268 PMCID: PMC11945734 DOI: 10.3390/v17030339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Hepatitis E virus (HEV) is a major zoonotic pathogen causing hepatitis E, with strains identified in various animal species, including pigs, wild boar, rabbits, deer, camels, and rats. These variants are capable of crossing species barriers and infecting humans. HEV belongs to the family Hepeviridae, which has recently divided into two subfamilies: Orthohepevirinae and Parahepevirinae, and five genera: Paslahepevirus, Avihepevirus, Rocahepevirus, Chirohepevirus, and Piscihepevirus. Recent advances in high-throughput sequencing, particularly of bat viromes, have revealed numerous HEV-related viruses, raising concerns about their zoonotic potential. Bat-derived HEVs have been classified into the genus Chirohepevirus, which includes three distinct species. In this study, we analyzed 64 chirohepevirus sequences from 22 bat species across six bat families collected from nine countries. Twelve sequences represent complete or nearly complete viral genomes (>6410 nucleotides) containing the characteristic three HEV open reading frames (ORFs). These strains exhibited high sequence divergence (>25%) within their respective host genera or species. Phylogenetic analyses with maximum likelihood methods identified at least seven distinct subclades within Chirohepevirus, each potentially representing an independent species. Additionally, the close phylogenetic relationship between chirohepevirus strains and their bat hosts indicates a pattern of virus-host co-speciation. Our findings expand the known diversity within the family Hepeviridae and provide new insights into the evolution of bat-associated HEV. Continued surveillance of chirohepevirus will be essential for understanding its potential for zoonotic transmission and public health risks.
Collapse
Affiliation(s)
- Bo Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; (P.C.); (M.G.M.)
| | - Peter Cronin
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; (P.C.); (M.G.M.)
| | - Marcus G. Mah
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; (P.C.); (M.G.M.)
| | - Xing-Lou Yang
- Key Laboratory of Genetic Evolution & Animal Models, Yunnan International Joint Laboratory of Zoonotic Viruses, Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
| | - Yvonne C. F. Su
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; (P.C.); (M.G.M.)
| |
Collapse
|
3
|
Li FL, Wang B, Han PY, Li B, Si HR, Zhu Y, Yin HM, Zong LD, Tang Y, Shi ZL, Hu B, Yang XL, Zhang YZ. Identification of novel rodent and shrew orthohepeviruses sheds light on hepatitis E virus evolution. Zool Res 2025; 46:103-121. [PMID: 39846190 PMCID: PMC11890990 DOI: 10.24272/j.issn.2095-8137.2024.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025] Open
Abstract
The family Hepeviridae has seen an explosive expansion in its host range in recent years, yet the evolutionary trajectory of this zoonotic pathogen remains largely unknown. The emergence of rat hepatitis E virus (HEV) has introduced a new public health threat due to its potential for zoonotic transmission. This study investigated 2 464 wild small mammals spanning four animal orders, eight families, 21 genera, and 37 species in Yunnan Province, China. Using broadly reactive reverse transcription-polymerase chain reaction (RT-PCR), we systematically screened the presence and prevalence of Orthohepevirus and identified 192 positive specimens from 10 species, corresponding to an overall detection rate of 7.79%. Next-generation sequencing enabled the recovery of 24 full-length genomic sequences from eight host species, including Bandicota bengalensis, Eothenomys eleusis, and Episoriculus caudatus, representing newly reported host species for Orthohepevirus strains. Phylogenetic and sequence analyses revealed extensive genetic diversity within orthohepeviruses infecting rodents and shrews. Notably, among the identified strains, 20 were classified as Rocahepevirus ratti C1, two as C3, and one as Rocahepevirus eothenomi, while the remaining strain exhibited significant divergence, precluding classification. Evolutionary analyses highlighted close associations between orthohepeviruses and their respective host taxa, with distinct phylogenetic clustering patterns observed across different host orders. These findings emphasize the critical roles of co-speciation and cross-species transmission in shaping the evolutionary trajectories of the genera Paslahepevirus and Rocahepevirus.
Collapse
Affiliation(s)
- Fu-Li Li
- Institute of Preventive Medicine, School of Public Health, Dali University, Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Yunnan Key Laboratory of Zoonotic Disease Cross-border Prevention and Quarantine, Dali, Yunnan 671000, China
- Second People's Hospital of Qujing, Qujing, Yunnan 655000, China
| | - Bo Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Pei-Yu Han
- Institute of Preventive Medicine, School of Public Health, Dali University, Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Yunnan Key Laboratory of Zoonotic Disease Cross-border Prevention and Quarantine, Dali, Yunnan 671000, China
| | - Bei Li
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Hao-Rui Si
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Yan Zhu
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Hong-Min Yin
- Institute of Preventive Medicine, School of Public Health, Dali University, Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Yunnan Key Laboratory of Zoonotic Disease Cross-border Prevention and Quarantine, Dali, Yunnan 671000, China
| | - Li-Dong Zong
- Institute of Preventive Medicine, School of Public Health, Dali University, Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Yunnan Key Laboratory of Zoonotic Disease Cross-border Prevention and Quarantine, Dali, Yunnan 671000, China
| | - Yi Tang
- Institute of Preventive Medicine, School of Public Health, Dali University, Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Yunnan Key Laboratory of Zoonotic Disease Cross-border Prevention and Quarantine, Dali, Yunnan 671000, China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
| | - Ben Hu
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China. E-mail:
| | - Xing-Lou Yang
- Key Laboratory of Genetic Evolution & Animal Models, Yunnan International Joint Laboratory of Zoonotic Viruses, Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Yun-Zhi Zhang
- Institute of Preventive Medicine, School of Public Health, Dali University, Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Yunnan Key Laboratory of Zoonotic Disease Cross-border Prevention and Quarantine, Dali, Yunnan 671000, China. E-mail:
| |
Collapse
|
4
|
Tang Y, Zhao K, Yin HM, Yang LP, Wu YC, Li FY, Yang Z, Lu HX, Wang B, Yang Y, Zhang YZ, Yang XL. Identification and Genomic Characterization of Two Novel Hepatoviruses in Shrews from Yunnan Province, China. Viruses 2024; 16:969. [PMID: 38932262 PMCID: PMC11209087 DOI: 10.3390/v16060969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Hepatitis A virus (HAV), a member of the genus Hepatovirus (Picornaviridae HepV), remains a significant viral pathogen, frequently causing enterically transmitted hepatitis worldwide. In this study, we conducted an epidemiological survey of HepVs carried by small terrestrial mammals in the wild in Yunnan Province, China. Utilizing HepV-specific broad-spectrum RT-PCR, next-generation sequencing (NGS), and QNome nanopore sequencing (QNS) techniques, we identified and characterized two novel HepVs provisionally named EpMa-HAV and EpLe-HAV, discovered in the long-tailed mountain shrew (Episoriculus macrurus) and long-tailed brown-toothed shrew (Episoriculus leucops), respectively. Our sequence and phylogenetic analyses of EpMa-HAV and EpLe-HAV indicated that they belong to the species Hepatovirus I (HepV-I) clade II, also known as the Chinese shrew HepV clade. Notably, the codon usage bias pattern of novel shrew HepVs is consistent with that of previously identified Chinese shrew HepV. Furthermore, our structural analysis demonstrated that shrew HepVs differ from other mammalian HepVs in RNA secondary structure and exhibit variances in key protein sites. Overall, the discovery of two novel HepVs in shrews expands the host range of HepV and underscores the existence of genetically diverse animal homologs of human HAV within the genus HepV.
Collapse
Affiliation(s)
- Yi Tang
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Key Laboratory for Cross-Border Control and Quarantine of Zoonoses in Universities of Yunnan Province, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (Y.T.); (H.-M.Y.); (Z.Y.)
- Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (K.Z.); (L.-P.Y.); (Y.-C.W.); (F.-Y.L.); (H.-X.L.)
| | - Kai Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (K.Z.); (L.-P.Y.); (Y.-C.W.); (F.-Y.L.); (H.-X.L.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hong-Min Yin
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Key Laboratory for Cross-Border Control and Quarantine of Zoonoses in Universities of Yunnan Province, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (Y.T.); (H.-M.Y.); (Z.Y.)
| | - Li-Ping Yang
- Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (K.Z.); (L.-P.Y.); (Y.-C.W.); (F.-Y.L.); (H.-X.L.)
| | - Yue-Chun Wu
- Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (K.Z.); (L.-P.Y.); (Y.-C.W.); (F.-Y.L.); (H.-X.L.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Feng-Yi Li
- Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (K.Z.); (L.-P.Y.); (Y.-C.W.); (F.-Y.L.); (H.-X.L.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ze Yang
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Key Laboratory for Cross-Border Control and Quarantine of Zoonoses in Universities of Yunnan Province, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (Y.T.); (H.-M.Y.); (Z.Y.)
| | - Hui-Xuan Lu
- Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (K.Z.); (L.-P.Y.); (Y.-C.W.); (F.-Y.L.); (H.-X.L.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
| | - Yin Yang
- Department of Medical, The Second People’s Hospital of Dali Prefecture, Dali 67100, China;
| | - Yun-Zhi Zhang
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Key Laboratory for Cross-Border Control and Quarantine of Zoonoses in Universities of Yunnan Province, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (Y.T.); (H.-M.Y.); (Z.Y.)
| | - Xing-Lou Yang
- Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (K.Z.); (L.-P.Y.); (Y.-C.W.); (F.-Y.L.); (H.-X.L.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
5
|
Santos-Silva S, Moraes DFDSD, López-López P, Paupério J, Queirós J, Rivero-Juarez A, Lux L, Ulrich RG, Gonçalves HMR, Van der Poel WHM, Nascimento MSJ, Mesquita JR. Detection of hepatitis E virus genotype 3 in an Algerian mouse (Mus spretus) in Portugal. Vet Res Commun 2024; 48:1803-1812. [PMID: 38243141 PMCID: PMC11147874 DOI: 10.1007/s11259-024-10293-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
Virus monitoring in small mammals is central to the design of epidemiological control strategies for rodent-borne zoonotic viruses. Synanthropic small mammals are versatile and may be potential carriers of several microbial agents. In the present work, a total of 330 fecal samples of small mammals were collected at two sites in the North of Portugal and screened for zoonotic hepatitis E virus (HEV, species Paslahepevirus balayani). Synanthropic small mammal samples (n = 40) were collected in a city park of Porto and belonged to the species Algerian mouse (Mus spretus) (n = 26) and to the greater white-toothed shrew (Crocidura russula) (n = 14). Furthermore, additional samples were collected in the Northeast region of Portugal and included Algerian mouse (n = 48), greater white-toothed shrew (n = 47), wood mouse (Apodemus sylvaticus) (n = 43), southwestern water vole (Arvicola sapidus) (n = 52), Cabrera's vole (Microtus cabrerae) (n = 49) and Lusitanian pine vole (Microtus lusitanicus) (n = 51). A nested RT-PCR targeting a part of open reading frame (ORF) 2 region of the HEV genome was used followed by sequencing and phylogenetic analysis. HEV RNA was detected in one fecal sample (0.3%; 95% confidence interval, CI: 0.01-1.68) from a synanthropic Algerian mouse that was genotyped as HEV-3, subgenotype 3e. This is the first study reporting the detection of HEV-3 in a synanthropic rodent, the Algerian mouse. The identified HEV isolate is probably the outcome of either a spill-over infection from domestic pigs or wild boars, or the result of passive viral transit through the intestinal tract. This finding reinforces the importance in the surveillance of novel potential hosts for HEV with a particular emphasis on synanthropic animals.
Collapse
Affiliation(s)
- Sérgio Santos-Silva
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | | | - Pedro López-López
- Unit of Infectious Diseases, Clinical Virology and Zoonoses, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia, Universidad de Córdoba (UCO), Cordoba, Spain
- Center for Biomedical Research Network (CIBER) in Infectious Diseases, Health Institute Carlos III, Madrid, Spain
| | - Joana Paupério
- European Molecular Biology Laboratory, European Bioinformatics Institute, Welcome Genome Campus, Hinxton, CB10 1SD, UK
| | - João Queirós
- CIBIO-Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Vairão, 4485-661, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, 4485-661, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre s/n, Porto, 4169-007, Portugal
- EBM, Estação Biológica de Mértola, Mértola, 7750-329, Portugal
| | - António Rivero-Juarez
- Unit of Infectious Diseases, Clinical Virology and Zoonoses, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofia, Universidad de Córdoba (UCO), Cordoba, Spain
- Center for Biomedical Research Network (CIBER) in Infectious Diseases, Health Institute Carlos III, Madrid, Spain
| | - Laura Lux
- University of Greifswald, Domstraße 11, 17489, Greifswald, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Helena M R Gonçalves
- REQUIMTE, Instituto Superior de Engenharia do Porto, Porto, Portugal
- Biosensor NTech - Nanotechnology Services, Avenida da Liberdade, 249, 1º Andar, Lda, Lisboa, 1250-143, Portugal
| | - Wim H M Van der Poel
- Quantitative Veterinary Epidemiology, Wageningen University, Wageningen, The Netherlands
- Department Virology & Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | | | - João R Mesquita
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal.
- Epidemiology Research Unit (EPIUnit), Instituto de Saúde Pública da Universidade do Porto, Porto, Portugal.
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal.
| |
Collapse
|
6
|
Han PY, Xu FH, Tian JW, Zhao JY, Yang Z, Kong W, Wang B, Guo LJ, Zhang YZ. Molecular Prevalence, Genetic Diversity, and Tissue Tropism of Bartonella Species in Small Mammals from Yunnan Province, China. Animals (Basel) 2024; 14:1320. [PMID: 38731324 PMCID: PMC11083988 DOI: 10.3390/ani14091320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Bartonella is an intracellular parasitic zoonotic pathogen that can infect animals and cause a variety of human diseases. This study investigates Bartonella prevalence in small mammals in Yunnan Province, China, focusing on tissue tropism. A total of 333 small mammals were sampled from thirteen species, three orders, four families, and four genera in Heqing and Gongshan Counties. Conventional PCR and real-time quantitative PCR (qPCR) were utilized for detection and quantification, followed by bioinformatic analysis of obtained DNA sequences. Results show a 31.5% detection rate, varying across species. Notably, Apodemus chevrieri, Eothenomys eleusis, Niviventer fulvescens, Rattus tanezumi, Episoriculus leucops, Anourosorex squamipes, and Ochotona Thibetana exhibited infection rates of 44.4%, 27.7%, 100.0%, 6.3%, 60.0%, 23.5%, and 22.2%, respectively. Genetic analysis identified thirty, ten, and five strains based on ssrA, rpoB, and gltA genes, with nucleotide identities ranging from 92.1% to 100.0%. Bartonella strains were assigned to B. grahamii, B. rochalimae, B. sendai, B. koshimizu, B. phoceensis, B. taylorii, and a new species identified in Episoriculus leucops (GS136). Analysis of the different tissues naturally infected by Bartonella species revealed varied copy numbers across different tissues, with the highest load in spleen tissue. These findings underscore Bartonella's diverse species and host range in Yunnan Province, highlighting the presence of extensive tissue tropism in Bartonella species naturally infecting small mammalian tissues.
Collapse
Affiliation(s)
- Pei-Yu Han
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Yunnan Key Laboratory of Zoonotic Disease Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (P.-Y.H.); (F.-H.X.); (J.-W.T.); (J.-Y.Z.); (Z.Y.); (W.K.)
| | - Fen-Hui Xu
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Yunnan Key Laboratory of Zoonotic Disease Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (P.-Y.H.); (F.-H.X.); (J.-W.T.); (J.-Y.Z.); (Z.Y.); (W.K.)
| | - Jia-Wei Tian
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Yunnan Key Laboratory of Zoonotic Disease Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (P.-Y.H.); (F.-H.X.); (J.-W.T.); (J.-Y.Z.); (Z.Y.); (W.K.)
| | - Jun-Ying Zhao
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Yunnan Key Laboratory of Zoonotic Disease Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (P.-Y.H.); (F.-H.X.); (J.-W.T.); (J.-Y.Z.); (Z.Y.); (W.K.)
| | - Ze Yang
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Yunnan Key Laboratory of Zoonotic Disease Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (P.-Y.H.); (F.-H.X.); (J.-W.T.); (J.-Y.Z.); (Z.Y.); (W.K.)
| | - Wei Kong
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Yunnan Key Laboratory of Zoonotic Disease Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (P.-Y.H.); (F.-H.X.); (J.-W.T.); (J.-Y.Z.); (Z.Y.); (W.K.)
| | - Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Li-Jun Guo
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Yunnan Key Laboratory of Zoonotic Disease Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (P.-Y.H.); (F.-H.X.); (J.-W.T.); (J.-Y.Z.); (Z.Y.); (W.K.)
| | - Yun-Zhi Zhang
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Yunnan Key Laboratory of Zoonotic Disease Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (P.-Y.H.); (F.-H.X.); (J.-W.T.); (J.-Y.Z.); (Z.Y.); (W.K.)
| |
Collapse
|
7
|
Wu H, Zhou L, Wang F, Chen Z, Lu Y. Molecular epidemiology and phylogeny of the emerging zoonotic virus Rocahepevirus: A global genetic analysis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105557. [PMID: 38244748 DOI: 10.1016/j.meegid.2024.105557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Human infections with Rocahepevirus ratti genotype C1 (HEV-C1) in Hong Kong of China, Canada, Spain, and France have drawn worldwide concern towards Rocahepevirus. This study conducted a global genetic analysis of Rocahepevirus, aiming to furnish comprehensive molecular insights and promote further research. We retrieved 817 Rocahepevirus sequences from the GenBank database through October 31, 2023, categorizing them according to research, sample collection area and date, genotype, host, and sequence length. Subsequently, we conducted descriptive epidemiological, phylogenetic evolutionary, and protein polymorphism (in length and identity) analyses on these sequences. Rocahepevirus genomes were identified across twenty-eight countries, predominantly in Asia (71.73%, 586/817) and Europe (26.44%, 216/817). The HEV-C1 dominates Rocahepevirus (77.2%, 631/817), while newly discovered Rocahepevirus genotypes (C3/C4/C5 and other unclassified genotypes) were primarily identified in Europe (25/120) and China (91/120). Muridae animals (72.5%, 592/817) serve as the primary hosts for Rocahepevirus, with other hosts encompassing species from the families Soricidae, Hominidae, Mustelidae, and Cricetidae. Additionally, Rocahepevirus genomes (C1 genotype) were identified in sewage samples recently. The phylogenetic evolution of Rocahepevirus exhibits considerable variation. Specifically, HEV-C1 can be classified into at least six genetic groups (G1 to G6), with human HEV-C1 distributed across multiple evolutionary clades. The overall ORF1 and ORF2 amino acid sequence lengths were significantly different (P < 0.001) across Rocahepevirus genotypes. HEV-C1/C2/C3 and HEV-C4/C5 displayed substantial differences in amino acid sequence identity (58.4%-59.6%). The identification of Rocahepevirus genomes has expanded across numerous countries, particularly in European and Asian countries, coinciding with an expanding host range and emergence of new genotypes. The evolutionary path of Rocahepevirus is intricate, where the HEV-C1 dominates globally and internally forms multiple evolutionary groups (G1 to G6), exhibiting diverse genetic variation within human HEV-C1. Significant differences exist in the protein polymorphism (in length and identity) across Rocahepevirus genotypes. Given Rocahepevirus's shift from an animal virus to a zoonotic pathogen, worldwide cooperation in monitoring Rocahepevirus genomes is vital.
Collapse
Affiliation(s)
- Han Wu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai 200032, China
| | - Lu Zhou
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai 200032, China
| | - Fengge Wang
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai 200032, China
| | - Zixiang Chen
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai 200032, China
| | - Yihan Lu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
8
|
Wu H, Li B, Yu B, Hu L, Zhou L, Yin J, Lu Y. Genomic characterization of Rocahepevirus ratti hepatitis E virus genotype C1 in Yunnan province of China. Virus Res 2024; 341:199321. [PMID: 38242291 PMCID: PMC10831724 DOI: 10.1016/j.virusres.2024.199321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
The Rocahepevirus ratti hepatitis E virus genotype C1 (HEV-C1) has been documented to infect humans. However, the understanding of HEV-C1 remains constrained. This study aims to determine the prevalence and genomic characteristics of HEV-C1 in small animals in Yunnan province of southwestern China. A total of 444 liver tissues were collected from animals covering the orders Rodentia, Soricomorpha, Scandentia and Erinaceomorpha in three regions in Yunnan. Then Paslahepevirus balayani and Rocahepevirus were examined using RT-qPCR. The detection rate of Rocahepevirus was 12.95 % (36/278) in animals of order Rodentia, with 14.77 % (35/237) in Rattus tanezumi and 33.33 % (1/3) in Niviventer fulvescens. No Paslahepevirus balayani was detected. Additionally, two full-length Rocahepevirus sequences (MSE-17 and LHK-54) and thirty-three partial ORF1 sequences were amplified and determined to be HEV-C1. MSE-17 and LHK-54 shared moderate nucleotide identity (78.9 %-80.3 %) with HEV-C1 isolated in rats and humans. The HEV-C1 isolated from Niviventer fulvescens demonstrated a 100 % nucleotide identity with that from Rattus tanezumi. The rat HEV-C1 sequences isolated in our study and other Asian HEV-C1 sequences were phylogenetically distant from those isolated in North America and Europe. Furthermore, the two full-length sequences isolated in our study had less amino acid substitutions in the motifs of RNA-dependent RNA polymerase domain (F204L and L238F), compared with other Asian sequences. In summary, HEV-C1 commonly spreads in rats in Yunnan province of China. Our findings suggest a spatially associated phylogeny, and potential cross-species transmission of HEV-C1.
Collapse
Affiliation(s)
- Han Wu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai 200032, China
| | - Bingzhe Li
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai 200032, China
| | - Bowen Yu
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261000, Shandong, China
| | - Linjie Hu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai 200032, China
| | - Lu Zhou
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai 200032, China
| | - Jiaxiang Yin
- Department of Epidemiology, School of Public Health, Dali University, Dali, Yunnan 671003, China.
| | - Yihan Lu
- Department of Epidemiology, Ministry of Education Key Laboratory of Public Health Safety (Fudan University), School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
9
|
Benavent S, Carlos S, Reina G. Rocahepevirus ratti as an Emerging Cause of Acute Hepatitis Worldwide. Microorganisms 2023; 11:2996. [PMID: 38138140 PMCID: PMC10745784 DOI: 10.3390/microorganisms11122996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
The hepatitis E virus (HEV) is a widespread human infection that causes mainly acute infection and can evolve to a chronic manifestation in immunocompromised individuals. In addition to the common strains of hepatitis E virus (HEV-A), known as Paslahepevirus balayani, pathogenic to humans, a genetically highly divergent rat origin hepevirus (RHEV) can cause hepatitis possessing a potential risk of cross-species infection and zoonotic transmission. Rocahepevirus ratti, formerly known as Orthohepevirus C, is a single-stranded RNA virus, recently reassigned to Rocahepevirus genus in the Hepeviridae family, including genotypes C1 and C2. RHEV primarily infects rats but has been identified as a rodent zoonotic virus capable of infecting humans through the consumption of contaminated food or water, causing both acute and chronic hepatitis cases in both animals and humans. This review compiles data concluding that 60% (295/489) of RHEV infections are found in Asia, being the continent with the highest zoonotic and transmission potential. Asia not only has the most animal cases but also 16 out of 21 human infections worldwide. Europe follows with 26% (128/489) of RHEV infections in animals, resulting in four human cases out of twenty-one globally. Phylogenetic analysis and genomic sequencing will be employed to gather global data, determine epidemiology, and assess geographical distribution. This information will enhance diagnostic accuracy, pathogenesis understanding, and help prevent cross-species transmission, particularly to humans.
Collapse
Affiliation(s)
- Sara Benavent
- Microbiology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (S.B.); (G.R.)
| | - Silvia Carlos
- Department of Preventive Medicine and Public Health, Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Gabriel Reina
- Microbiology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (S.B.); (G.R.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
10
|
Porea D, Raileanu C, Crivei LA, Gotu V, Savuta G, Pavio N. First Detection of Hepatitis E Virus ( Rocahepevirus ratti Genotype C1) in Synanthropic Norway Rats ( Rattus norvegicus) in Romania. Viruses 2023; 15:1337. [PMID: 37376636 DOI: 10.3390/v15061337] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen with different viral genera and species reported in a wide range of animals. Rodents, particularly rats, carry the specific genus rat HEV (Rocahepevirus genus, genotype C1) and are exposed occasionally to HEV-3 (Paslahepevirus genus, genotype 3), a zoonotic genotype identified in humans and widely distributed in domestic and feral pigs. In this study, the presence of HEV was investigated in synanthropic Norway rats from Eastern Romania, in areas where the presence of HEV-3 was previously reported in pigs, wild boars and humans. Using methods capable of detecting different HEV species, the presence of HEV RNA was investigated in 69 liver samples collected from 52 rats and other animal species. Nine rat liver samples were identified as being positive for rat HEV RNA (17.3%). High sequence identity (85-89% nt) was found with other European Rocahepevirus. All samples tested from other animal species, within the same environment, were negative for HEV. This is the first study to demonstrate the presence of HEV in rats from Romania. Since rat HEV has been reported to cause zoonotic infections in humans, this finding supports the need to extend the diagnosis of Rocahepevirus in humans with suspicion of hepatitis.
Collapse
Affiliation(s)
- Daniela Porea
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences, 700490 Iași, Romania
- Laboratories and Research Stations Department, Danube Delta National Institute for Research and Development, 820112 Tulcea, Romania
| | - Cristian Raileanu
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences, 700490 Iași, Romania
| | - Luciana Alexandra Crivei
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences, 700490 Iași, Romania
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety Iași, University of Life Sciences, 700490 Iași, Romania
| | - Vasilica Gotu
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agronomical Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Gheorghe Savuta
- Department of Public Health, Faculty of Veterinary Medicine, Iasi University of Life Sciences, 700490 Iași, Romania
- Regional Center of Advanced Research for Emerging Diseases, Zoonoses and Food Safety Iași, University of Life Sciences, 700490 Iași, Romania
| | - Nicole Pavio
- Agence Nationale de Sécurité Sanitaire de L'alimentation de L'environnement et du Travail (ANSES), Institut National de Recherche pour L'agriculture L'alimentation et L'environnement (INRAE), École Nationale Vétérinaire d'Alfort (ENVA), UMR Virology, 94700 Maisons-Alfort, France
| |
Collapse
|
11
|
He Q, Zhang Y, Gong W, Zeng H, Wang L. Genetic Evolution of Hepatitis E Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:59-72. [PMID: 37223859 DOI: 10.1007/978-981-99-1304-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Comparative analysis of the genomic sequences of multiple hepatitis E virus (HEV) isolates has revealed extensive genomic diversity among them. Recently, a variety of genetically distinct HEV variants have also been isolated and identified from large numbers of animal species, including birds, rabbits, rats, ferrets, bats, cutthroat trout, and camels, among others. Furthermore, it has been reported that recombination in HEV genomes takes place in animals and in human patients. Also, chronic HEV infection in immunocompromised individuals has revealed the presence of viral strains carrying insertions from human genes. This paper reviews current knowledge on the genomic variability and evolution of HEV.
Collapse
Affiliation(s)
- Qiyu He
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yulin Zhang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wanyun Gong
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hang Zeng
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ling Wang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
12
|
Schemmerer M, Erl M, Wenzel JJ. HuH-7-Lunet BLR Cells Propagate Rat Hepatitis E Virus (HEV) in a Cell Culture System Optimized for HEV. Viruses 2022; 14:v14051116. [PMID: 35632857 PMCID: PMC9147593 DOI: 10.3390/v14051116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/19/2022] [Accepted: 05/21/2022] [Indexed: 02/05/2023] Open
Abstract
The family Hepeviridae comprises the species Orthohepevirus A–D (HEV-A to -D). HEV-C genotype 1 (HEV-C1, rat HEV) is able to infect humans. This study investigated whether an optimized HEV-A cell culture system is able to propagate the cell culture-derived rat HEV, and if de novo isolation of the virus from rat liver is possible. We tested the liver carcinoma cell lines PLC/PRF/5, HuH-7, and HuH-7-Lunet BLR for their susceptibility to HEV-C1 strains. Cells were infected with the cell culture-derived HEV-C1 strain R63 and rat liver-derived strain R68. Cells were maintained in MEMM medium, which was refreshed every 3–4 days. The viral load of HEV-C1 was determined by RT-qPCR in the supernatant and expressed as genome copies per mL (c/mL). Rat HEV replication was most efficient in the newly introduced HuH-7-Lunet BLR cell line. Even if the rat HEV isolate had been pre-adapted to PLC/PRF/5 by multiple passages, replication in HuH-7-Lunet BLR was still at least equally effective. Only HuH-7-Lunet BLR cells were susceptible to the isolation of HEV-C1 from the liver homogenate. These results suggest HuH-7-Lunet BLR as the most permissive cell line for rat HEV. Our HEV-C1 cell culture system may be useful for basic research, the animal-free generation of large amounts of the virus as well as for the testing of antiviral compounds and drugs.
Collapse
|
13
|
Chirohepevirus from Bats: Insights into Hepatitis E Virus Diversity and Evolution. Viruses 2022; 14:v14050905. [PMID: 35632647 PMCID: PMC9146828 DOI: 10.3390/v14050905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Homologs of the human hepatitis E virus (HEV) have been identified in more than a dozen animal species. Some of them have been evidenced to cross species barriers and infect humans. Zoonotic HEV infections cause chronic liver diseases as well as a broad range of extrahepatic manifestations, which increasingly become significant clinical problems. Bats comprise approximately one-fifth of all named mammal species and are unique in their distinct immune response to viral infection. Most importantly, they are natural reservoirs of several highly pathogenic viruses, which have induced severe human diseases. Since the first discovery of HEV-related viruses in bats in 2012, multiple genetically divergent HEV variants have been reported in a total of 12 bat species over the last decade, which markedly expanded the host range of the HEV family and shed light on the evolutionary origin of human HEV. Meanwhile, bat-borne HEV also raised critical public health concerns about its zoonotic potential. Bat HEV strains resemble genomic features but exhibit considerable heterogeneity. Due to the close evolutionary relationships, bat HEV altogether has been recently assigned to an independent genus, Chirohepevirus. This review focuses on the current state of bat HEV and provides novel insights into HEV genetic diversity and molecular evolution.
Collapse
|
14
|
Chen YL, Guo XG, Ren TG, Zhang L, Fan R, Zhao CF, Zhang ZW, Mao KY, Huang XB, Qian TJ. Infestation and distribution of chigger mites on Chevrieri's field mouse ( Apodemus chevrieri) in Southwest China. Int J Parasitol Parasites Wildl 2022; 17:74-82. [PMID: 34987956 PMCID: PMC8695261 DOI: 10.1016/j.ijppaw.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/26/2022]
Abstract
Based on a long-term field investigation on chigger mites in southwest China from 2001 to 2019, the present study analyzed the infestation and distribution of chigger mites on the Chevrieri's field mouse (Apodemus chevrieri) in the region. A total of 12,516 individuals of chigger mites were collected from 1981 A. chevrieri mice, and 12,281 chiggers were identified as 107 species, 11 genera and 3 subfamilies in 2 families, which revealed a high species diversity of the mites on A. chevrieri mice. Of 1981 A. chevrieri mice, 633 ones were infested with chiggers with a relatively high overall prevalence (P M = 31.95%), mean abundance (MA = 6.32) and mean intensity (MI = 19.77). Of the 107 chigger species identified from A. chevrieri mice, three ones were the most dominant and they were Leptrombidium scutellare, L. densipunctatum and L. cricethrionis, which showed aggregated distribution among different individuals of the mice. A slightly positive association existed between every two dominant chigger species, which implied that the dominant chigger species tend to co-exist on A. chevrieri. The infestations of A. chevrieri with chiggers varied in different latitudes, altitudes and landscapes and they showed some heterogeneity along different environmental gradients. The logistic regression analysis showed that the risk factors for chigger infestations on A. chevrieri were landscapes, ages and altitudes, which implied that the environmental factors and host ages could influence the infestations of the mice with the mites. A theoretical curve of the species abundance distribution of chigger mites on A. chevrieri was successfully fitted by Preston's lognormal model, suggesting that the species abundance distribution conforms to the lognormal distribution pattern. The expected total species of chigger mites on A. chevrieri was roughly estimated to be 136 species and about 29 rare chigger species were probably missed in the sampling field investigation.
Collapse
Affiliation(s)
- Yan-Ling Chen
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, Yunnan, 671000, China
| | - Xian-Guo Guo
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, Yunnan, 671000, China
| | - Tian-Guang Ren
- Nursing College of Dali University, Dali, Yunnan, 671000, China
| | - Lei Zhang
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, Yunnan, 671000, China
| | - Rong Fan
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, Yunnan, 671000, China
| | - Cheng-Fu Zhao
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, Yunnan, 671000, China
| | - Zhi-Wei Zhang
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, Yunnan, 671000, China
| | - Ke-Yu Mao
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, Yunnan, 671000, China
| | - Xiao-Bin Huang
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, Yunnan, 671000, China
| | - Ti-Jun Qian
- Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, Dali, Yunnan, 671000, China
| |
Collapse
|
15
|
Takahashi M, Kunita S, Kawakami M, Kadosaka T, Fujita H, Takada N, Miyake M, Kobayashi T, Ohnishi H, Nagashima S, Murata K, Okamoto H. First Detection and Characterization of Rat Hepatitis E Virus (HEV-C1) in Japan. Virus Res 2022; 314:198766. [DOI: 10.1016/j.virusres.2022.198766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
|
16
|
Mechanism of Cross-Species Transmission, Adaptive Evolution and Pathogenesis of Hepatitis E Virus. Viruses 2021; 13:v13050909. [PMID: 34069006 PMCID: PMC8157021 DOI: 10.3390/v13050909] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatitis E virus (HEV) is the leading cause of acute hepatitis worldwide. While the transmission in developing countries is dominated by fecal-oral route via drinking contaminated water, the zoonotic transmission is the major route of HEV infection in industrialized countries. The discovery of new HEV strains in a growing number of animal species poses a risk to zoonotic infection. However, the exact mechanism and the determinant factors of zoonotic infection are not completely understood. This review will discuss the current knowledge on the mechanism of cross-species transmission of HEV infection, including viral determinants, such as the open reading frames (ORFs), codon usage and adaptive evolution, as well as host determinants, such as host cellular factors and the host immune status, which possibly play pivotal roles during this event. The pathogenesis of hepatitis E infection will be briefly discussed, including the special forms of this disease, including extrahepatic manifestations, chronic infection, and fulminant hepatitis in pregnant women.
Collapse
|
17
|
Sridhar S, Yip CCY, Wu S, Chew NFS, Leung KH, Chan JFW, Zhao PS, Chan WM, Poon RWS, Tsoi HW, Cai JP, Chan HSY, Leung AWS, Tse CWS, Zee JST, Tsang OTY, Cheng VCC, Lau SKP, Woo PCY, Tsang DNC, Yuen KY. Transmission of Rat Hepatitis E Virus Infection to Humans in Hong Kong: A Clinical and Epidemiological Analysis. Hepatology 2021; 73:10-22. [PMID: 31960460 DOI: 10.1002/hep.31138] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Hepatitis E virus (HEV) variants causing human infection predominantly belong to HEV species A (HEV-A). HEV species C genotype 1 (HEV-C1) circulates in rats and is highly divergent from HEV-A. It was previously considered unable to infect humans, but the first case of human HEV-C1 infection was recently discovered in Hong Kong. The aim of this study is to further describe the features of this zoonosis in Hong Kong. APPROACH AND RESULTS We conducted a territory-wide prospective screening study for HEV-C1 infection over a 31-month period. Blood samples from 2,860 patients with abnormal liver function (n = 2,201) or immunosuppressive conditions (n = 659) were screened for HEV-C1 RNA. In addition, 186 captured commensal rats were screened for HEV-C1 RNA. Sequences of human-derived and rat-derived HEV-C1 isolates were compared. Epidemiological and clinical features of HEV-C1 infection were analyzed. HEV-C1 RNA was detected in 6/2,201 (0.27%) patients with hepatitis and 1/659 (0.15%) immunocompromised persons. Including the previously reported case, eight HEV-C1 infections were identified, including five in patients who were immunosuppressed. Three patients had acute hepatitis, four had persistent hepatitis, and one had subclinical infection without hepatitis. One patient died of meningoencephalitis, and HEV-C1 was detected in cerebrospinal fluid. HEV-C1 hepatitis was generally milder than HEV-A hepatitis. HEV-C1 RNA was detected in 7/186 (3.76%) rats. One HEV-C1 isolate obtained from a rat captured near the residences of patients was closely related to the major outbreak strain. CONCLUSIONS HEV-C1 is a cause of hepatitis E in humans in Hong Kong. Immunosuppressed individuals are susceptible to persistent HEV-C1 infection and extrahepatic manifestations. Subclinical HEV-C1 infection threatens blood safety. Tests for HEV-C1 are required in clinical laboratories.
Collapse
Affiliation(s)
- Siddharth Sridhar
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Cyril Chik-Yan Yip
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shusheng Wu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nicholas Foo-Siong Chew
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kit-Hang Leung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jasper Fuk-Woo Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China
| | - Pyrear Suhui Zhao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wan-Mui Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Rosana Wing-Shan Poon
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hoi-Wah Tsoi
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jian-Piao Cai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Helen Shuk-Ying Chan
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | - Vincent Chi-Chung Cheng
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Susanna Kar-Pui Lau
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China.,Tuen Mun Hospital, Hong Kong, China
| | - Patrick Chiu-Yat Woo
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China.,Tuen Mun Hospital, Hong Kong, China
| | | | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China.,Tuen Mun Hospital, Hong Kong, China
| |
Collapse
|
18
|
Review of Hepatitis E Virus in Rats: Evident Risk of Species Orthohepevirus C to Human Zoonotic Infection and Disease. Viruses 2020; 12:v12101148. [PMID: 33050353 PMCID: PMC7600399 DOI: 10.3390/v12101148] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E virus (HEV) (family Hepeviridae) is one of the most common human pathogens, causing acute hepatitis and an increasingly recognized etiological agent in chronic hepatitis and extrahepatic manifestations. Recent studies reported that not only are the classical members of the species Orthohepevirus A (HEV-A) pathogenic to humans but a genetically highly divergent rat origin hepevirus (HEV-C1) in species Orthohepevirus C (HEV-C) is also able to cause zoonotic infection and symptomatic disease (hepatitis) in humans. This review summarizes the current knowledge of hepeviruses in rodents with special focus of rat origin HEV-C1. Cross-species transmission and genetic diversity of HEV-C1 and confirmation of HEV-C1 infections and symptomatic disease in humans re-opened the long-lasting and full of surprises story of HEV in human. This novel knowledge has a consequence to the epidemiology, clinical aspects, laboratory diagnosis, and prevention of HEV infection in humans.
Collapse
|
19
|
Sridhar S, Yuen KY. Reply. Hepatology 2020; 72:1155-1156. [PMID: 32191338 DOI: 10.1002/hep.31237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Siddharth Sridhar
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China.,The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China.,The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Bai H, Li W, Guan D, Su J, Ke C, Ami Y, Suzaki Y, Takeda N, Muramatsu M, Li TC. Characterization of a Novel Rat Hepatitis E Virus Isolated from an Asian Musk Shrew ( Suncus murinus). Viruses 2020; 12:v12070715. [PMID: 32630296 PMCID: PMC7411586 DOI: 10.3390/v12070715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022] Open
Abstract
The Asian musk shrew (shrew) is a new reservoir of a rat hepatitis E virus (HEV) that has been classified into genotype HEV-C1 in the species Orthohepevirus C. However, there is no information regarding classification of the new rat HEV based on the entire genome sequences, and it remains unclear whether rat HEV transmits from shrews to humans. We herein inoculated nude rats (Long-Evans rnu/rnu) with a serum sample from a shrew trapped in China, which was positive for rat HEV RNA, to isolate and characterize the rat HEV distributed in shrews. A rat HEV strain, S1129, was recovered from feces of the infected nude rat, indicating that rat HEV was capable of replicating in rats. S1129 adapted and grew well in PLC/PRF/5 cells, and the recovered virus (S1129c1) infected Wistar rats. The entire genomes of S1129 and S1129c1 contain four open reading frames and share 78.3–81.8% of the nucleotide sequence identities with known rat HEV isolates, demonstrating that rat HEVs are genetically diverse. We proposed that genotype HEV-C1 be further classified into subtypes HEV-C1a to HEV-C1d and that the S1129 strain circulating in the shrew belonged to the new subtype HEV-C1d. Further studies should focus on whether the S1129 strain infects humans.
Collapse
Affiliation(s)
- Huimin Bai
- Department of Basic Medicine and Forensic Medicine, Baotou Medical College, Jianshe Road 31, Baotou 014060, China;
| | - Wei Li
- Institute of Microbiology, Center for Disease Control and Prevention of Guangdong Province, 160 Qunxian Road, Dashi Street, Panyu District, Guangzhou 511430, China; (W.L.); (D.G.); (J.S.); (C.K.)
| | - Dawei Guan
- Institute of Microbiology, Center for Disease Control and Prevention of Guangdong Province, 160 Qunxian Road, Dashi Street, Panyu District, Guangzhou 511430, China; (W.L.); (D.G.); (J.S.); (C.K.)
| | - Juan Su
- Institute of Microbiology, Center for Disease Control and Prevention of Guangdong Province, 160 Qunxian Road, Dashi Street, Panyu District, Guangzhou 511430, China; (W.L.); (D.G.); (J.S.); (C.K.)
| | - Changwen Ke
- Institute of Microbiology, Center for Disease Control and Prevention of Guangdong Province, 160 Qunxian Road, Dashi Street, Panyu District, Guangzhou 511430, China; (W.L.); (D.G.); (J.S.); (C.K.)
| | - Yasushi Ami
- Division of Experimental Animals Research, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo 208-0011, Japan; (Y.A.); (Y.S.)
| | - Yuriko Suzaki
- Division of Experimental Animals Research, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo 208-0011, Japan; (Y.A.); (Y.S.)
| | - Naokazu Takeda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0781, Japan;
| | - Masamichi Muramatsu
- Department of Virology II, 2, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo 208-0011, Japan;
| | - Tian-Cheng Li
- Department of Virology II, 2, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashi-murayama, Tokyo 208-0011, Japan;
- Correspondence: ; Tel.: +81-42-561-0771; Fax: +81-42-565-4729
| |
Collapse
|
21
|
Wang B, Harms D, Yang XL, Bock CT. Orthohepevirus C: An Expanding Species of Emerging Hepatitis E Virus Variants. Pathogens 2020; 9:154. [PMID: 32106525 PMCID: PMC7157548 DOI: 10.3390/pathogens9030154] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen that has received an increasing amount of attention from virologists, clinicians, veterinarians, and epidemiologists over the past decade. The host range and animal reservoirs of HEV are rapidly expanding and a plethora of emerging HEV variants have been recently identified, some of which have the potential for interspecies infection. In this review, the detection of genetically diverse HEV variants, classified into and presumably associated with the species Orthohepevirus C, currently comprising HEV genotypes C1 and C2, by either serological or molecular approach is summarized. The distribution, genomic variability, and evolution of Orthohepevirus C are analyzed. Moreover, the potential risk of cross-species infection and zoonotic transmission of Orthohepevirus C are discussed.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Dominik Harms
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany;
| | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China;
| | - C.-Thomas Bock
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany;
- Institute of Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
22
|
De Sabato L, Ianiro G, Monini M, De Lucia A, Ostanello F, Di Bartolo I. Detection of hepatitis E virus RNA in rats caught in pig farms from Northern Italy. Zoonoses Public Health 2019; 67:62-69. [PMID: 31592576 DOI: 10.1111/zph.12655] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
Hepatitis E virus (HEV) strains belonging to the Orthohepevirus genus are divided into four species (A-D). HEV strains included in the Orthohepevirus A species infect humans and several other mammals. Among them, the HEV-3 and HEV-4 genotypes are zoonotic and infect both humans and animals, of which, pigs and wild boar are the main reservoirs. Viruses belonging to the Orthohepevirus C species (HEV-C) have been considered to infect rats of different species and carnivores. Recently, two studies reported the detection of HEV-C1 (rat HEV) RNA in immunocompromised and immunocompetent patients, suggesting a possible transmission of rat HEV to humans. The role of rats and mice as reservoir of HEV and the potential zoonotic transmission is still poorly known and deserves further investigation. To this purpose, in this study, the presence of HEV RNA was investigated in the intestinal contents and liver samples from 47 Black rats (Rattus rattus) and 21 House mice (Mus musculus) captured in four pig farms in Northern Italy. The presence of both Orthohepevirus A and C was investigated by the real-rime RT-PCR specific for HEV-1 to HEV-4 genotypes of Orthohepevirus A species and by a broad spectrum hemi-nested RT-PCR capable of detecting different HEV species including rat HEV. The intestinal content from two Black rats resulted positive for HEV-C1 RNA and for HEV-3 RNA, respectively. None of the House mice was HEV RNA positive. Sequence analyses confirmed the detection of HEV-C1, genotype G1 and HEV-3 subtype e. The viral strain HEV-3e detected in the rat was identical to swine HEV strains detected in the same farm. Liver samples were negative for the detection of either rat HEV or HEV-3.
Collapse
Affiliation(s)
- Luca De Sabato
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Ianiro
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marina Monini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Alessia De Lucia
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Fabio Ostanello
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Ilaria Di Bartolo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
23
|
Ryll R, Heckel G, Corman VM, Drexler JF, Ulrich RG. Genomic and spatial variability of a European common vole hepevirus. Arch Virol 2019; 164:2671-2682. [PMID: 31399875 DOI: 10.1007/s00705-019-04347-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
Rodents host different orthohepeviruses, namely orthohepevirus C genotype HEV-C1 (rat hepatitis E virus, HEV) and the additional putative genotypes HEV-C3 and HEV-C4. Here, we screened 2,961 rodents from Central Europe by reverse transcription polymerase chain reaction (RT-PCR) and identified HEV RNA in 13 common voles (Microtus arvalis) and one bank vole (Myodes glareolus) with detection rates of 2% (95% confidence interval [CI]: 1-3.4) and 0.08% (95% CI: 0.002-0.46), respectively. Sequencing of a 279-nucleotide RT-PCR amplicon corresponding to a region within open reading frame (ORF) 1 showed a high degree of similarity to recently described common vole-associated HEV (cvHEV) sequences from Hungary. Five novel complete cvHEV genome sequences from Central Europe showed the typical HEV genome organization with ORF1, ORF2 and ORF3 and RNA secondary structure. Uncommon features included a noncanonical start codon in ORF3, multiple insertions and deletions within ORF1 and ORF2/ORF3, and the absence of a putative ORF4. Phylogenetic analysis showed all of the novel cvHEV sequences to be monophyletic, clustering most closely with an unassigned bird-derived sequence and other sequences of the species Orthohepevirus C. The nucleotide and amino acid sequence divergence of the common vole-derived sequences was significantly correlated with the spatial distance between the trapping sites, indicating mostly local evolutionary processes. Detection of closely related HEV sequences in common voles in multiple localities over a distance of 800 kilometers suggested that common voles are infected by cvHEV across broad geographic distances. The common vole-associated HEV strain is clearly divergent from HEV sequences recently found in narrow-headed voles (Microtus gregalis) and other cricetid rodents.
Collapse
Affiliation(s)
- René Ryll
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Gerald Heckel
- University of Bern, Institute of Ecology and Evolution, Bern, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, Batiment Genopode, Lausanne, Switzerland
| | - Victor M Corman
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Campus Charité Mitte, Charitéplatz 1, 10098, Berlin, Germany.,German Centre for Infection Research (DZIF), Associated Partner Site Berlin, Berlin, Germany
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Campus Charité Mitte, Charitéplatz 1, 10098, Berlin, Germany. .,German Centre for Infection Research (DZIF), Associated Partner Site Berlin, Berlin, Germany.
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493, Greifswald-Insel Riems, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Insel Riems, Greifswald-Insel Riems, Germany.
| |
Collapse
|
24
|
Primadharsini PP, Nagashima S, Okamoto H. Genetic Variability and Evolution of Hepatitis E Virus. Viruses 2019; 11:E456. [PMID: 31109076 PMCID: PMC6563261 DOI: 10.3390/v11050456] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatitis E virus (HEV) is a single-stranded positive-sense RNA virus. HEV can cause both acute and chronic hepatitis, with the latter usually occurring in immunocompromised patients. Modes of transmission range from the classic fecal-oral route or zoonotic route, to relatively recently recognized but increasingly common routes, such as via the transfusion of blood products or organ transplantation. Extrahepatic manifestations, such as neurological, kidney and hematological abnormalities, have been documented in some limited cases, typically in patients with immune suppression. HEV has demonstrated extensive genomic diversity and a variety of HEV strains have been identified worldwide from human populations as well as growing numbers of animal species. The genetic variability and constant evolution of HEV contribute to its physiopathogenesis and adaptation to new hosts. This review describes the recent classification of the Hepeviridae family, global genotype distribution, clinical significance of HEV genotype and genomic variability and evolution of HEV.
Collapse
Affiliation(s)
- Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan.
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan.
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan.
| |
Collapse
|
25
|
The Current Host Range of Hepatitis E Viruses. Viruses 2019; 11:v11050452. [PMID: 31108942 PMCID: PMC6563279 DOI: 10.3390/v11050452] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 01/01/2023] Open
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen transmitting both human to human via the fecal oral route and from animals to humans through feces, direct contact, and consumption of contaminated meat products. Understanding the host range of the virus is critical for determining where potential threats to human health may be emerging from and where potential reservoirs for viral persistence in the environment may be hiding. Initially thought to be a human specific disease endemic to developing countries, the identification of swine as a primary host for genotypes 3 and 4 HEV in industrialized countries has begun a long journey of discovering novel strains of HEV and their animal hosts. As we continue identifying new strains of HEV in disparate animal species, it is becoming abundantly clear that HEV has a broad host range and many of these HEV strains can cross between differing animal species. These cross-species transmitting strains pose many unique challenges to human health as they are often unrecognized as sources of viral transmission.
Collapse
|
26
|
Rasche A, Sander AL, Corman VM, Drexler JF. Evolutionary biology of human hepatitis viruses. J Hepatol 2019; 70:501-520. [PMID: 30472320 PMCID: PMC7114834 DOI: 10.1016/j.jhep.2018.11.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023]
Abstract
Hepatitis viruses are major threats to human health. During the last decade, highly diverse viruses related to human hepatitis viruses were found in animals other than primates. Herein, we describe both surprising conservation and striking differences of the unique biological properties and infection patterns of human hepatitis viruses and their animal homologues, including transmission routes, liver tropism, oncogenesis, chronicity, pathogenesis and envelopment. We discuss the potential for translation of newly discovered hepatitis viruses into preclinical animal models for drug testing, studies on pathogenesis and vaccine development. Finally, we re-evaluate the evolutionary origins of human hepatitis viruses and discuss the past and present zoonotic potential of their animal homologues.
Collapse
Affiliation(s)
- Andrea Rasche
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany,German Center for Infection Research (DZIF), Germany
| | - Anna-Lena Sander
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany
| | - Victor Max Corman
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany,German Center for Infection Research (DZIF), Germany
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany; German Center for Infection Research (DZIF), Germany.
| |
Collapse
|
27
|
Wang J, Yang X, Liu H, Wang L, Zhou J, Han X, Zhu Y, Yang W, Pan H, Zhang Y, Shi Z. Prevalence of Wēnzhōu virus in small mammals in Yunnan Province, China. PLoS Negl Trop Dis 2019; 13:e0007049. [PMID: 30768614 PMCID: PMC6395006 DOI: 10.1371/journal.pntd.0007049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 02/28/2019] [Accepted: 12/04/2018] [Indexed: 12/21/2022] Open
Abstract
Background Mammarenaviruses are associated with human hemorrhagic fever diseases in Africa and America. Recently, a rodent mammarenavirus, Wēnzhōu virus (WENV) and related viruses, have been reported in China, Cambodia, and Thailand. Moreover, in Cambodia, these viruses were suspected to be associated with human disease. In China, Yunnan Province is famous for its abundant animal and plant diversity and is adjacent to several South-eastern Asia countries. Therefore, it is necessary to know whether WENV-related viruses, or other mammarenaviruses, are prevalent in this province. Methodology/Principal findings Small mammals were trapped, euthanized, and sampled. Mammarenavirus RNA was detected using a nested reverse transcription polymerase chain reaction (RT-PCR) and quantified by real-time RT-PCR. A total of 1040 small mammals belonging to 13 genera and 26 species were trapped in Yunnan Province. WENV-related mammarenaviruses were detected in 41 rodent liver samples, mainly in brown rats (Rattus norvegicus) and oriental house rats (R. tanezumi).Viral nucleocapsid protein was detected in liver sections by indirect immunofluorescence assay. Full-length-genomes were amplified by RT-PCR and used for phylogenetic analysis with the MEGA package. Recombination analysis was performed using the SimPlot and Recombination Detection Program. Conclusions/Significance WENV related viruses circulated in small mammals in Yunnan Province. Whole genome sequence analysis of five selected viral strains showed that these viruses are closely related to WENVs discovered in Asia and form an independent branch in the phylogenetic tree in the WENV clade. Paying attention to investigate the influence of these viruses to public health is essential in the epidemic regions. Rodents are natural reservoirs of mammarenavirus. Lymphocytic choriomeningitis virus (LCMV), isolated in Asian countries during the 1990s, has a worldwide distribution and was the first mammarenavirus isolated. In 2014, a second mammarenavirus, Wēnzhōu virus (WENV), was identified in rodents in Zhejiang Province of China and later in Guangdong, Shandong, and Hainan Provinces. Most importantly, WENV or related viruses were reported in Thailand and Cambodia. In Cambodia, the isolated virus was associated with human respiratory diseases. In this study, we detected WENV or related viruses in Yunnan Province and found a high prevalence in rats of two species (Rattus norvegicus and R. tanezumi). Phylogenetic analysis of the complete L and S segments of five strains showed that these viruses form an independent phylogenetic branch in WENV clade most closely related to WENVs found in China and Cambodia. Considering the wide spread distribution of rats and altered distribution patterns due to ecological changes, we propose that these viruses may have a wider prevalence and be found in countries from South-eastern Asia to China. Given that WENV may be associated with human diseases, it is necessary to improve surveillances of these viruses in their natural reservoirs and in humans.
Collapse
Affiliation(s)
- Jinxia Wang
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali, China
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Xinglou Yang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Haizhou Liu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Li Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jihua Zhou
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Xi Han
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Yan Zhu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Weihong Yang
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Hong Pan
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
| | - Yunzhi Zhang
- Institute of Preventive Medicine, School of Public Health, Dali University, Dali, China
- Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Yunnan Institute of Endemic Diseases Control and Prevention, Dali, China
- * E-mail: (YZ); (ZS)
| | - Zhengli Shi
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (YZ); (ZS)
| |
Collapse
|
28
|
He W, Wen Y, Xiong Y, Zhang M, Cheng M, Chen Q. The prevalence and genomic characteristics of hepatitis E virus in murine rodents and house shrews from several regions in China. BMC Vet Res 2018; 14:414. [PMID: 30577796 PMCID: PMC6303920 DOI: 10.1186/s12917-018-1746-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022] Open
Abstract
Background Urban rodents and house shrews are closely correlated in terms of location with humans and can transmit many pathogens to them. Hepatitis E has been confirmed to be a zoonotic disease. However, the zoonotic potential of rat HEV is still unclear. The aim of this study was to determine the prevalence and genomic characteristics of hepatitis E virus (HEV) in rodents and house shrews. Results We collected a total of 788 animals from four provinces in China. From the 614 collected murine rodents, 20.19% of the liver tissue samples and 45.76% of the fecal samples were positive for HEV. From the 174 house shrews (Suncus murinus), 5.17% fecal samples and 0.57% liver tissue samples were positive for HEV. All of the HEV sequences obtained in this study belonged to Orthohepevirus C1. However, we observed a lower percentage of identity in the ORF3 region upon comparing the amino acid sequences between Rattus norvegicus and Rattus losea. HEV derived from house shrews shared a high percentage of identity with rat HEV. Notably, the first near full-length of the HEV genome from Rattus losea is described in our study, and we also report the first near full-length rat HEV genomes in Rattus norvegicus from China. Conclusion HEV is prevalent among the three common species of murine rodents (Rattus. norvegicus, Rattus. tanezumi, and Rattus. losea) in China. HEV sequences detected from house shrews were similar to rat HEV sequences. The high identity of HEV from murine rodents and house shrews suggested that HEV can spread among different animal species. Electronic supplementary material The online version of this article (10.1186/s12917-018-1746-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenqiao He
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yuqi Wen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Yiquan Xiong
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Minyi Zhang
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Mingji Cheng
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| |
Collapse
|
29
|
Kurucz K, Hederics D, Bali D, Kemenesi G, Horváth G, Jakab F. Hepatitis E virus in Common voles (Microtus arvalis) from an urban environment, Hungary: Discovery of a Cricetidae-specific genotype of Orthohepevirus C. Zoonoses Public Health 2018; 66:259-263. [PMID: 30499180 DOI: 10.1111/zph.12543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/25/2018] [Accepted: 11/03/2018] [Indexed: 01/11/2023]
Abstract
Hepatitis E virus is a major causative agent of acute hepatitis worldwide. Despite its zoonotic potential, there is limited information about the natural chain of hepevirus infection in wildlife, and the potential reservoir species. In this study, we performed a HEV survey by heminested RT-PCR on rodent samples from an urban environment (in the city of Pécs, Hungary) and investigated the prevalence of the virus among these native rodent species (Apodemus agrarius, Apodemus flavicollis, Apodemus sylvaticus, Microtus arvalis and Myodes glareolus). HEV was detected exclusively in Common voles (M. arvalis), in 10.2% of screened voles, and 3.2% of all investigated samples from all species. Based on the phylogenetic analysis, our strain showed the closest homology with European Orthohepevirus C strains detected previously in faecal samples of birds of prey and Red fox, supporting the possibility of the dietary origin of these strains. In addition, our samples showed close phylogenetic relation with a South American strain detected in Necromys lasiurus (Cricetidae), but separated clearly from other Muridae-associated strains, suggesting the presence of a Cricetidae-specific genotype in Europe and South-America. Based on these results, we hypothesize the reservoir role of M. arvalis rodents for the European Cricetidae-specific Orthohepevirus C genotype.
Collapse
Affiliation(s)
- Kornélia Kurucz
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Dávid Hederics
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Dominika Bali
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Gábor Kemenesi
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Győző Horváth
- Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Ferenc Jakab
- Virological Research Group, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.,Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| |
Collapse
|
30
|
Investigation of Viral Pathogen Profiles in Some Natural Hosts and Vectors in China. Virol Sin 2018. [PMID: 29520744 PMCID: PMC6178075 DOI: 10.1007/s12250-018-0021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|