1
|
Hogan MJ, Maheshwari N, Begg BE, Nicastri A, Hedgepeth EJ, Muramatsu H, Pardi N, Miller MA, Reilly SP, Brossay L, Lynch KW, Ternette N, Eisenlohr LC. Cryptic MHC-E epitope from influenza elicits a potent cytolytic T cell response. Nat Immunol 2023; 24:1933-1946. [PMID: 37828378 DOI: 10.1038/s41590-023-01644-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
The extent to which unconventional forms of antigen presentation drive T cell immunity is unknown. By convention, CD8 T cells recognize viral peptides, or epitopes, in association with classical major histocompatibility complex (MHC) class I, or MHC-Ia, but immune surveillance can, in some cases, be directed against peptides presented by nonclassical MHC-Ib, in particular the MHC-E proteins (Qa-1 in mice and HLA-E in humans); however, the overall importance of nonclassical responses in antiviral immunity remains unclear. Similarly uncertain is the importance of 'cryptic' viral epitopes, defined as those undetectable by conventional mapping techniques. Here we used an immunopeptidomic approach to search for unconventional epitopes that drive T cell responses in mice infected with influenza virus A/Puerto Rico/8/1934. We identified a nine amino acid epitope, termed M-SL9, that drives a co-immunodominant, cytolytic CD8 T cell response that is unconventional in two major ways: first, it is presented by Qa-1, and second, it has a cryptic origin, mapping to an unannotated alternative reading frame product of the influenza matrix gene segment. Presentation and immunogenicity of M-SL9 are dependent on the second AUG codon of the positive sense matrix RNA segment, suggesting translation initiation by leaky ribosomal scanning. During influenza virus A/Puerto Rico/8/1934 infection, M-SL9-specific T cells exhibit a low level of egress from the lungs and strong differentiation into tissue-resident memory cells. Importantly, we show that M-SL9/Qa-1-specific T cells can be strongly induced by messenger RNA vaccination and that they can mediate antigen-specific cytolysis in vivo. Our results demonstrate that noncanonical translation products can account for an important fraction of the T cell repertoire and add to a growing body of evidence that MHC-E-restricted T cells could have substantial therapeutic value.
Collapse
Affiliation(s)
- Michael J Hogan
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Nikita Maheshwari
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Bridget E Begg
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Annalisa Nicastri
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Emma J Hedgepeth
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael A Miller
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
- Century Therapeutics, Philadelphia, PA, USA
| | - Shanelle P Reilly
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicola Ternette
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Laurence C Eisenlohr
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Ghorbani A, Ngunjiri JM, Rendon G, Brooke CB, Kenney SP, Lee CW. Diversity and Complexity of Internally Deleted Viral Genomes in Influenza A Virus Subpopulations with Enhanced Interferon-Inducing Phenotypes. Viruses 2023; 15:2107. [PMID: 37896883 PMCID: PMC10612045 DOI: 10.3390/v15102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Influenza A virus (IAV) populations harbor large subpopulations of defective-interfering particles characterized by internally deleted viral genomes. These internally deleted genomes have demonstrated the ability to suppress infectivity and boost innate immunity, rendering them promising for therapeutic and immunogenic applications. In this study, we aimed to investigate the diversity and complexity of the internally deleted IAV genomes within a panel of plaque-purified avian influenza viruses selected for their enhanced interferon-inducing phenotypes. Our findings unveiled that the abundance and diversity of internally deleted viral genomes were contingent upon the viral subculture and plaque purification processes. We observed a heightened occurrence of internally deleted genomes with distinct junctions in viral clones exhibiting enhanced interferon-inducing phenotypes, accompanied by additional truncation in the nonstructural 1 protein linker region (NS1Δ76-86). Computational analyses suggest the internally deleted IAV genomes can encode a broad range of carboxy-terminally truncated and intrinsically disordered proteins with variable lengths and amino acid composition. Further research is imperative to unravel the underlying mechanisms driving the increased diversity of internal deletions within the genomes of viral clones exhibiting enhanced interferon-inducing capacities and to explore their potential for modulating cellular processes and immunity.
Collapse
Affiliation(s)
- Amir Ghorbani
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - John M. Ngunjiri
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Gloria Rendon
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA (C.B.B.)
| | - Christopher B. Brooke
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA (C.B.B.)
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Scott P. Kenney
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Chang-Won Lee
- Southeast Poultry Research Laboratory, US National Poultry Research Center, USDA, ARS, Athens, GA 30605, USA
| |
Collapse
|
8
|
Ho JSY, Angel M, Ma Y, Sloan E, Wang G, Martinez-Romero C, Alenquer M, Roudko V, Chung L, Zheng S, Chang M, Fstkchyan Y, Clohisey S, Dinan AM, Gibbs J, Gifford R, Shen R, Gu Q, Irigoyen N, Campisi L, Huang C, Zhao N, Jones JD, van Knippenberg I, Zhu Z, Moshkina N, Meyer L, Noel J, Peralta Z, Rezelj V, Kaake R, Rosenberg B, Wang B, Wei J, Paessler S, Wise HM, Johnson J, Vannini A, Amorim MJ, Baillie JK, Miraldi ER, Benner C, Brierley I, Digard P, Łuksza M, Firth AE, Krogan N, Greenbaum BD, MacLeod MK, van Bakel H, Garcìa-Sastre A, Yewdell JW, Hutchinson E, Marazzi I. Hybrid Gene Origination Creates Human-Virus Chimeric Proteins during Infection. Cell 2020; 181:1502-1517.e23. [PMID: 32559462 PMCID: PMC7323901 DOI: 10.1016/j.cell.2020.05.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 02/26/2020] [Accepted: 05/18/2020] [Indexed: 01/12/2023]
Abstract
RNA viruses are a major human health threat. The life cycles of many highly pathogenic RNA viruses like influenza A virus (IAV) and Lassa virus depends on host mRNA, because viral polymerases cleave 5'-m7G-capped host transcripts to prime viral mRNA synthesis ("cap-snatching"). We hypothesized that start codons within cap-snatched host transcripts could generate chimeric human-viral mRNAs with coding potential. We report the existence of this mechanism of gene origination, which we named "start-snatching." Depending on the reading frame, start-snatching allows the translation of host and viral "untranslated regions" (UTRs) to create N-terminally extended viral proteins or entirely novel polypeptides by genetic overprinting. We show that both types of chimeric proteins are made in IAV-infected cells, generate T cell responses, and contribute to virulence. Our results indicate that during infection with IAV, and likely a multitude of other human, animal and plant viruses, a host-dependent mechanism allows the genesis of hybrid genes.
Collapse
Affiliation(s)
- Jessica Sook Yuin Ho
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew Angel
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Yixuan Ma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elizabeth Sloan
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Guojun Wang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carles Martinez-Romero
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marta Alenquer
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Vladimir Roudko
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Liliane Chung
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9PS, UK
| | - Simin Zheng
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Max Chang
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Yesai Fstkchyan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara Clohisey
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9PS, UK
| | - Adam M Dinan
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 0SP, UK
| | - James Gibbs
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Robert Gifford
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Rong Shen
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Nerea Irigoyen
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 0SP, UK
| | - Laura Campisi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cheng Huang
- Department of Pathology, the University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Nan Zhao
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joshua D Jones
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 0SP, UK
| | | | - Zeyu Zhu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Natasha Moshkina
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Léa Meyer
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Justine Noel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zuleyma Peralta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Veronica Rezelj
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Robyn Kaake
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brad Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bo Wang
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9PS, UK
| | - Jiajie Wei
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Slobodan Paessler
- Department of Pathology, the University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Helen M Wise
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9PS, UK
| | - Jeffrey Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alessandro Vannini
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK; Fondazione Human Technopole, Structural Biology Research Centre, 20157 Milan, Italy
| | | | - J Kenneth Baillie
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9PS, UK
| | - Emily R Miraldi
- Divisions of Immunobiology and Biomedical Informatics, Cincinnati Children's Hospital, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45257, USA
| | - Christopher Benner
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Ian Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 0SP, UK
| | - Paul Digard
- The Roslin Institute, University of Edinburgh, Edinburgh EH25 9PS, UK
| | - Marta Łuksza
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 0SP, UK
| | - Nevan Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Benjamin D Greenbaum
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Megan K MacLeod
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8QQ, UK
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Adolfo Garcìa-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Edward Hutchinson
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK.
| | - Ivan Marazzi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|