1
|
Zhou CM, Jiang ZZ, Liu N, Yu XJ. Current insights into human pathogenic phenuiviruses and the host immune system. Virulence 2024; 15:2384563. [PMID: 39072499 PMCID: PMC11290763 DOI: 10.1080/21505594.2024.2384563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Phenuiviruses are a class of segmented negative-sense single-stranded RNA viruses, typically consisting of three RNA segments that encode four distinct proteins. The emergence of pathogenic phenuivirus strains, such as Rift Valley fever phlebovirus (RVFV) in sub-Saharan Africa, Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) in East and Southeast Asia, and Heartland Virus (HRTV) in the United States has presented considerable challenges to global public health in recent years. The innate immune system plays a crucial role as the initial defense mechanism of the host against invading pathogens. In addition to continued research aimed at elucidating the epidemiological characteristics of phenuivirus, significant advancements have been made in investigating its viral virulence factors (glycoprotein, non-structural protein, and nucleoprotein) and potential host-pathogen interactions. Specifically, efforts have focused on understanding mechanisms of viral immune evasion, viral assembly and egress, and host immune networks involving immune cells, programmed cell death, inflammation, nucleic acid receptors, etc. Furthermore, a plethora of technological advancements, including metagenomics, metabolomics, single-cell transcriptomics, proteomics, gene editing, monoclonal antibodies, and vaccines, have been utilized to further our understanding of phenuivirus pathogenesis and host immune responses. Hence, this review aims to provide a comprehensive overview of the current understanding of the mechanisms of host recognition, viral immune evasion, and potential therapeutic approaches during human pathogenic phenuivirus infections focusing particularly on RVFV and SFTSV.
Collapse
Affiliation(s)
- Chuan-Min Zhou
- Gastrointestinal Disease Diagnosis and Treatment Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of General Surgery, Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ze-Zheng Jiang
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| | - Ning Liu
- Department of Quality and Operations Management, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
田 佳, 郭 一, 张 霞, 孙 晓, 何 菁. [Flow cytometry analysis of normal range of natural killer cells and their subsets in peripheral blood of healthy Chinese adults]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2024; 56:839-844. [PMID: 39397463 PMCID: PMC11480548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Indexed: 10/15/2024]
Abstract
OBJECTIVE To study the distribution characteristics of natural killer (NK) cells and their subsets in normal peripheral blood in China, and to explore their normal value and significance. METHODS In this study, peripheral blood was collected from 200 healthy adults. Their age range was 18-87 years. All the subjects were divided into 6 age groups: 18-30, 31-40, 41-50, 51-60, 61-70, and 71-87 years. With CD16, CD56, CD4, CD19, as surface markers, fluid cytology detection techniques were used to detect NK cells and the relative and absolute counts. SPSS 27.0 was used for systematic analysis of the data, and the measurement data were expressed as mean±standard deviations. A t test, variance analysis or rank sum test were performed to compare the differences between the age groups and the sex groups. The significance level was set at α=0.05, and P < 0.05 was considered statistically significant. RESULTS The range of NK B cells in the 200 healthy adult subjects was (0.46±0.24)×106/L, that of CD3-CD56+NK cells was (13.14±7.56)×106/L, that of CD56dimCD16+NK cells was (5.23±3.12)×106/L, that of CD56brightNK cells was (85.61±7.40)×106/L, and that of NK T cells was (4.16±3.34)×106/L. There were no statistically significant differences in CD3-CD56+NK cells and NK T cells with respect to age (P= 0.417, P=0.217). However, there was a decreasing trend in the number of NK B cells and CD56dimCD16+NK cells with increasing age (r=0.234, P < 0.001; r=0.099, P < 0.001), particularly after the age of 50. Conversely, CD56brightNK cells showed an increasing trend with age (r=0.143, P < 0.001). CONCLUSION The detection of NK cells and their subsets has significant reference value for the diagnosis, treatment, and prognosis of autoimmune diseases, infectious diseases, and tumors. This study provides a preliminary reference range for clinical detection of NK cell subsets, but further research with a larger sample size and multi-center trials are needed to confirm these findings.
Collapse
Affiliation(s)
- 佳宜 田
- />北京大学人民医院风湿免疫科,北京 100040Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing 100044, China
| | - 一学 郭
- />北京大学人民医院风湿免疫科,北京 100040Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing 100044, China
| | - 霞 张
- />北京大学人民医院风湿免疫科,北京 100040Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing 100044, China
| | - 晓麟 孙
- />北京大学人民医院风湿免疫科,北京 100040Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing 100044, China
| | - 菁 何
- />北京大学人民医院风湿免疫科,北京 100040Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
3
|
Li MM, Hu SS, Xu L, Gao J, Zheng X, Li XL, Liu LL. TLR2/NF-кB signaling may control expansion and function of regulatory T cells in patients with severe fever with thrombocytopenia syndrome (SFTS). Heliyon 2024; 10:e35950. [PMID: 39224371 PMCID: PMC11367551 DOI: 10.1016/j.heliyon.2024.e35950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a recently identified infectious ailment triggered by a new strain of bunyavirus. It is distinguished by elevated fatality rates, ranging from 12 % to 30 %. The mechanism underlying the development of severe illness caused by SFTS bunyavirus (SFTSV) is not yet fully understood. To evaluate the role of the TLR2 receptor pathway in regulating Treg function in the progression of SFTS disease and possible mechanisms, sequential serum samples from 29 patients with SFTS (15 mild, 14 severe cases) were examined. Flow cytometry was employed to scrutinize the phenotypic and functional characteristics of TLR2 expression on circulating CD4 T cells, CD8 T cells, and Tregs. In all admitted patients, the evaluation of correlations between the frequencies of the aforementioned cells and SFTS index (SFTSI) was conducted. For SFTS, the levels of TLR2 on CD4 T cells and Tregs were significantly heightened when compared to those in healthy subjects. Additionally, the expression of TLR2 on Tregs exhibited a positive correlation with Ki-67 expression in Tregs and the severity of disease. Additionally, compared with those in uninfected controls, the expression levels of NF-κB in Tregs were significantly increased. Collectively, Tregs may be activated and proliferate through the stimulation of the TLR2/NF-кB pathway in reaction to SFTSV infection.
Collapse
Affiliation(s)
- Meng-Meng Li
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Shan-Shan Hu
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Ling Xu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Gao
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Jiangxia Laboratory, Wuhan, 430200, China
| | - Xiu-Ling Li
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Le-Le Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Niu Y, Liu Y, Huang L, Liu W, Cheng Q, Liu T, Ning Q, Chen T. Antiviral immunity of severe fever with thrombocytopenia syndrome: current understanding and implications for clinical treatment. Front Immunol 2024; 15:1348836. [PMID: 38646523 PMCID: PMC11026560 DOI: 10.3389/fimmu.2024.1348836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Dabie Banda virus (DBV), a tick-borne pathogen, was first identified in China in 2009 and causes profound symptoms including fever, leukopenia, thrombocytopenia and multi-organ dysfunction, which is known as severe fever with thrombocytopenia syndrome (SFTS). In the last decade, global incidence and mortality of SFTS increased significantly, especially in East Asia. Though previous studies provide understandings of clinical and immunological characteristics of SFTS development, comprehensive insight of antiviral immunity response is still lacking. Here, we intensively discuss the antiviral immune response after DBV infection by integrating previous ex- and in-vivo studies, including innate and adaptive immune responses, anti-viral immune responses and long-term immune characters. A comprehensive overview of potential immune targets for clinical trials is provided as well. However, development of novel strategies for improving the prognosis of the disease remains on challenge. The current review may shed light on the establishment of immunological interventions for the critical disease SFTS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Chen
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
5
|
Xu DL, Zhang XM, Tian XY, Wang XJ, Zhao L, Gao MY, Li LF, Zhao JQ, Cao WC, Ding SJ. Changes in Cytokine Levels in Patients with Severe Fever with Thrombocytopenia Syndrome Virus. J Inflamm Res 2024; 17:211-222. [PMID: 38229692 PMCID: PMC10790589 DOI: 10.2147/jir.s444398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024] Open
Abstract
Purpose To characterize the cytokine profile of patients with severe fever with thrombocytopenia syndrome (SFTS) in relation to disease severity. Patients and Methods 60 laboratory-confirmed SFTS patients and 12 healthy individuals from multi-centers in Shandong Province of China were included, and all patients were divided into fatal patients (9) and recovered patients (51) due to their final outcomes. Multiplex-microbead immunoassays were conducted to estimate levels of 27 cytokines in the sera of patients and controls. Results The results showed that levels of IL-2, IL-4, IL-6, IL-7, IL-8, IL-15, IL-1RA, G-CSF, GM-CSF, IFN-γ, TNF-α, basic FGF, PDGF-BB, RANTES, IP-10, MIP-1α, MIP-1β, MCP-1, and Eotaxin differed significantly among the SFTS fatal patients, recovered patients, and the healthy controls (all p<0.05). Compared to the healthy controls, the fatal patients and recovered patients had reduced levels of IL-2, IL-4, IL-7, PDGF-BB, RANTES, and Eotaxin, while the levels of PDGF-BB and RANTES were significantly lower in fatal patients compared to recovered patients. The increasing levels of IL-6, IL-8, IL-15, IL-1RA, G-CSF, GM-CSF, IFN-γ, TNF-α, basic FGF, IP-10, MIP-1α, MIP-1β, and MCP-1 were observed in fatal patients (all p<0.05), and the levels of IL-6, IP-10, MIP-1α, and MCP-1 were significantly higher than other two groups. The Spearman correlation analysis indicated a positive correlation between platelet count and PDGF-BB levels (p<0.05), while the white blood cell count had a negative correlation with MIP-1 level (p<0.05). Conclusion The research exhibited that the SFTS virus (SFTSV) caused an atypical manifestation of cytokines. The levels of IL-6, IP-10, MIP-1α, and MCP-1 had been observed a positive association with the severity of the illness.
Collapse
Affiliation(s)
- Da-Li Xu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong UniversityJinan, Shandong, People’s Republic of China
| | - Xiao-Mei Zhang
- Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Department of Communicable Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, People’s Republic of China
| | - Xue-Ying Tian
- Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Department of Communicable Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, People’s Republic of China
| | - Xian-Jun Wang
- Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Department of Communicable Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, People’s Republic of China
| | - Lin Zhao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong UniversityJinan, Shandong, People’s Republic of China
| | - Meng-Ying Gao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong UniversityJinan, Shandong, People’s Republic of China
| | - Lian-Feng Li
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong UniversityJinan, Shandong, People’s Republic of China
| | - Jia-Qi Zhao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong UniversityJinan, Shandong, People’s Republic of China
| | - Wu-Chun Cao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong UniversityJinan, Shandong, People’s Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Shu-Jun Ding
- Shandong Provincial Key Laboratory of Communicable Disease Control and Prevention, Department of Communicable Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, Shandong Province, People’s Republic of China
| |
Collapse
|
6
|
Zhang Y, Jin K, Dai Y, Hu N, Zhou T, Yang Z, Ding N, Zhang R, Xu R, Zhao J, Han Y, Zhu C, Zhu J, Li J. The change of Siglec-9 expression in peripheral blood NK cells of SFTS patients can affect the function of NK cells. Immunol Lett 2023; 263:97-104. [PMID: 37865296 DOI: 10.1016/j.imlet.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVES To investigate the changes and mechanism of Siglec-9 on NK cells in peripheral blood of patients with severe fever with thrombocytopenia syndrome (SFTS). METHODS First, we used single-cell RNA sequencing to analyze the frequency of NK cells in Peripheral Blood Mononuclear Cells (PBMCs) of SFTS patients and healthy controls (HCs), as well as the differences in the genes on NK cells. Secondly, we analyzed the expression of Siglec-9 and other receptors on NK cells by flow cytometry. Thirdly, we analyzed the correlation between Siglec-9 on NK cells and DBV viral load in plasma. RESULTS Compared with HCs, the frequency of NK cells in peripheral blood of SFTS patients was significantly decreased, and the activating receptors on NK cells were reduced. The expression of Siglec-9 on NK cells and the frequency of Siglec-9+NK cells decreased significantly in SFTS patients. The expression of Siglec-9 on CD16+CD56dim NK cells was negatively correlated with DBV viral load. In addition, Siglec-9+NK cells expressed higher levels of activating receptors and exhibited stronger effector functions than Siglec-9-NK cells. CONCLUSIONS The decreased expression of Siglec-9 on NK cells predicts NK cell dysfunction in SFTS patients, suggesting that Siglec-9 may be a potential marker for functional NK cell subsets in SFTS patients.
Collapse
Affiliation(s)
- Yaqin Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ke Jin
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Dai
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Nannan Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Zhou
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Zhan Yang
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Ning Ding
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Rui Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Ruowei Xu
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jiaying Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yaping Han
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanlong Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, Nanjing, China.
| | - Jun Li
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Chen L, Chen T, Li R, Xu Y, Xiong Y. Recent Advances in the Study of the Immune Escape Mechanism of SFTSV and Its Therapeutic Agents. Viruses 2023; 15:v15040940. [PMID: 37112920 PMCID: PMC10142331 DOI: 10.3390/v15040940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Sever fever with thrombocytopenia syndrome (SFTS) is a new infectious disease that has emerged in recent years and is widely distributed, highly contagious, and lethal, with a mortality rate of up to 30%, especially in people with immune system deficiencies and elderly patients. SFTS is an insidious, negative-stranded RNA virus that has a major public health impact worldwide. The development of a vaccine and the hunt for potent therapeutic drugs are crucial to the prevention and treatment of Bunyavirus infection because there is no particular treatment for SFTS. In this respect, investigating the mechanics of SFTS-host cell interactions is crucial for creating antiviral medications. In the present paper, we summarized the mechanism of interaction between SFTS and pattern recognition receptors, endogenous antiviral factors, inflammatory factors, and immune cells. Furthermore, we summarized the current therapeutic drugs used for SFTS treatment, aiming to provide a theoretical basis for the development of targets and drugs against SFTS.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Tingting Chen
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Ruidong Li
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yingshu Xu
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yongai Xiong
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
8
|
Li YH, Huang WW, He WQ, He XY, Wang XH, Lin YL, Zhao ZJ, Zheng YT, Pang W. Longitudinal analysis of immunocyte responses and inflammatory cytokine profiles in SFTSV-infected rhesus macaques. Front Immunol 2023; 14:1143796. [PMID: 37033979 PMCID: PMC10073517 DOI: 10.3389/fimmu.2023.1143796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV), an emerging bunyavirus, causes severe fever with thrombocytopenia syndrome (SFTS), with a high fatality rate of 20%-30%. At present, however, the pathogenesis of SFTSV remains largely unclear and no specific therapeutics or vaccines against its infection are currently available. Therefore, animal models that can faithfully recapitulate human disease are important to help understand and treat SFTSV infection. Here, we infected seven Chinese rhesus macaques (Macaca mulatta) with SFTSV. Virological and immunological changes were monitored over 28 days post-infection. Results showed that mild symptoms appeared in the macaques, including slight fever, thrombocytopenia, leukocytopenia, increased aspartate aminotransferase (AST) and creatine kinase (CK) in the blood. Viral replication was persistently detectable in lymphoid tissues and bone marrow even after viremia disappeared. Immunocyte detection showed that the number of T cells (mainly CD8+ T cells), B cells, natural killer (NK) cells, and monocytes decreased during infection. In detail, effector memory CD8+ T cells declined but showed increased activation, while both the number and activation of effector memory CD4+ T cells increased significantly. Furthermore, activated memory B cells decreased, while CD80+/CD86+ B cells and resting memory B cells (CD27+CD21+) increased significantly. Intermediate monocytes (CD14+CD16+) increased, while myeloid dendritic cells (mDCs) rather than plasmacytoid dendritic cells (pDCs) markedly declined during early infection. Cytokines, including interleukin-6 (IL-6), interferon-inducible protein-10 (IP-10), and macrophage inflammatory protein 1 (MCP-1), were substantially elevated in blood and were correlated with activated CD4+ T cells, B cells, CD16+CD56+ NK cells, CD14+CD16+ monocytes during infection. Thus, this study demonstrates that Chinese rhesus macaques infected with SFTSV resemble mild clinical symptoms of human SFTS and provides detailed virological and immunological parameters in macaques for understanding the pathogenesis of SFTSV infection.
Collapse
Affiliation(s)
- Yi-Hui Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wen-Wu Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- Office of Science and Technology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Qiang He
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao-Yan He
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xue-Hui Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Ya-Long Lin
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zu-Jiang Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- *Correspondence: Yong-Tang Zheng, ; Wei Pang,
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- *Correspondence: Yong-Tang Zheng, ; Wei Pang,
| |
Collapse
|
9
|
Diagnostic Value of Peripheral Blood Lymphocytes for Primary Immune Thrombocytopenia. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:9833941. [PMID: 36072617 PMCID: PMC9398814 DOI: 10.1155/2022/9833941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to investigate the absolute value of peripheral blood lymphocytes in patients with primary immune thrombocytopenia and the diagnostic effect on patients with primary immune thrombocytopenia. From January 2020 to June 2021, 76 patients with primary immune thrombocytopenia and 80 healthy check-ups admitted to our hospital were selected as study subjects and divided into a control group (80 patients, healthy check-ups) and an observation group (76 patients, primary immune thrombocytopenia), according to the health status of the organism. Early morning fasting venous blood was collected from both groups, and the absolute value of peripheral blood lymphocytes was measured and compared using a fully automated hematology analyzer to investigate the diagnostic value of absolute peripheral blood lymphocytes in primary immune thrombocytopenia. The CD3+, CD3+CD4+, CD4+/CD8+, and CD16+CD56+ assay values in the observation group were lower than those in the control group, and the CD3+CD8+, CD19+, and ALC assay values were higher than those in the control group (P < 0.05). The CD3+CD8+ detection values of newly diagnosed patients were similar to those of relapsed refractory patients (P > 0.05); CD3+, CD3+CD4+, CD4+/CD8+, and CD16+CD56+ detection values of newly diagnosed patients were lower than those of relapsed refractory patients, and CD19+ and ALC detection values were higher than those of relapsed refractory patients; CD3+, CD3+CD4+, CD4+, CD4+/CD8+, and CD16+CD56+ detection values of mild patients were lower than those of relapsed refractory patients; CD3+, CD3+CD4+, CD4+/CD8+, and CD16+CD56+ detection values were higher in mild patients than in severe patients, and CD3+CD8+, CD19+, and ALC detection values were lower than in severe patients (P < 0.05). The absolute lymphocyte values were of high diagnostic value in primary immune thrombocytopenia, with a sensitivity and specificity of 93.42% and 90.00%. The application of absolute peripheral blood lymphocyte value in the clinical diagnosis of primary immune thrombocytopenia can achieve a better detection and diagnosis effect, which has a positive impact on the early diagnosis rate and can help patients to obtain more timely, effective and targeted treatment, and is worthy of promotion.
Collapse
|
10
|
Wang T, Xu L, Zhu B, Wang J, Zheng X. Immune escape mechanisms of severe fever with thrombocytopenia syndrome virus. Front Immunol 2022; 13:937684. [PMID: 35967309 PMCID: PMC9366518 DOI: 10.3389/fimmu.2022.937684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS), which is caused by SFTS virus (SFTSV), poses a serious threat to global public health, with high fatalities and an increasing prevalence. As effective therapies and prevention strategies are limited, there is an urgent need to elucidate the pathogenesis of SFTS. SFTSV has evolved several mechanisms to escape from host immunity. In this review, we summarize the mechanisms through which SFTSV escapes host immune responses, including the inhibition of innate immunity and evasion of adaptive immunity. Understanding the pathogenesis of SFTS will aid in the development of new strategies for the treatment of this disease.
Collapse
Affiliation(s)
- Tong Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Xu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Zhu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
| | - Junzhong Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Junzhong Wang, ; Xin Zheng,
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Junzhong Wang, ; Xin Zheng,
| |
Collapse
|
11
|
Yang T, Huang H, Jiang L, Li J. Overview of the immunological mechanism underlying severe fever with thrombocytopenia syndrome (Review). Int J Mol Med 2022; 50:118. [PMID: 35856413 PMCID: PMC9333902 DOI: 10.3892/ijmm.2022.5174] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/14/2022] [Indexed: 11/05/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) has been acknowledged as an emerging infectious disease that is caused by the SFTS virus (SFTSV). The main clinical features of SFTS on presentation include fever, thrombocytopenia, leukocytopenia and gastrointestinal symptoms. The mortality rate is estimated to range between 5-30% in East Asia. However, SFTSV infection is increasing on an annual basis globally and is becoming a public health problem. The transmission cycle of SFTSV remains poorly understood, which is compounded by the pathogenesis of SFTS not being fully elucidated. Since the mechanism underlying the host immune response towards SFTSV is also unclear, there are no effective vaccines or specific therapeutic agents against SFTS, with supportive care being the only realistic option. Therefore, it is now crucial to understand all aspects of the host-virus interaction following SFTSV infection, including the antiviral states and viral evasion mechanisms. In the present review, recent research progress into the possible host immune responses against SFTSV was summarized, which may be useful in designing novel therapeutics against SFTS.
Collapse
Affiliation(s)
- Tao Yang
- Department of Infectious Disease, The First Hospital Affiliated with Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Huaying Huang
- Department of Infectious Disease, The First Hospital Affiliated with Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Longfeng Jiang
- Department of Infectious Disease, The First Hospital Affiliated with Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Jun Li
- Department of Infectious Disease, The First Hospital Affiliated with Nanjing Medical University, Jiangsu Province Hospital, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
12
|
Wang M, Tan W, Li J, Fang L, Yue M. The Endless Wars: Severe Fever With Thrombocytopenia Syndrome Virus, Host Immune and Genetic Factors. Front Cell Infect Microbiol 2022; 12:808098. [PMID: 35782112 PMCID: PMC9240209 DOI: 10.3389/fcimb.2022.808098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/10/2022] [Indexed: 01/10/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging arboviral infectious disease with a high rate of lethality in susceptible humans and caused by severe fever with thrombocytopenia syndrome bunyavirus (SFTSV). Currently, neither vaccine nor specific antiviral drugs are available. In recent years, given the fact that both the number of SFTS cases and epidemic regions are increasing year by year, SFTS has become a public health problem. SFTSV can be internalized into host cells through the interaction between SFTSV glycoproteins and cell receptors and can activate the host immune system to trigger antiviral immune response. However, SFTSV has evolved multiple strategies to manipulate host factors to create an optimal environment for itself. Not to be discounted, host genetic factors may be operative also in the never-ending winning or losing wars. Therefore, the identifications of SFTSV, host immune and genetic factors, and their interactions are critical for understanding the pathogenic mechanisms of SFTSV infection. This review summarizes the updated pathogenesis of SFTS with regard to virus, host immune response, and host genetic factors to provide some novel perspectives of the prevention, treatment, as well as drug and vaccine developments.
Collapse
Affiliation(s)
- Min Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weilong Tan
- Department of Infection Disease, Huadong Research Institute for Medicine and Biotechniques, Nanjing, China
| | - Jun Li
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liqun Fang
- State Key Lab Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Ming Yue
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
黄 巧, 蒋 燕, 李 慧, 李 雪, 孟 文. [Establishment of 14-Color Panel for Determining Leukocyte Subsets in Human Peripheral Blood with Flow Cytometry]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:127-132. [PMID: 35048612 PMCID: PMC10408852 DOI: 10.12182/20220160106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To establish a 14-color flow cytometry protocol for the examination of leukocyte subsets in human peripheral blood. METHODS We used cell membrane surface antibodies CD45, CD3, CD4, CD8, CD19, CD56, CD16, CD14, CD25, CD127, HLA-DR, CD123, CD11c and nucleus staining dye DAPI to establish a 14-color flow cytometry assay to determine the major cell subsets in human peripheral blood. We collected peripheral blood specimens from healthy volunteers to test for antibody titers and optimal photomultiplier tube (PMT) voltage, and to conduct single-color staining and fluorescence minus one control staining. After determining the test method and test conditions, the peripheral blood samples of 18 healthy volunteers were analyzed. RESULTS According to the cell classification and staining index, optimal antibody mass concentrations selected were as follows: CD25 and CD127 at 8.0 μg/mL, CD45, CD3, CD14 and CD123 at 4.0 μg/mL, CD8, CD19, CD56, CD16, HLA-DR and CD11c at 2.0 μg/mL, CD4 at 1.0 μg/mL and DAPI at 0.1 μg/mL. The detection voltages for CD45, CD3, CD4, CD8, CD19, CD56, CD16, CD14, CD25, CD127, HLA-DR, CD123, CD11c and DAPI were 450 V, 410 V, 400 V, 550 V, 405 V, 500 V, 520 V, 550 V, 550 V, 400 V, 450 V, 400 V, 580 V, and 300 V, respectively. The appropriate fluorescence compensation was determined by single-color staining and fluorescence minus one controls. The 14-color flow cytometry panel was established to analyze the main subsets of leukocytes in human peripheral blood, and peripheral blood samples from 18 healthy adults were examined, obtaining the percentages of each subset of peripheral blood leukocytes and the immunophenotypes of the main subsets. CONCLUSION We established a 14-color panel for determining leukocyte subsets in human peripheral blood by flow cytometry, which produced stable and reliable results and was easy to operate.
Collapse
Affiliation(s)
- 巧容 黄
- 四川大学华西医院 干细胞生物学研究室 (成都 610041)Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 燕妮 蒋
- 四川大学华西医院 干细胞生物学研究室 (成都 610041)Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 慧芳 李
- 四川大学华西医院 干细胞生物学研究室 (成都 610041)Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 雪 李
- 四川大学华西医院 干细胞生物学研究室 (成都 610041)Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 文彤 孟
- 四川大学华西医院 干细胞生物学研究室 (成都 610041)Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Pan Z, Zhao R, Shen Y, Liu K, Xue W, Liang C, Peng M, Hu P, Chen M, Xu H. Low-frequency, exhausted immune status of CD56 dim NK cells and disordered inflammatory cytokine secretion of CD56 bright NK cells associated with progression of severe HFMD, especially in EV71-infected patients. Int Immunopharmacol 2021; 101:108369. [PMID: 34844872 DOI: 10.1016/j.intimp.2021.108369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The roles of CD56bright and CD56dim natural killer (NK) subsets in the viral clearance and inflammatory processes of hand, foot, and mouth disease (HFMD) remain undefined. METHODS A total of 39 HCs and 55 patients were enrolled to analyze peripheral CD56bright and CD56dim NK cells according to cell number, surface receptors, cytotoxic activities, and cytokine production. The plasma concentrations of IL-2, IL-6, IL-10, IFN-γ, TNF-α,and MCP-1 were detected using ELSA. RESULTS Peripheral blood NK cells was significantly lower in severe patients than in HCs due to the dramatic loss of CD56dim NK cells with no changes in the cell count of CD56bright NK cells. For mild patients, decreased NKp46 expression coincided with enhanced cytolysis (CD107a, GNLY, and GrB) in CD56dim NK cells and decreased NKG2A expression with enhanced IL-10 production in CD56bright NK cells. In contrast, severe patients showed the dominant expression of NKG2A and decreased expression of NKG2D accompanied by cytotoxic dysfunction in CD56dim NK cells. Imbalanced receptor expression coincided with the increased concentrations of TNF-α in CD56bright NK cells. Moreover, EV71+ patients showed significantly decreased counts of CD56dim NK cells with cytolysis dysfunction, displayed cytokine hypersecretion in CD56bright NK cells, while the EV71- patients displayed significantly higher plasma cytokine concentrations. The changes in the immune function of NK subsets and their subpopulations were closely related to clinical inflammatory parameters. CONCLUSIONS Low-frequency, exhausted immune status of CD56dim NK cells and disordered inflammatory cytokine secretion of CD56bright NK cells were associated with the progression of severe HFMD, especially in EV71-infected patients. This promoted the severity of inflammatory disorders, leading to enhanced disease pathogenesis.
Collapse
Affiliation(s)
- Zhaojun Pan
- Department of Infection, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Developmental and Diseases, China International Science and Technology Cooperation Base of Child Development and Critical Diseases, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road, Yuzhong District, 400014 Chongqing, PR China
| | - Ruiqiu Zhao
- Department of Infection, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Developmental and Diseases, China International Science and Technology Cooperation Base of Child Development and Critical Diseases, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road, Yuzhong District, 400014 Chongqing, PR China
| | - Yanxi Shen
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Kai Liu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Wei Xue
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Chengfei Liang
- Department of Infection, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Developmental and Diseases, China International Science and Technology Cooperation Base of Child Development and Critical Diseases, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road, Yuzhong District, 400014 Chongqing, PR China
| | - Mingli Peng
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Peng Hu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Min Chen
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China.
| | - Hongmei Xu
- Department of Infection, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Developmental and Diseases, China International Science and Technology Cooperation Base of Child Development and Critical Diseases, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road, Yuzhong District, 400014 Chongqing, PR China.
| |
Collapse
|