1
|
Zheng X, Wang X, Li P, Zhou Y, Zhu X, Hu Z, Wang H, Chen M, Huo X, Liu Y, Zhang W. The change of long tail fibers expanded the host range of a T5-like Salmonella phage and its application in milk. BMC Microbiol 2025; 25:169. [PMID: 40133802 PMCID: PMC11938639 DOI: 10.1186/s12866-025-03895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
We engineered novel T5-like bacteriophage (phage) with extended host ranges by editing the long-tail fibers (PB3 and PB4) to combat Salmonella Enteritidis. By replacing the long-tail fibers PB3 and PB4 regions of phage PH204 with those from phage SP76, we created phages RPA1 - 3 and RPB1 - 3, which exhibited expanded host ranges, lysing 54 strains compared to the original 30 strains. These phages retained the biological characteristics of PH204, including temperature, pH stability and adsorption rate. In milk, RPA1 - 3 and RPB1 - 3 inhibited Salmonella ZWSA605 growth, reducing bacterial counts to 1.51 log10 CFU/mL and 2.18 log10 CFU/mL after 8 h, respectively. Although the bacteriolytic activity of recombinant phages is lower than that of the parent phage, our findings suggest that these phages hold promise as candidates for future phage biocontrol applications in food.
Collapse
Affiliation(s)
- Xiaofeng Zheng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Xin Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Pei Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Yu Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Xihui Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Zimeng Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Hui Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
| | - Mianmian Chen
- College of Animal Science and Technology, College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province, 311300, China
| | - Xiang Huo
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
- Jiangsu Provincial Medical Key Laboratory of Pathogenic Microbiology in Emerging Major Infectious Diseases, Nanjing, 210009, China
- Jiangsu Province Engineering Research Center of Health Emergency, Nanjing, 210009, China
| | - Yingyu Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China.
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
| |
Collapse
|
2
|
Segundo-Arizmendi N, Arellano-Maciel D, Rivera-Ramírez A, Piña-González AM, López-Leal G, Hernández-Baltazar E. Bacteriophages: A Challenge for Antimicrobial Therapy. Microorganisms 2025; 13:100. [PMID: 39858868 PMCID: PMC11767365 DOI: 10.3390/microorganisms13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Phage therapy, which involves the use of bacteriophages (phages) to combat bacterial infections, is emerging as a promising approach to address the escalating threat posed by multidrug-resistant (MDR) bacteria. This brief review examines the historical background and recent advancements in phage research, focusing on their genomics, interactions with host bacteria, and progress in medical and biotechnological applications. Additionally, we expose key aspects of the mechanisms of action, and therapeutic uses of phage considerations in treating MDR bacterial infections are discussed, particularly in the context of infections related to virus-bacteria interactions.
Collapse
Affiliation(s)
- Nallelyt Segundo-Arizmendi
- Laboratorio de Microbiología y Parasitología, Facultad de Farmacia de la, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Dafne Arellano-Maciel
- Laboratorio de Biología Computacional y Virómica Integrativa, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (D.A.-M.); (A.M.P.-G.)
| | - Abraham Rivera-Ramírez
- Laboratorio de Estudios Ecogenómicos, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Adán Manuel Piña-González
- Laboratorio de Biología Computacional y Virómica Integrativa, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (D.A.-M.); (A.M.P.-G.)
| | - Gamaliel López-Leal
- Laboratorio de Biología Computacional y Virómica Integrativa, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (D.A.-M.); (A.M.P.-G.)
| | - Efren Hernández-Baltazar
- Laboratorio 1 de Tecnología Farmacéutica, Facultad de Farmacia de la, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| |
Collapse
|
3
|
Cao X, Yu T, Sun Z, Chen M, Xie W, Pang Q, Deng H. Engineered phages in anti-infection and anti-tumor fields: A review. Microb Pathog 2025; 198:107052. [PMID: 39442821 DOI: 10.1016/j.micpath.2024.107052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/30/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The abuse of antibiotics has led to the widespread emergence of multi-drug resistant bacteria. Phage therapy holds promise for enhancing anti-bacterial and anti-infection strategies. Traditional phage therapy employs phage preparations as an alternative to antibiotics for the eradication of bacteria, aiming to achieve the desired clinical outcomes. Modification of phage by transgene or chemical modification overcomes the limitations of traditional phage therapy, including host spectrum modification, bacterial resistance reversal, antigen presentation, and drug targeted delivery, and thus broadens the application field of phages. This article summarizes the progress of engineered phages in the fields of anti-bacterial, anti-infective and anti-tumor therapy. It emphasizes the advantages of engineered phages in anti-bacterial and anti-tumor treatment, and discusses the widespread potential of phage-based modular design as multifunctional biopharmaceuticals, drug carriers, and other applications.
Collapse
Affiliation(s)
- Xiangyu Cao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Tong Yu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Zhe Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Mengge Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Wenhai Xie
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Qiuxiang Pang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China.
| | - Hongkuan Deng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China; Shandong Jiuyi Biotechnology Co., Ltd, Zibo, 255000, China.
| |
Collapse
|
4
|
Bayatli N, Malkawi AS, Malkawi A, Khaled K, Alrabadi N, Ovenseri AC, Alhajj L, Al Sarayrih L, Elnefaily SE. Impact of biofilms on healthcare settings and management strategies. REVIEWS AND RESEARCH IN MEDICAL MICROBIOLOGY 2024. [DOI: 10.1097/mrm.0000000000000425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/12/2024] [Indexed: 04/02/2025]
Abstract
The formation of biofilms on the surfaces of biomaterials in clinical settings is becoming more of a concern, especially with the rise of multidrug-resistant bacteria. They have contributed to high mortality and a major cost burden on healthcare systems. Obstacles related to biofilms have been complicated with the presence of very resistant bacterial strains to antimicrobial drugs, necessitating the development of alternative pathways to treat biofilm-related infections in addition to traditional antibiotics. So far, inhibitors that combat the formation of biofilms and the development of modified biomaterials for the manufacture of medical devices have been proposed as approaches to prevent biofilm formation in clinical practice settings. The self-produced extracellular polymeric substances that function as a protective shield, inhibiting antimicrobial penetration, are a key component of biofilms. Biofilms’ impact on medical settings, healthcare, and the economy as well as a brief description of stages involved in their development are discussed here. Furthermore, this review elucidates the two primary categories of biofilm management: preventing the formation of biofilms by inhibiting bacterial initial attachment and removing biofilms that have already formed. Preventive antibiofilm methods discussed in this review involve modifying the physical and chemical characteristics of biomaterials. In addition, removing biofilms using efficient physical and biomedical approaches and by interfering with the quorum-sensing system, which is essential for biofilm formation, are covered here. Moreover, several relevant examples of each method indicated for biofilm management are highlighted. Lastly, the ongoing progress in the field of biofilm research may reveal additional strategies for future biofilm management.
Collapse
Affiliation(s)
- Nur Bayatli
- Faculty of Pharmacy, Cyprus Health and Social Sciences University, Kutlu Adali Blv, Morphou (Guzelyurt)
| | - Ahmad Saleh Malkawi
- Faculty of Pharmacy, Cyprus International University, Nicosia, Cyprus
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Isra University, Queen Alya Airport Street, Amman
| | - Azhar Malkawi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Khaled Khaled
- Faculty of Pharmacy, Cyprus Health and Social Sciences University, Kutlu Adali Blv, Morphou (Guzelyurt)
- Faculty of Pharmacy, Cyprus International University, Nicosia, Cyprus
| | - Nasr Alrabadi
- Department of Pharmacology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Lara Alhajj
- Faculty of Pharmacy, Cyprus International University, Nicosia, Cyprus
| | - Lina Al Sarayrih
- Faculty of Pharmacy, Cyprus International University, Nicosia, Cyprus
| | | |
Collapse
|
5
|
Zheng X, Liu M, Li P, Xu S, Chen L, Xu G, Pang X, Du H, Yishan Zheng, Huo X, Tan Z, Li J, Li Z, Zhang W. Antibacterial activity evaluation of a novel K3-specific phage against Acinetobacter baumannii and evidence for receptor-binding domain transfer across morphologies. Virol Sin 2024; 39:767-781. [PMID: 39098716 PMCID: PMC11738781 DOI: 10.1016/j.virs.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024] Open
Abstract
Acinetobacter baumannii (A. baumannii) poses a serious public health challenge due to its notorious antimicrobial resistance, particularly carbapenem-resistant A. baumannii (CRAB). In this study, we isolated a virulent phage, named P1068, from medical wastewater capable of lysing CRAB, primarily targeting the K3 capsule type. Basic characterization showed that P1068 infected the A. baumannii ZWAb014 with an optimal MOI of 1, experienced a latent period of 10 min and maintained stability over a temperature range of 4-37 °C and pH range of 3-10. Phylogenetic and average nucleotide identity analyses indicate that P1068 can be classified as a novel species within the genus Obolenskvirus of the Caudoviricetes class as per the most recent virus classification released by the International Committee on Taxonomy of Viruses (ICTV). Additionally, according to classical morphological classification, P1068 is identified as a T4-like phage (Myoviridae). Interestingly, we found that the tail fiber protein (TFP) of P1068 shares 74% coverage and 88.99% identity with the TFP of a T7-like phage (Podoviridae), AbKT21phiIII (NC_048142.1). This finding suggests that the TFP gene of phages may undergo horizontal transfer across different genera and morphologies. In vitro antimicrobial assays showed that P1068 exhibited antimicrobial activity against A. baumannii in both biofilm and planktonic states. In mouse models of intraperitoneal infection, P1068 phage protected mice from A. baumannii infection and significantly reduced bacterial loads in various tissues such as the brain, blood, lung, spleen, and liver compared to controls. In conclusion, this study demonstrates that phage P1068 might be a potential candidate for the treatment of carbapenem-resistant and biofilm-forming A. baumannii infections, and expands the understanding of horizontal transfer of phage TFP genes.
Collapse
Affiliation(s)
- Xiangkuan Zheng
- College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Meihan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Pei Li
- College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Sixiang Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China
| | - Long Chen
- Department of Clinical Laboratory, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, 215600, China
| | - Guoxin Xu
- Department of Clinical Laboratory, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, 215600, China
| | - Xiaoxiao Pang
- Department of Clinical Laboratory, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, 215600, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yishan Zheng
- Intensive Care Unit, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Xiang Huo
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210009, China
| | - Zhongming Tan
- Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210009, China
| | - Juan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Zhirong Li
- Provincial Center for Clinical Laboratories, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Key Lab of Animal Bacteriology, Ministry of Agriculture and Rural Affairs, Nanjing, 210095, China.
| |
Collapse
|
6
|
Srivastava A, Verma N, Kumar V, Apoorva P, Agarwal V. Biofilm inhibition/eradication: exploring strategies and confronting challenges in combatting biofilm. Arch Microbiol 2024; 206:212. [PMID: 38616221 DOI: 10.1007/s00203-024-03938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024]
Abstract
Biofilms are complex communities of microorganisms enclosed in a self-produced extracellular matrix, posing a significant threat to different sectors, including healthcare and industry. This review provides an overview of the challenges faced due to biofilm formation and different novel strategies that can combat biofilm formation. Bacteria inside the biofilm exhibit increased resistance against different antimicrobial agents, including conventional antibiotics, which can lead to severe problems in livestock and animals, including humans. In addition, biofilm formation also imposes heavy economic pressure on industries. Hence it becomes necessary to explore newer alternatives to eradicate biofilms effectively without applying selection pressure on the bacteria. Excessive usage of antibiotics may also lead to an increase in the number of resistant strains as bacteria employ an advanced antimicrobial resistance mechanism. This review provides insight into multifaceted technologies like quorum sensing inhibition, enzymes, antimicrobial peptides, bacteriophage, phytocompounds, and nanotechnology to neutralize biofilms without developing antimicrobial resistance (AMR). Furthermore, it will pave the way for developing newer therapeutic agents to deal with biofilms more efficiently.
Collapse
Affiliation(s)
- Anmol Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Nidhi Verma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Pragati Apoorva
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Vishnu Agarwal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India.
| |
Collapse
|
7
|
Iaconis A, De Plano LM, Caccamo A, Franco D, Conoci S. Anti-Biofilm Strategies: A Focused Review on Innovative Approaches. Microorganisms 2024; 12:639. [PMID: 38674584 PMCID: PMC11052202 DOI: 10.3390/microorganisms12040639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Biofilm (BF) can give rise to systemic infections, prolonged hospitalization times, and, in the worst case, death. This review aims to provide an overview of recent strategies for the prevention and destruction of pathogenic BFs. First, the main phases of the life cycle of BF and maturation will be described to identify potential targets for anti-BF approaches. Then, an approach acting on bacterial adhesion, quorum sensing (QS), and the extracellular polymeric substance (EPS) matrix will be introduced and discussed. Finally, bacteriophage-mediated strategies will be presented as innovative approaches against BF inhibition/destruction.
Collapse
Affiliation(s)
- Antonella Iaconis
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Domenico Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (ChiBioFarAm), University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.I.); (L.M.D.P.); (A.C.)
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
- URT Lab Sens Beyond Nano—CNR-DSFTM, Department of Physical Sciences and Technologies of Matter, University of Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
8
|
Grooters KE, Ku JC, Richter DM, Krinock MJ, Minor A, Li P, Kim A, Sawyer R, Li Y. Strategies for combating antibiotic resistance in bacterial biofilms. Front Cell Infect Microbiol 2024; 14:1352273. [PMID: 38322672 PMCID: PMC10846525 DOI: 10.3389/fcimb.2024.1352273] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/04/2024] [Indexed: 02/08/2024] Open
Abstract
Biofilms, which are complexes of microorganisms that adhere to surfaces and secrete protective extracellular matrices, wield substantial influence across diverse domains such as medicine, industry, and environmental science. Despite ongoing challenges posed by biofilms in clinical medicine, research in this field remains dynamic and indeterminate. This article provides a contemporary assessment of biofilms and their treatment, with a focus on recent advances, to chronicle the evolving landscape of biofilm research.
Collapse
Affiliation(s)
- Kayla E. Grooters
- Department of Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Jennifer C. Ku
- Department of Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - David M. Richter
- Department of Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Matthew J. Krinock
- Department of Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Ashley Minor
- Department of Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Patrick Li
- University of Michigan, Ann Arbor, MI, United States
- Division of Biomedical Engineering, Department of Orthopedic Surgery, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Audrey Kim
- Department of Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Robert Sawyer
- Department of Surgery, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Yong Li
- Division of Biomedical Engineering, Department of Orthopedic Surgery, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| |
Collapse
|
9
|
Letarov AV. Bacterial Virus Forcing of Bacterial O-Antigen Shields: Lessons from Coliphages. Int J Mol Sci 2023; 24:17390. [PMID: 38139217 PMCID: PMC10743462 DOI: 10.3390/ijms242417390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In most Gram-negative bacteria, outer membrane (OM) lipopolysaccharide (LPS) molecules carry long polysaccharide chains known as the O antigens or O polysaccharides (OPS). The OPS structure varies highly from strain to strain, with more than 188 O serotypes described in E. coli. Although many bacteriophages recognize OPS as their primary receptors, these molecules can also screen OM proteins and other OM surface receptors from direct interaction with phage receptor-binding proteins (RBP). In this review, I analyze the body of evidence indicating that most of the E. coli OPS types robustly shield cells completely, preventing phage access to the OM surface. This shield not only blocks virulent phages but also restricts the acquisition of prophages. The available data suggest that OPS-mediated OM shielding is not merely one of many mechanisms of bacterial resistance to phages. Rather, it is an omnipresent factor significantly affecting the ecology, phage-host co-evolution and other related processes in E. coli and probably in many other species of Gram-negative bacteria. The phages, in turn, evolved multiple mechanisms to break through the OPS layer. These mechanisms rely on the phage RBPs recognizing the OPS or on using alternative receptors exposed above the OPS layer. The data allow one to forward the interpretation that, regardless of the type of receptors used, primary receptor recognition is always followed by the generation of a mechanical force driving the phage tail through the OPS layer. This force may be created by molecular motors of enzymatically active tail spikes or by virion structural re-arrangements at the moment of infection.
Collapse
Affiliation(s)
- Andrey V Letarov
- Winogradsky Institute of Micrbiology, Research Center Fundamentals of Biotechnology RAS, pr. 60-letiya Oktyabrya 7 bld. 2, Moscow 117312, Russia
| |
Collapse
|
10
|
Adefisoye MA, Olaniran AO. Antimicrobial resistance expansion in pathogens: a review of current mitigation strategies and advances towards innovative therapy. JAC Antimicrob Resist 2023; 5:dlad127. [PMID: 38089461 PMCID: PMC10712721 DOI: 10.1093/jacamr/dlad127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
The escalating problem of antimicrobial resistance (AMR) proliferation in clinically important pathogens has become one of the biggest threats to human health and the global economy. Previous studies have estimated AMR-associated deaths and disability-adjusted life-years (DALYs) in many countries with a view to presenting a clearer picture of the global burden of AMR-related diseases. Recently, several novel strategies have been advanced to combat resistance spread. These include efflux activity inhibition, closing of mutant selection window (MSW), biofilm disruption, lytic bacteriophage particles, nanoantibiotics, engineered antimicrobial peptides, and the CRISPR-Cas9 gene-editing technique. The single or integrated deployment of these strategies has shown potentialities towards mitigating resistance and contributing to valuable therapeutic outcomes. Correspondingly, the new paradigm of personalized medicine demands innovative interventions such as improved and accurate point-of-care diagnosis and treatment to curtail AMR. The CRISPR-Cas system is a novel and highly promising nucleic acid detection and manipulating technology with the potential for application in the control of AMR. This review thus considers the specifics of some of the AMR-mitigating strategies, while noting their drawbacks, and discusses the advances in the CRISPR-based technology as an important point-of-care tool for tracking and curbing AMR in our fight against a looming 'post-antibiotic' era.
Collapse
Affiliation(s)
- Martins A Adefisoye
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
- Department of Microbiology, School of Science and Technology, Babcock University, Ilishan-Remo, Nigeria
| | - Ademola O Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
11
|
Usman SS, Uba AI, Christina E. Bacteriophage genome engineering for phage therapy to combat bacterial antimicrobial resistance as an alternative to antibiotics. Mol Biol Rep 2023; 50:7055-7067. [PMID: 37392288 DOI: 10.1007/s11033-023-08557-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/30/2023] [Indexed: 07/03/2023]
Abstract
Bacteriophages (phages) are viruses that mainly infect bacteria and are ubiquitously distributed in nature, especially to their host. Phage engineering involves nucleic acids manipulation of phage genome for antimicrobial activity directed against pathogens through the applications of molecular biology techniques such as synthetic biology methods, homologous recombination, CRISPY-BRED and CRISPY-BRIP recombineering, rebooting phage-based engineering, and targeted nucleases including CRISPR/Cas9, zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). Management of bacteria is widely achieved using antibiotics whose mechanism of action has been shown to target both the genetic dogma and the metabolism of pathogens. However, the overuse of antibiotics has caused the emergence of multidrug-resistant (MDR) bacteria which account for nearly 5 million deaths as of 2019 thereby posing threats to the public health sector, particularly by 2050. Lytic phages have drawn attention as a strong alternative to antibiotics owing to the promising efficacy and safety of phage therapy in various models in vivo and human studies. Therefore, harnessing phage genome engineering methods, particularly CRISPR/Cas9 to overcome the limitations such as phage narrow host range, phage resistance or any potential eukaryotic immune response for phage-based enzymes/proteins therapy may designate phage therapy as a strong alternative to antibiotics for combatting bacterial antimicrobial resistance (AMR). Here, the current trends and progress in phage genome engineering techniques and phage therapy are reviewed.
Collapse
Affiliation(s)
- Sani Sharif Usman
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144401, Punjab, India
- Department of Biological Sciences, Faculty of Science, Federal University of Kashere, P.M.B. 0182, Gombe, Nigeria
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, 34537, Istanbul, Türkiye
| | - Evangeline Christina
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, 144401, Punjab, India.
| |
Collapse
|
12
|
Hussain W, Yang X, Ullah M, Wang H, Aziz A, Xu F, Asif M, Ullah MW, Wang S. Genetic engineering of bacteriophages: Key concepts, strategies, and applications. Biotechnol Adv 2023; 64:108116. [PMID: 36773707 DOI: 10.1016/j.biotechadv.2023.108116] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
Bacteriophages are the most abundant biological entity in the world and hold a tremendous amount of unexplored genetic information. Since their discovery, phages have drawn a great deal of attention from researchers despite their small size. The development of advanced strategies to modify their genomes and produce engineered phages with desired traits has opened new avenues for their applications. This review presents advanced strategies for developing engineered phages and their potential antibacterial applications in phage therapy, disruption of biofilm, delivery of antimicrobials, use of endolysin as an antibacterial agent, and altering the phage host range. Similarly, engineered phages find applications in eukaryotes as a shuttle for delivering genes and drugs to the targeted cells, and are used in the development of vaccines and facilitating tissue engineering. The use of phage display-based specific peptides for vaccine development, diagnostic tools, and targeted drug delivery is also discussed in this review. The engineered phage-mediated industrial food processing and biocontrol, advanced wastewater treatment, phage-based nano-medicines, and their use as a bio-recognition element for the detection of bacterial pathogens are also part of this review. The genetic engineering approaches hold great potential to accelerate translational phages and research. Overall, this review provides a deep understanding of the ingenious knowledge of phage engineering to move them beyond their innate ability for potential applications.
Collapse
Affiliation(s)
- Wajid Hussain
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaohan Yang
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mati Ullah
- Department of Biotechnology, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huan Wang
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ayesha Aziz
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fang Xu
- Huazhong University of Science and Technology Hospital, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Shenqi Wang
- Advanced Biomaterials & Tissues Engineering Center, College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
13
|
Sun Z, Yu T, Cao X, Gao L, Pang Q, Liu B, Deng H. Identification and characterization of Deoxyribonuclease II in planarian Dugesia japonica. Gene 2022; 826:146464. [PMID: 35358655 DOI: 10.1016/j.gene.2022.146464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/09/2022] [Accepted: 03/25/2022] [Indexed: 11/04/2022]
Abstract
Deoxyribonuclease II (DNase II) has been found to regulate inflammation, autoimmunity and apoptosis in vertebrates and invertebrates. The strong capacity of degrading DNA makes DNase II play an important role in the immune process. Planarian has become one of the model references due to its strong immune system, the environment they live makes planarians face the threat of microorganisms and injury, the strong immune system can protect planarians from the threat of bacterial and infection. In this study, we found that there was DNase in the lysis buffer of planarians, then we acquired the sequence of DjDN2s (Dugesia japonica DNase2s) and confirmed the DjDN2s were conserved DNase IIs. The predicted structure showed the active sites and binding patterns of DjDN2s. Whole-mount in situ hybridization results showed DjDN2s mainly expressed in immune organs. Quantitative real-time PCR revealed that the expression of DjDN2s upregulated in varying degrees when got hurt and challenged with bacteria, and the knockdown of DjDN2s led to the slower repair of wound. The recombinant phages which take DjDN2 also had the ability to degrade DNA and clear young biofilm of Gram-negative bacteria. Collectively, DNase II of planarian might play a role in the antimicrobial response and wound-induced response.
Collapse
Affiliation(s)
- Zhe Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Tong Yu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Xiangyu Cao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Lili Gao
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China
| | - Qiuxiang Pang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China.
| | - Baohua Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China; Shenzhen University of Health Science Center, Shenzhen, Guangdong 518060, China.
| | - Hongkuan Deng
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
14
|
Singh A, Padmesh S, Dwivedi M, Kostova I. How Good are Bacteriophages as an Alternative Therapy to Mitigate Biofilms of Nosocomial Infections. Infect Drug Resist 2022; 15:503-532. [PMID: 35210792 PMCID: PMC8860455 DOI: 10.2147/idr.s348700] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Bacteria survive on any surface through the generation of biofilms that provide a protective environment to grow as well as making them drug resistant. Extracellular polymeric matrix is a crucial component in biofilm formation. The presence of biofilms consisting of common opportunistic and nosocomial, drug-resistant pathogens has been reported on medical devices like catheters and prosthetics, leading to many complications. Several approaches are under investigation to combat drug-resistant bacteria. Deployment of bacteriophages is one of the promising approaches to invade biofilm that may expose bacteria to the conditions adverse for their growth. Penetration into these biofilms and their destruction by bacteriophages is brought about due to their small size and ability of their progeny to diffuse through the bacterial cell wall. The other mechanisms employed by phages to infect biofilms may include their relocation through water channels to embedded host cells, replication at local sites followed by infection to the neighboring cells and production of depolymerizing enzymes to decompose viscous biofilm matrix, etc. Various research groups are investigating intricacies involved in phage therapy to mitigate the bacterial infection and biofilm formation. Thus, bacteriophages represent a good control over different biofilms and further understanding of phage-biofilm interaction at molecular level may overcome the clinical challenges in phage therapy. The present review summarizes the comprehensive details on dynamic interaction of phages with bacterial biofilms and the role of phage-derived enzymes - endolysin and depolymerases in extenuating biofilms of clinical and medical concern. The methodology employed was an extensive literature search, using several keywords in important scientific databases, such as Scopus, Web of Science, PubMed, ScienceDirect, etc. The keywords were also used with Boolean operator "And". More than 250 relevant and recent articles were selected and reviewed to discuss the evidence-based data on the application of phage therapy with recent updates, and related potential challenges.
Collapse
Affiliation(s)
- Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Sudhakar Padmesh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University, Sofia, 1000, Bulgaria
| |
Collapse
|
15
|
Liu S, Lu H, Zhang S, Shi Y, Chen Q. Phages against Pathogenic Bacterial Biofilms and Biofilm-Based Infections: A Review. Pharmaceutics 2022; 14:pharmaceutics14020427. [PMID: 35214158 PMCID: PMC8875263 DOI: 10.3390/pharmaceutics14020427] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Bacterial biofilms formed by pathogens are known to be hundreds of times more resistant to antimicrobial agents than planktonic cells, making it extremely difficult to cure biofilm-based infections despite the use of antibiotics, which poses a serious threat to human health. Therefore, there is an urgent need to develop promising alternative antimicrobial therapies to reduce the burden of drug-resistant bacterial infections caused by biofilms. As natural enemies of bacteria, bacteriophages (phages) have the advantages of high specificity, safety and non-toxicity, and possess great potential in the defense and removal of pathogenic bacterial biofilms, which are considered to be alternatives to treat bacterial diseases. This work mainly reviews the composition, structure and formation process of bacterial biofilms, briefly discusses the interaction between phages and biofilms, and summarizes several strategies based on phages and their derivatives against biofilms and drug-resistant bacterial infections caused by biofilms, serving the purpose of developing novel, safe and effective treatment methods against biofilm-based infections and promoting the application of phages in maintaining human health.
Collapse
Affiliation(s)
| | | | | | - Ying Shi
- Correspondence: (Y.S.); (Q.C.); Tel.: +86-139-6717-1522 (Y.S.)
| | - Qihe Chen
- Correspondence: (Y.S.); (Q.C.); Tel.: +86-139-6717-1522 (Y.S.)
| |
Collapse
|
16
|
APTC-EC-2A: A Lytic Phage Targeting Multidrug Resistant E. coli Planktonic Cells and Biofilms. Microorganisms 2022; 10:microorganisms10010102. [PMID: 35056551 PMCID: PMC8779906 DOI: 10.3390/microorganisms10010102] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
Escherichia coli (E. coli) are common bacteria that colonize the human and animal gastrointestinal tract, where they help maintain a balanced microbiome. However, some E. coli strains are pathogenic and can cause serious infectious diseases and life-threatening complications. Due to the overuse of antibiotics and limited development of novel antibiotics, the emergence of antibiotic-resistant strains has threatened modern medicine, whereby common infections can become lethal. Phage therapy has once again attracted interest in recent years as an alternative treatment option to antibiotics for severe infections with antibiotic-resistant strains. The aim of this study was to isolate and characterize phage against multi-drug resistant E. coli isolated from clinical samples and hospital wastewater. For phage isolation, wastewater samples were collected from The Queen Elizabeth Hospital (Adelaide, SA, Australia) followed by phage enrichment as required. Microbiological assays, electron microscopy and genomic sequencing were carried out to characterize the phage. From the 10 isolated E. coli phages, E. coli phage APTC-EC-2A was the most promising and could lyse 6/7 E. coli clinical isolates. APTC-EC-2A was stable at a broad pH range (3–11) and could lyse the host E. coli at temperatures ranging between 30–50 °C. Furthermore, APTC-EC-2A could kill E. coli in planktonic and biofilm form. Electron microscopy and genomic sequencing indicated the phage to be from the Myoviridae family and of lytic nature. In conclusion, the newly isolated phage APTC-EC-2A has the desired properties that support its potential for development as a therapeutic agent against therapy refractory E. coli infections.
Collapse
|