1
|
Mbaye A, Diallo H, Gnimadi TAC, Kadio KJJO, Soumah AK, Koivogui JB, Monemou JL, Povogui MK, Kaba D, Hounmenou C, Serrano L, Butel C, Nuñez NF, Vidal N, Guichet E, Delaporte E, Ayouba A, Peeters M, Toure A, Keita AK. Genomic and epidemiological analysis of SARS-CoV-2 variants isolated in Guinea: a routine sequencing implementation. BMC Infect Dis 2025; 25:3. [PMID: 39748303 PMCID: PMC11696909 DOI: 10.1186/s12879-024-10411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Several variants of SARS-CoV-2 have a demonstrated impact on public health, including high and increased transmissibility, severity of infection, and immune escape. Therefore, this study aimed to determine the SARS-CoV-2 lineages and better characterize the dynamics of the pandemic during the different waves in Guinea. METHODS Whole genome sequencing of 363 samples with PCR cycle threshold (Ct) values under thirty was undertaken between May 2020 and May 2023. The Illumina iSeq 100 technology was used. The sequences were then analyzed using the GeVarli pipeline to generate consensus sequences and variant calling. All sequences isolated in Guinea and available on GISAID were included in the analysis for phylogenetic tree and phylodynamic determination. Nextstain tools were used for these analyses. Statistical analysis was done using GraphPad Prism version 10. RESULTS The circulation of SARS-CoV-2 in Guinea can be distributed in three different periods. The first, lasting from May to June 2020, was characterized by lineages B1 and B.1.1. The second period, from January 2021 to July 2021, was characterized by the lineages B.1.1.7 (Alpha), AY.122, B.1.1.318, R1, B.1.525 and B.1.629. The third period, between December 2021 and May 2023, was characterized by the Omicron variant, with nine subvariant majorities found. In addition, detecting variants in the period out of their circulation was documented. The importation and exportation investigation showed the strong movement viral association between Guinea and Senegal on the one hand and Guinea and Nigeria on the other. CONCLUSION In summary, this study contributes to understanding the epidemic dynamics of the disease by describing the significant variants that circulated in Guinee and the distribution of this variant in the population. It also shows the importation and exportation of the virus during the pandemic. Sub-sampling and degradation of samples for sequences were observed. Organization and collaboration between laboratories are needed for a good sample-collecting and storage system for future direction.
Collapse
Affiliation(s)
- Aminata Mbaye
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abder Nasser de Conakry, Conakry, Guinea.
| | - Haby Diallo
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abder Nasser de Conakry, Conakry, Guinea
| | - Thibaut Armel Cherif Gnimadi
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abder Nasser de Conakry, Conakry, Guinea
| | - Kadio Jean Jacques Olivier Kadio
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abder Nasser de Conakry, Conakry, Guinea
| | - Abdoul Karim Soumah
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abder Nasser de Conakry, Conakry, Guinea
| | - Joel Balle Koivogui
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abder Nasser de Conakry, Conakry, Guinea
| | - Jean Louis Monemou
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abder Nasser de Conakry, Conakry, Guinea
| | - Moriba Kowa Povogui
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abder Nasser de Conakry, Conakry, Guinea
| | - Djiba Kaba
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abder Nasser de Conakry, Conakry, Guinea
| | - Castro Hounmenou
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abder Nasser de Conakry, Conakry, Guinea
| | - Laetitia Serrano
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement (IRD), INSERM, Montpellier, France
| | - Christelle Butel
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement (IRD), INSERM, Montpellier, France
| | - Nicolas Fernandez Nuñez
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement (IRD), INSERM, Montpellier, France
| | - Nicole Vidal
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement (IRD), INSERM, Montpellier, France
| | - Emilande Guichet
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement (IRD), INSERM, Montpellier, France
| | - Eric Delaporte
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement (IRD), INSERM, Montpellier, France
| | - Ahidjo Ayouba
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement (IRD), INSERM, Montpellier, France
| | - Martine Peeters
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement (IRD), INSERM, Montpellier, France
| | - Abdoulaye Toure
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abder Nasser de Conakry, Conakry, Guinea
| | - Alpha Kabinet Keita
- Centre de Recherche et de Formation en Infectiologie de Guinée (CERFIG), Université Gamal Abder Nasser de Conakry, Conakry, Guinea.
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement (IRD), INSERM, Montpellier, France.
| |
Collapse
|
2
|
Bowsher R, Marczylo TH, Gooch K, Bailey A, Wright MD, Marczylo EL. Smoking and vaping alter genes related to mechanisms of SARS-CoV-2 susceptibility and severity: a systematic review and meta-analysis. Eur Respir J 2024; 64:2400133. [PMID: 38991709 PMCID: PMC11269771 DOI: 10.1183/13993003.00133-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/23/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Evidence for the impact of smoking on coronavirus disease 2019 (COVID-19) is contradictory, and there is little research on vaping. Here we provide greater clarity on mechanisms perturbed by tobacco cigarette, electronic cigarette and nicotine exposures that may impact the risks of infection and/or disease severity. METHODS Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, the Ovid and Web of Science databases were searched. Study design and exposure-induced gene expression changes were extracted. Each study was quality assessed and higher confidence scores were assigned to genes consistently changed across multiple studies following the same exposure. These genes were used to explore pathways significantly altered following exposure. RESULTS 125 studies provided data on 480 genes altered by exposure to tobacco cigarettes, e-cigarettes, nicotine or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Genes involved in both SARS-CoV-2 viral-entry and inflammation were changed following exposure. Pathway analysis revealed that many of those genes with high confidence scores are involved in common cellular processes relating to hyperinflammatory immune responses. CONCLUSION Exposure to tobacco cigarettes, e-cigarettes or nicotine may therefore impact initial host-pathogen interactions and disease severity. Smokers and vapers of e-cigarettes with nicotine could potentially be at increased risk of SARS-CoV-2 infection, associated cytokine storm, and acute respiratory distress syndrome. However, further research is required, particularly on e-cigarettes, to determine the biological mechanisms involved in perturbation of viral-entry genes and host-pathogen interactions and subsequent responses within the respiratory tract. This will improve our physiological understanding of the impact of smoking and vaping on COVID-19, informing public health advice and providing improved guidance for management of SARS-CoV-2 and other respiratory viruses.
Collapse
Affiliation(s)
- Rachel Bowsher
- Toxicology Department, UK Health Security Agency, Chilton, UK
- Pharmacology Section, St George's University of London, London, UK
| | | | - Karen Gooch
- Vaccine Development and Evaluation Centre, UK Health Security Agency, Salisbury, UK
| | - Alexis Bailey
- Pharmacology Section, St George's University of London, London, UK
| | | | - Emma L Marczylo
- Toxicology Department, UK Health Security Agency, Chilton, UK
| |
Collapse
|
3
|
Yao Z, Zhang L, Duan Y, Tang X, Lu J. Molecular insights into the adaptive evolution of SARS-CoV-2 spike protein. J Infect 2024; 88:106121. [PMID: 38367704 DOI: 10.1016/j.jinf.2024.106121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Abstract
The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has substantially damaged the global economy and human health. The spike (S) protein of coronaviruses plays a pivotal role in viral entry by binding to host cell receptors. Additionally, it acts as the primary target for neutralizing antibodies in those infected and is the central focus for currently utilized or researched vaccines. During the virus's adaptation to the human host, the S protein of SARS-CoV-2 has undergone significant evolution. As the COVID-19 pandemic has unfolded, new mutations have arisen and vanished, giving rise to distinctive amino acid profiles within variant of concern strains of SARS-CoV-2. Notably, many of these changes in the S protein have been positively selected, leading to substantial alterations in viral characteristics, such as heightened transmissibility and immune evasion capabilities. This review aims to provide an overview of our current understanding of the structural implications associated with key amino acid changes in the S protein of SARS-CoV-2. These research findings shed light on the intricate and dynamic nature of viral evolution, underscoring the importance of continuous monitoring and analysis of viral genomes. Through these molecular-level investigations, we can attain deeper insights into the virus's adaptive evolution, offering valuable guidance for designing vaccines and developing antiviral drugs to combat the ever-evolving viral threats.
Collapse
Affiliation(s)
- Zhuocheng Yao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lin Zhang
- College of Fishery, Ocean University of China, Qingdao 266003, China
| | - Yuange Duan
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
4
|
Chen Q, Qin S, Zhou HY, Deng YQ, Shi PD, Zhao H, Li XF, Huang XY, Wu YR, Guo Y, Pei GQ, Wang YF, Sun SQ, Du ZM, Cui YJ, Fan H, Qin CF. Competitive fitness and homologous recombination of SARS-CoV-2 variants of concern. J Med Virol 2023; 95:e29278. [PMID: 38088537 DOI: 10.1002/jmv.29278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/26/2023] [Accepted: 11/11/2023] [Indexed: 12/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge and cocirculate in humans and wild animals. The factors driving the emergence and replacement of novel variants and recombinants remain incompletely understood. Herein, we comprehensively characterized the competitive fitness of SARS-CoV-2 wild type (WT) and three variants of concern (VOCs), Alpha, Beta and Delta, by coinfection and serial passaging assays in different susceptible cells. Deep sequencing analyses revealed cell-specific competitive fitness: the Beta variant showed enhanced replication fitness during serial passage in Caco-2 cells, whereas the WT and Alpha variant showed elevated fitness in Vero E6 cells. Interestingly, a high level of neutralizing antibody sped up competition and completely reshaped the fitness advantages of different variants. More importantly, single clone purification identified a significant proportion of homologous recombinants that emerged during the passage history, and immune pressure reduced the frequency of recombination. Interestingly, a recombination hot region located between nucleotide sites 22,995 and 28,866 of the viral genomes could be identified in most of the detected recombinants. Our study not only profiled the variable competitive fitness of SARS-CoV-2 under different conditions, but also provided direct experimental evidence of homologous recombination between SARS-CoV-2 viruses, as well as a model for investigating SARS-CoV-2 recombination.
Collapse
Affiliation(s)
- Qi Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Si Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Hang-Yu Zhou
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Pan-Deng Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Hui Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Xing-Yao Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Ya-Rong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Guang-Qian Pei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Yun-Fei Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Si-Qi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Zong-Min Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Yu-Jun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Chen Q, Huang XY, Liu Y, Sun MX, Ji B, Zhou C, Chi H, Zhang RR, Luo D, Tian Y, Li XF, Hui Z, Qin CF. Comparative characterization of SARS-CoV-2 variants of concern and mouse-adapted strains in mice. J Med Virol 2022; 94:3223-3232. [PMID: 35322439 PMCID: PMC9088695 DOI: 10.1002/jmv.27735] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 11/11/2022]
Abstract
SARS‐CoV‐2 has evolved into a panel of variants of concern (VOCs) and constituted a sustained threat to global health. The wildtype (WT) SARS‐CoV‐2 isolates fail to infect mice, while the Beta variant, one of the VOCs, has acquired the capability to infect standard laboratory mice, raising a spreading risk of SARS‐CoV‐2 from humans to mice. However, the infectivity and pathogenicity of other VOCs in mice remain not fully understood. In this study, we systematically investigated the infectivity and pathogenicity of three VOCs, Alpha, Beta, and Delta, in mice in comparison with two well‐understood SARS‐CoV‐2 mouse‐adapted strains, MASCp6 and MASCp36, sharing key mutations in the receptor‐binding domain (RBD) with Alpha or Beta, respectively. Our results showed that the Beta variant had the strongest infectivity and pathogenicity among the three VOCs, while the Delta variant only caused limited replication and mild pathogenic changes in the mouse lung, which is much weaker than what the Alpha variant did. Meanwhile, Alpha showed comparable infectivity in lungs in comparison with MASCp6, and Beta only showed slightly lower infectivity in lungs when compared with MASCp36. These results indicated that all three VOCs have acquired the capability to infect mice, highlighting the ongoing spillover risk of SARS‐CoV‐2 from humans to mice during the continued evolution of SARS‐CoV‐2, and that the key amino acid mutations in the RBD of mouse‐adapted strains may be referenced as an early‐warning indicator for predicting the spillover risk of newly emerging SARS‐CoV‐2 variants.
Collapse
Affiliation(s)
- Qi Chen
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Xing-Yao Huang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Yu Liu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Meng-Xu Sun
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Bin Ji
- Department of Disease Control, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, Jiangsu Province, China
| | - Chao Zhou
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Hang Chi
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Rong-Rong Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Dan Luo
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Ying Tian
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Xiao-Feng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Zhao Hui
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, 100071, China.,Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, 100071, China
| |
Collapse
|
6
|
Vo GV, Bagyinszky E, An SSA. COVID-19 Genetic Variants and Their Potential Impact in Vaccine Development. Microorganisms 2022; 10:598. [PMID: 35336173 PMCID: PMC8954257 DOI: 10.3390/microorganisms10030598] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 01/18/2023] Open
Abstract
In the two years since the SARS-CoV-2 pandemic started, it has caused over 5 million deaths and 400 million infected cases, and the world continues to be on high alert for COVID-19. Among the variants of interest and concern of SARS-CoV-2, the current Omicron (B.1.1.529) and stealth Omicron (BA.2) raised serious concerns due to rapid rates of infection caused by numerous mutations in the spike protein, which could escape from the antibody-mediated neutralization and increase the risk of reinfections. Hence, this work aims to describe the most relevant mutations in the SARS-CoV-2 spike protein, discuss vaccine against variant of concerns, describe rare adverse events after COVID-19 vaccination, introduce the most available promising COVID-19 vaccine candidates, and provide few perspectives of the future variants.
Collapse
Affiliation(s)
- Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 70000, Vietnam;
- Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University, Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 70000, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City 70000, Vietnam
| | - Eva Bagyinszky
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam 13120, Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea
| |
Collapse
|
7
|
Qian Z, Li P, Tang X, Lu J. Evolutionary dynamics of the severe acute respiratory syndrome coronavirus 2 genomes. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:3-22. [PMID: 35658106 PMCID: PMC9047652 DOI: 10.1515/mr-2021-0035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/23/2022] [Indexed: 12/27/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused immense losses in human lives and the global economy and posed significant challenges for global public health. As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has evolved, thousands of single nucleotide variants (SNVs) have been identified across the viral genome. The roles of individual SNVs in the zoonotic origin, evolution, and transmission of SARS-CoV-2 have become the focus of many studies. This review summarizes recent comparative genomic analyses of SARS-CoV-2 and related coronaviruses (SC2r-CoVs) found in non-human animals, including delineation of SARS-CoV-2 lineages based on characteristic SNVs. We also discuss the current understanding of receptor-binding domain (RBD) evolution and characteristic mutations in variants of concern (VOCs) of SARS-CoV-2, as well as possible co-evolution between RBD and its receptor, angiotensin-converting enzyme 2 (ACE2). We propose that the interplay between SARS-CoV-2 and host RNA editing mechanisms might have partially resulted in the bias in nucleotide changes during SARS-CoV-2 evolution. Finally, we outline some current challenges, including difficulty in deciphering the complicated relationship between viral pathogenicity and infectivity of different variants, and monitoring transmission of SARS-CoV-2 between humans and animals as the pandemic progresses.
Collapse
Affiliation(s)
- Zhaohui Qian
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100871, China
| | - Pei Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100871, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100176, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100176, China
| |
Collapse
|