1
|
Qiu L, Sun Y, Ning H, Chen G, Zhao W, Gao Y. The scaffold protein AXIN1: gene ontology, signal network, and physiological function. Cell Commun Signal 2024; 22:77. [PMID: 38291457 PMCID: PMC10826278 DOI: 10.1186/s12964-024-01482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/06/2024] [Indexed: 02/01/2024] Open
Abstract
AXIN1, has been initially identified as a prominent antagonist within the WNT/β-catenin signaling pathway, and subsequently unveiled its integral involvement across a diverse spectrum of signaling cascades. These encompass the WNT/β-catenin, Hippo, TGFβ, AMPK, mTOR, MAPK, and antioxidant signaling pathways. The versatile engagement of AXIN1 underscores its pivotal role in the modulation of developmental biological signaling, maintenance of metabolic homeostasis, and coordination of cellular stress responses. The multifaceted functionalities of AXIN1 render it as a compelling candidate for targeted intervention in the realms of degenerative pathologies, systemic metabolic disorders, cancer therapeutics, and anti-aging strategies. This review provides an intricate exploration of the mechanisms governing mammalian AXIN1 gene expression and protein turnover since its initial discovery, while also elucidating its significance in the regulation of signaling pathways, tissue development, and carcinogenesis. Furthermore, we have introduced the innovative concept of the AXIN1-Associated Phosphokinase Complex (AAPC), where the scaffold protein AXIN1 assumes a pivotal role in orchestrating site-specific phosphorylation modifications through interactions with various phosphokinases and their respective substrates.
Collapse
Affiliation(s)
- Lu Qiu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yixuan Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Haoming Ning
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
2
|
Hashem S, Ali TA, Akhtar S, Nisar S, Sageena G, Ali S, Al-Mannai S, Therachiyil L, Mir R, Elfaki I, Mir MM, Jamal F, Masoodi T, Uddin S, Singh M, Haris M, Macha M, Bhat AA. Targeting cancer signaling pathways by natural products: Exploring promising anti-cancer agents. Biomed Pharmacother 2022; 150:113054. [PMID: 35658225 DOI: 10.1016/j.biopha.2022.113054] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is one of the leading causes of death and significantly burdens the healthcare system. Due to its prevalence, there is undoubtedly an unmet need to discover novel anticancer drugs. The use of natural products as anticancer agents is an acceptable therapeutic approach due to accessibility, applicability, and reduced cytotoxicity. Natural products have been an incomparable source of anticancer drugs in the modern era of drug discovery. Along with their derivatives and analogs, natural products play a major role in cancer treatment by modulating the cancer microenvironment and different signaling pathways. These compounds are effective against several signaling pathways, mainly cell death pathways (apoptosis and autophagy) and embryonic developmental pathways (Notch pathway, Wnt pathway, and Hedgehog pathway). The historical record of natural products is strong, but there is a need to investigate the current role of natural products in the discovery and development of cancer drugs and determine the possibility of natural products being an important source of future therapeutic agents. Many target-specific anticancer drugs failed to provide successful results, which accounts for a need to investigate natural products with multi-target characteristics to achieve better outcomes. The potential of natural products to be promising novel compounds for cancer treatment makes them an important area of research. This review explores the significance of natural products in inhibiting the various signaling pathways that serve as drivers of carcinogenesis and thus pave the way for developing and discovering anticancer drugs.
Collapse
Affiliation(s)
- Sheema Hashem
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
| | - Tayyiba Akbar Ali
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
| | - Sabah Akhtar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
| | | | - Shahid Ali
- International Potato Center (CIP), Shillong, Meghalaya, India
| | - Sharefa Al-Mannai
- Division of Translational Medicine, Research Branch, Sidra Medicine, Doha 26999, Qatar
| | - Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, Doha, Qatar
| | - Rashid Mir
- Prince Fahd Bin Sultan Research chair, Department Of Medical Lab Technology, FAMS, University of Tabuk,Saudi Arabia
| | - Imadeldin Elfaki
- Department of Biochemistry, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohammad Muzaffar Mir
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Saudi Arabia
| | - Farrukh Jamal
- Dr. Rammanohar Lohia Avadh University, Ayodhya, India
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Mayank Singh
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar; Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Muzafar Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Kashmir, India.
| | - Ajaz A Bhat
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
3
|
Kafka A, Bukovac A, Brglez E, Jarmek AM, Poljak K, Brlek P, Žarković K, Njirić N, Pećina-Šlaus N. Methylation Patterns of DKK1, DKK3 and GSK3β Are Accompanied with Different Expression Levels in Human Astrocytoma. Cancers (Basel) 2021; 13:cancers13112530. [PMID: 34064046 PMCID: PMC8196684 DOI: 10.3390/cancers13112530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/24/2023] Open
Abstract
In the present study, we investigated genetic and epigenetic changes and protein expression levels of negative regulators of Wnt signaling, DKK1, DKK3, and APC as well as glycogen synthase kinase 3 (GSK3β) and β-catenin in 64 human astrocytomas of grades II-IV. Methylation-specific PCR revealed promoter methylation of DKK1, DKK3, and GSK3β in 38%, 43%, and 18% of samples, respectively. Grade IV comprised the lowest number of methylated GSK3β cases and highest of DKK3. Evaluation of the immunostaining using H-score was performed for β-catenin, both total and unphosphorylated (active) forms. Additionally, active (pY216) and inactive (pS9) forms of GSK3β protein were also analyzed. Spearman's correlation confirmed the prevalence of β-catenin's active form (rs = 0.634, p < 0.001) in astrocytoma tumor cells. The Wilcoxon test revealed that astrocytoma with higher levels of the active pGSK3β-Y216 form had lower expression levels of its inactive form (p < 0.0001, Z = -5.332). Changes in APC's exon 11 were observed in 44.44% of samples by PCR/RFLP. Astrocytomas with changes of APC had higher H-score values of total β-catenin compared to the group without genetic changes (t = -2.264, p = 0.038). Furthermore, a positive correlation between samples with methylated DKK3 promoter and the expression of active pGSK3β-Y216 (rs = 0.356, p = 0.011) was established. Our results emphasize the importance of methylation for the regulation of Wnt signaling. Large deletions of the APC gene associated with increased β-catenin levels, together with oncogenic effects of both β-catenin and GSK3β, are clearly involved in astrocytoma evolution. Our findings contribute to a better understanding of the etiology of gliomas. Further studies should elucidate the clinical and therapeutic relevance of the observed molecular alterations.
Collapse
Affiliation(s)
- Anja Kafka
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia; (A.B.); (E.B.); (A.-M.J.); (K.P.); (P.B.); (N.N.); (N.P.-Š.)
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- Correspondence:
| | - Anja Bukovac
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia; (A.B.); (E.B.); (A.-M.J.); (K.P.); (P.B.); (N.N.); (N.P.-Š.)
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Emilija Brglez
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia; (A.B.); (E.B.); (A.-M.J.); (K.P.); (P.B.); (N.N.); (N.P.-Š.)
| | - Ana-Marija Jarmek
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia; (A.B.); (E.B.); (A.-M.J.); (K.P.); (P.B.); (N.N.); (N.P.-Š.)
| | - Karolina Poljak
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia; (A.B.); (E.B.); (A.-M.J.); (K.P.); (P.B.); (N.N.); (N.P.-Š.)
| | - Petar Brlek
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia; (A.B.); (E.B.); (A.-M.J.); (K.P.); (P.B.); (N.N.); (N.P.-Š.)
| | - Kamelija Žarković
- Department of Pathology, School of Medicine, University of Zagreb, Šalata 10, 10 000 Zagreb, Croatia;
- Division of Pathology, University Hospital Center “Zagreb”, Kišpatićeva 12, 10 000 Zagreb, Croatia
| | - Niko Njirić
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia; (A.B.); (E.B.); (A.-M.J.); (K.P.); (P.B.); (N.N.); (N.P.-Š.)
- Department of Neurosurgery, University Hospital Center “Zagreb”, School of Medicine, University of Zagreb, Kišpatićeva 12, 10 000 Zagreb, Croatia
| | - Nives Pećina-Šlaus
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia; (A.B.); (E.B.); (A.-M.J.); (K.P.); (P.B.); (N.N.); (N.P.-Š.)
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| |
Collapse
|
4
|
Espinosa-Sánchez A, Suárez-Martínez E, Sánchez-Díaz L, Carnero A. Therapeutic Targeting of Signaling Pathways Related to Cancer Stemness. Front Oncol 2020; 10:1533. [PMID: 32984007 PMCID: PMC7479251 DOI: 10.3389/fonc.2020.01533] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
The theory of cancer stem cells (CSCs) proposes that the different cells within a tumor, as well as metastasis deriving from it, are originated from a single subpopulation of cells with self-renewal and differentiation capacities. These cancer stem cells are supposed to be critical for tumor expansion and metastasis, tumor relapse and resistance to conventional therapies, such as chemo- and radiotherapy. The acquisition of these abilities has been attributed to the activation of alternative pathways, for instance, WNT, NOTCH, SHH, PI3K, Hippo, or NF-κB pathways, that regulate detoxification mechanisms; increase the metabolic rate; induce resistance to apoptotic, autophagic, and senescence pathways; promote the overexpression of drug transporter proteins; and activate specific stem cell transcription factors. The elimination of CSCs is an important goal in cancer therapeutic approaches because it could decrease relapses and metastatic dissemination, which are main causes of mortality in oncology patients. In this work, we discuss the role of these signaling pathways in CSCs along with their therapeutic potential.
Collapse
Affiliation(s)
- Asunción Espinosa-Sánchez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Elisa Suárez-Martínez
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Laura Sánchez-Díaz
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
- CIBER de Cancer, Madrid, Spain
| |
Collapse
|
5
|
Kafka A, Bačić M, Tomas D, Žarković K, Bukovac A, Njirić N, Mrak G, Krsnik Ž, Pećina‐Šlaus N. Different behaviour of DVL1, DVL2, DVL3 in astrocytoma malignancy grades and their association to TCF1 and LEF1 upregulation. J Cell Mol Med 2019; 23:641-655. [PMID: 30468298 PMCID: PMC6307814 DOI: 10.1111/jcmm.13969] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/04/2018] [Accepted: 09/27/2018] [Indexed: 01/21/2023] Open
Abstract
Key regulators of the Wnt signalling, DVL1, DVL2 and DVL3, in astrocytomas of different malignancy grades were investigated. Markers for DVL1, DVL2 and DVL3 were used to detect microsatellite instability (MSI) and gross deletions (LOH), while immunohistochemistry and immunoreactivity score were used to determine the signal strengths of the three DVL proteins and transcription factors of the pathway, TCF1 and LEF1. Our findings demonstrated that MSI at all three DVL loci was constantly found across tumour grades with the highest number in grade II (P = 0.008). Collectively, LOHs were more frequent in high-grade tumours than in low grade ones. LOHs of DVL3 gene were significantly associated with grade IV tumours (P = 0.007). The results on protein expressions indicated that high-grade tumours expressed less DVL1 protein as compared with low grade ones. A significant negative correlation was established between DVL1 expression and malignancy grades (P < 0.001). The expression of DVL2 protein was found similar across grades, while DVL3 expression significantly increased with malignancy grades (P < 0.001). The signal strengths of expressed DVL1 and DVL3 were negatively correlated (P = 0.002). However, TCF1 and LEF1 were both significantly upregulated and increasing with astrocytoma grades (P = 0.001). A positive correlation was established between DVL3 and both TCF1 (P = 0.020) and LEF1 (P = 0.006) suggesting their joint involvement in malignant progression. Our findings suggest that DVL1 and DVL2 may be involved during early stages of the disease, while DVL3 may have a role in later phases and together with TCF1 and LEF1 promotes the activation of Wnt signalling.
Collapse
Affiliation(s)
- Anja Kafka
- Laboratory of Neuro‐oncologyCroatian Institute for Brain ResearchSchool of MedicineUniversity of ZagrebZagrebCroatia
- Department of BiologySchool of MedicineUniversity of ZagrebZagrebCroatia
| | | | - Davor Tomas
- Department of PathologySchool of MedicineUniversity of ZagrebZagrebCroatia
- Department of PathologyUniversity Hospital Center “Sisters of Charity”ZagrebCroatia
| | - Kamelija Žarković
- Department of PathologySchool of MedicineUniversity of ZagrebZagrebCroatia
- Division of PathologyUniversity Hospital Center “Zagreb”ZagrebCroatia
| | - Anja Bukovac
- Laboratory of Neuro‐oncologyCroatian Institute for Brain ResearchSchool of MedicineUniversity of ZagrebZagrebCroatia
- Department of BiologySchool of MedicineUniversity of ZagrebZagrebCroatia
| | - Niko Njirić
- Laboratory of Neuro‐oncologyCroatian Institute for Brain ResearchSchool of MedicineUniversity of ZagrebZagrebCroatia
- Department of NeurosurgeryUniversity Hospital Center “Zagreb”School of MedicineUniversity of ZagrebZagrebCroatia
| | - Goran Mrak
- Department of NeurosurgeryUniversity Hospital Center “Zagreb”School of MedicineUniversity of ZagrebZagrebCroatia
| | - Željka Krsnik
- Department of NeuroscienceCroatian Institute for Brain ResearchSchool of MedicineUniversity of ZagrebZagrebCroatia
| | - Nives Pećina‐Šlaus
- Laboratory of Neuro‐oncologyCroatian Institute for Brain ResearchSchool of MedicineUniversity of ZagrebZagrebCroatia
- Department of BiologySchool of MedicineUniversity of ZagrebZagrebCroatia
| |
Collapse
|
6
|
Expression Levels and Localizations of DVL3 and sFRP3 in Glioblastoma. DISEASE MARKERS 2017; 2017:9253495. [PMID: 29200599 PMCID: PMC5671711 DOI: 10.1155/2017/9253495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/14/2017] [Indexed: 12/28/2022]
Abstract
The expression patterns of critical molecular components of Wnt signaling, sFRP3 and DVL3, were investigated in glioblastoma, the most aggressive form of primary brain tumors, with the aim to offer potential biomarkers. The protein expression levels and localizations in tumor tissue were revealed by immunohistochemistry and evaluated by the semiquantitative method and immunoreactivity score. Majority of glioblastomas had moderate expression levels for both DVL3 (52.4%) and sFRP3 (52.3%). Strong expression levels were observed in 23.1% and 36.0% of samples, respectively. DVL3 was localized in cytoplasm in 97% of glioblastomas, of which 44% coexpressed the protein in the nucleus. sFRP3 subcellular distribution showed that it was localized in the cytoplasm in 94% of cases. Colocalization in the cytoplasm and nucleus was observed in 50% of samples. Wilcox test indicated that the domination of the strong signal is in connection with simultaneous localization of DVL3 protein in the cytoplasm and the nucleus. Patients with strong expression of DVL3 will significantly more often have the protein in the nucleus (P = 6.33 × 10−5). No significant correlation between the two proteins was established, nor were their signal strengths correlated with epidemiological parameters. Our study contributes to better understanding of glioblastoma molecular profile.
Collapse
|
7
|
Quadrifoglio M, Faletra F, Bussani R, Pecile V, Zennaro F, Grasso A, Zandonà L, Alberico S, Stampalija T. A Case of Prenatal Neurocytoma Associated With ATR-16 Syndrome. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2016; 35:1359-1361. [PMID: 27235459 DOI: 10.7863/ultra.15.07045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Mariachiara Quadrifoglio
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health, Istituto Di Ricovero e Cura a Carattere Scientifico Burlo Garofolo, Trieste, Italy
| | - Flavio Faletra
- Department of Genetics, Institute for Maternal and Child Health, Istituto Di Ricovero e Cura a Carattere Scientifico Burlo Garofolo, Trieste, Italy
| | - Rossana Bussani
- Department of Histopathology, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Vanna Pecile
- Department of Genetics, Institute for Maternal and Child Health, Istituto Di Ricovero e Cura a Carattere Scientifico Burlo Garofolo, Trieste, Italy
| | - Floriana Zennaro
- Department of Pediatric Radiology, Institute for Maternal and Child Health, Istituto Di Ricovero e Cura a Carattere Scientifico Burlo Garofolo, Trieste, Italy
| | - Alessandra Grasso
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health, Istituto Di Ricovero e Cura a Carattere Scientifico Burlo Garofolo, Trieste, Italy
| | - Lorenzo Zandonà
- Department of Histopathology, Cattinara Hospital, University of Trieste, Trieste, Italy
| | - Salvatore Alberico
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health, Istituto Di Ricovero e Cura a Carattere Scientifico Burlo Garofolo, Trieste, Italy
| | - Tamara Stampalija
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health, Istituto Di Ricovero e Cura a Carattere Scientifico Burlo Garofolo, Trieste, Italy
| |
Collapse
|
8
|
Pećina-Šlaus N, Kafka A, Varošanec AM, Marković L, Krsnik Ž, Njirić N, Mrak G. Expression patterns of Wnt signaling component, secreted frizzled‑related protein 3 in astrocytoma and glioblastoma. Mol Med Rep 2016; 13:4245-51. [PMID: 27035837 PMCID: PMC4838070 DOI: 10.3892/mmr.2016.5061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
Secreted frizzled-related protein 3 (SFRP3) is a member of the family of soluble proteins, which modulate the Wnt signaling cascade. Novel research has identified aberrant expression of SFRPs in different types of cancer. In the present study the expression intensities and localizations of the SFRP3 protein across different histopathological grades of astrocytic brain tumors were investigated by immunohistochemistry, digital scanning and image analysis. The results demonstrated that the differences between expression levels and malignancy grades were statistically significant. Tumors were classified into four malignancy grades according to the World Health Organization guidelines. Moderate (P=0.014) and strong (P=0.028) nuclear expression levels were significantly different in pilocytic (grade I) and diffuse (grade II) astrocytomas demonstrating higher expression values, as compared with anaplastic astrocytoma (grade III) and glioblastoma (grade IV). When the sample was divided into two groups, the moderate and high cytoplasmic expression levels were observed to be significantly higher in glioblastomas than in the group comprising astrocytoma II and III. Furthermore, the results indicated that high grade tumors were associated with lower values of moderate (P=0.002) and strong (P=0.018) nuclear expression in comparison to low grade tumors. Analysis of cytoplasmic staining demonstrated that strong cytoplasmic expression was significantly higher in the astrocytoma III and IV group than in the astrocytoma I and II group (P=0.048). Furthermore, lower grade astrocytomas exhibited reduced membranous SFRP3 staining when compared with higher grade astrocytomas and this difference was statistically significant (P=0.036). The present results demonstrated that SFRP3 protein expression levels were decreased in the nucleus in higher grade astrocytoma (indicating the expected behavior of an antagonist of Wnt signaling), whereas when the SFRP3 was located in the cytoplasm an increased expression level of SFRP3 was identified in the high grade astrocytomas when compared with those of a low grade. This may suggest that SFRP3 acts as an agonist of Wnt signaling and promotes invasive behavior.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| | - Anja Kafka
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| | - Ana Maria Varošanec
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| | - Leon Marković
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| | - Željka Krsnik
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| | - Niko Njirić
- Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| | - Goran Mrak
- Department of Neurosurgery, University Hospital Center Zagreb, School of Medicine, University of Zagreb, Zagreb HR‑10000, Croatia
| |
Collapse
|
9
|
Pećina-Šlaus N, Kafka A. Wnt signaling and astrocytic brain tumors. CNS Oncol 2015; 4:369-70. [PMID: 26497968 DOI: 10.2217/cns.15.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Song X, Wang S, Li L. New insights into the regulation of Axin function in canonical Wnt signaling pathway. Protein Cell 2014; 5:186-93. [PMID: 24474204 PMCID: PMC3967064 DOI: 10.1007/s13238-014-0019-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/10/2013] [Indexed: 12/16/2022] Open
Abstract
The Wnt signaling pathway plays crucial roles during embryonic development, whose aberration is implicated in a variety of human cancers. Axin, a key component of canonical Wnt pathway, plays dual roles in modulating Wnt signaling: on one hand, Axin scaffolds the “β-catenin destruction complex” to promote β-catenin degradation and therefore inhibits the Wnt signal transduction; on the other hand, Axin interacts with LRP5/6 and facilitates the recruitment of GSK3 to the plasma membrane to promote LRP5/6 phosphorylation and Wnt signaling. The differential assemblies of Axin with these two distinct complexes have to be tightly controlled for appropriate transduction of the “on” or “off” Wnt signal. So far, there are multiple mechanisms revealed in the regulation of Axin activity, such as post-transcriptional modulation, homo/hetero-polymerization and auto-inhibition. These mechanisms may work cooperatively to modulate the function of Axin, thereby playing an important role in controlling the canonical Wnt signaling. In this review, we will focus on the recent progresses regarding the regulation of Axin function in canonical Wnt signaling.
Collapse
Affiliation(s)
- Xiaomin Song
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | | |
Collapse
|
11
|
Codispoti KET, Mosier S, Ramsey R, Lin MT, Rodriguez FJ. Genetic and pathologic evolution of early secondary gliosarcoma. Brain Tumor Pathol 2013; 31:40-6. [PMID: 23324827 DOI: 10.1007/s10014-012-0132-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 12/23/2012] [Indexed: 12/18/2022]
Abstract
Gliosarcoma is a subset of glioblastoma with glial and mesenchymal components. True secondary gliosarcomas (i.e. progressing from lower-grade precursors) in the absence of radiation therapy are very rare. We report the unique case of a 61-year-old male who developed a fibrillary astrocytoma (WHO grade II). In the absence of adjuvant therapy the tumor recurred 3 years later as a gliosarcoma comprising an infiltrating glial component and a curious, early high-grade sarcomatous component surrounding intratumoral vessels. DNA was extracted from formalin fixed paraffin-embedded tissues from the precursor low-grade glioma and from the glioma and sarcomatous components at progression. Samples were hybridized separately to a 300 k Illumina SNP array. IDH1(R132H) mutant protein immunohistochemistry was positive in all tissue components. Alterations identified in all samples included dup(1)(q21q41), del(1)(q41qter), del(2)(q31.1), del(2)(q36.3qter), del(4)(q35.1qter), dup(7)(q22.2q36.3), del(7)(q36.3qter), del(9)(p21.3pter), dup(10)(p13pter), del(10)(q26.13q26.3), dup(17) (q12qter), and copy neutral LOH(20)(p11.23p11.21). The recurrent tumor had additional alterations, including del(3)(p21.31q13.31), del(18)(q21.2qter), and a homozygous del(9)(p21.3)(CDKN2A locus) and the sarcoma component had, in addition, del(4)(p14pter), del(6)(q12qter), del(11)(q24.3qter), and del(16)(p11.2pter). In conclusion, unique copy number alterations were identified during tumor progression from a low-grade glioma to gliosarcoma. A subset of alterations developed specifically in the sarcomatous component.
Collapse
|
12
|
AXIN is an essential co-activator for the promyelocytic leukemia protein in p53 activation. Oncogene 2010; 30:1194-204. [PMID: 21057547 DOI: 10.1038/onc.2010.499] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The PML protein is best known for its role as a tumor suppressor for acute promyelocytic leukemia. Both PML and the key Wnt signaling regulator AXIN regulate p53-dependent apoptosis in response to DNA damage. However, how the two major tumor suppressors coordinate with each other is unknown, and the molecular components orchestrating the PML-induced apoptosis remain enigmatic. Here we show that AXIN interacts with PML in vivo, and further that AXIN, PML and p53 form a ternary complex. Exposure to genotoxic signals including UV and doxorubicin induces AXIN to enter into the nucleus where it colocalizes with PML in the nuclear bodies. Domain-mapping experiments revealed that the C-terminal region (aa 597-832) of AXIN is responsible for its interaction with PML. AXIN fails to activate p53 in PML(-/-) cells, and conversely, PML is unable to activate p53 in AXIN-null SNU475 cells. Consistently, knockdown with respective siRNAs revealed that AXIN and PML depend on each other to elevate p53-Ser-46 phosphorylation and to induce apoptosis after treatment with genotoxins. Moreover, we found that dominant-negative mutants of PML blocked AXIN-induced p53 activation, and that AXIN promotes PML sumoylation, a modification necessary for PML functions. Our finding has thus provided a new avenue for understanding the mechanism by which PML activates p53 and exerts its role as a tumor suppressor.
Collapse
|
13
|
Inactivation of PI3K/AKT signaling inhibits glioma cell growth through modulation of β-catenin-mediated transcription. Brain Res 2010; 1366:9-17. [PMID: 20888802 DOI: 10.1016/j.brainres.2010.09.097] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/20/2010] [Accepted: 09/27/2010] [Indexed: 11/20/2022]
Abstract
Aberrant Wnt/β-catenin signaling contributes to the development of many cancers, including glial tumorigenesis. While cross talk between the Wnt/β-catenin and PI3K/AKT signaling pathways has been proposed, the impact of PI3K/AKT inhibition on β-catenin signaling in glioma remains unknown. In the present study, we report decreased cell proliferation and invasive ability upon the LY294002-induced inhibition of PI3K in both U251 and LN229 human glioblastoma cells in vitro. Pharmacologic inhibition of PI3K resulted in the downregulation of several members of the β-catenin pathway, including Fra-1, c-Myc, and cyclin D1. Downregulation impacted β-catenin-mediated transcription, as LY294002 decreased β-catenin/TCF transcriptional activity, determined by the reporter assay. Similar results were observed in vivo, as intratumoral injection of LY294002 downregulated the expression of the components of the β-catenin pathway and delayed tumor growth in nude mice harboring subcutaneous LN229 xenografts. These results suggest that the PI3K/AKT signaling pathway regulates glioma cell proliferation, in part via repression of the Wnt/β-catenin pathway.
Collapse
|