1
|
Sipos D, Debreczeni-Máté Z, Ritter Z, Freihat O, Simon M, Kovács Á. Complex Diagnostic Challenges in Glioblastoma: The Role of 18F-FDOPA PET Imaging. Pharmaceuticals (Basel) 2024; 17:1215. [PMID: 39338377 PMCID: PMC11434841 DOI: 10.3390/ph17091215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Glioblastoma multiforme (GBM) remains one of the most aggressive and lethal forms of brain cancer, characterized by rapid proliferation and diffuse infiltration into the surrounding brain tissues. Despite advancements in therapeutic approaches, the prognosis for GBM patients is poor, with median survival times rarely exceeding 15 months post-diagnosis. An accurate diagnosis, treatment planning, and monitoring are crucial for improving patient outcomes. Core imaging modalities such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are indispensable in the initial diagnosis and ongoing management of GBM. Histopathology remains the gold standard for definitive diagnoses, guiding treatment by providing molecular and genetic insights into the tumor. Advanced imaging modalities, particularly positron emission tomography (PET), play a pivotal role in the management of GBM. Among these, 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine (18F-FDOPA) PET has emerged as a powerful tool due to its superior specificity and sensitivity in detecting GBM and monitoring treatment responses. This introduction provides a comprehensive overview of the multifaceted role of 18F-FDOPA PET in GBM, covering its diagnostic accuracy, potential as a biomarker, integration into clinical workflows, impact on patient outcomes, technological and methodological advancements, comparative effectiveness with other PET tracers, and its cost-effectiveness in clinical practice. Through these perspectives, we aim to underscore the significant contributions of 18F-FDOPA PET to the evolving landscape of GBM management and its potential to enhance both clinical and economic outcomes for patients afflicted with this formidable disease.
Collapse
Affiliation(s)
- David Sipos
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
- Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, “Moritz Kaposi” Teaching Hospital, Guba Sándor Street 40, 7400 Kaposvár, Hungary
| | - Zsanett Debreczeni-Máté
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
| | - Zsombor Ritter
- Department of Medical Imaging, Medical School, University of Pécs, 7621 Pécs, Hungary
| | - Omar Freihat
- Department of Public Health, College of Health Science, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| | - Mihály Simon
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Árpád Kovács
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
2
|
Opposits G, Aranyi C, Glavák C, Cselik Z, Trón L, Sipos D, Hadjiev J, Berényi E, Repa I, Emri M, Kovács Á. OAR sparing 3D radiotherapy planning supported by fMRI brain mapping investigations. Med Dosim 2020; 45:e1-e8. [PMID: 32505630 DOI: 10.1016/j.meddos.2020.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/21/2020] [Accepted: 04/08/2020] [Indexed: 11/28/2022]
Abstract
The human brain as an organ has numerous functions; some of them can be visualized by functional imaging techniques (e.g., functional MRI [fMRI] or positron emission tomography). The localization of the appropriate activity clusters requires sophisticated instrumentation and complex measuring protocol. As the inclusion of the activation pattern in modern self-tailored 3D based radiotherapy has notable advantages, this method is applied frequently. Unfortunately, no standardized method has been published yet for the integration of the fMRI data into the planning process and the detailed description of the individual applications is usually missing. Thirteen patients with brain tumors, receiving fMRI based RT planning were enrolled in this study. The delivered dose maps were exported from the treatment planning system and processed for further statistical analysis. Two parameters were introduced to measure the geometrical distance Hausdorff Distance (HD), and volumetric overlap Dice Similarity Coefficient (DSC) of fMRI corrected and not corrected dose matrices as calculated by 3D planning to characterize similarity and/or dissimilarity of these dose matrices. Statistical analysis of bootstrapped HD and DSC data was performed to determine confidence intervals of these parameters. The calculated confidence intervals for HD and DSC were (5.04, 7.09), (0.79, 0.86), respectively for the 40 Gy and (5.2, 7.85), (0.74, 0.83), respectively for the 60 Gy dose volumes. These data indicate that in the case of HD < 5.04 and/or DSC > 0.86, the 40 Gy dose volumes obtained with and without fMRI activation pattern do not show a significant difference (5% significance level). The same conditions for the 60 Gy dose volumes were HD < 5.2 and/or DSC > 0.83. At the same time, with HD > 7.09 and/or DSC < 0.79 for 40 Gy and HD > 7.85 and/or DSC < 0.74 for 60 Gy the impact of fMRI utilization in RT planning is excessive. The fMRI activation clusters can be used in daily RT planning routine to spare activation clusters as critical areas in the brain and avoid their high dose irradiation. Parameters HD (as distance) and DSC (as overlap) can be used to characterize the difference and similarity between the radiotherapy planning target volumes and indicate whether the fMRI delivered activation patterns and consequent fMRI corrected planning volumes are reliable or not.
Collapse
Affiliation(s)
- Gábor Opposits
- University of Debrecen, Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, Nagyerdei krt. 98., Debrecen 4032, Hungary.
| | - Csaba Aranyi
- University of Debrecen, Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, Nagyerdei krt. 98., Debrecen 4032, Hungary
| | - Csaba Glavák
- Kaposi Somogy County Teaching Hospital Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, Kaposvár, Hungary
| | - Zsolt Cselik
- Veszprém County Hospital, Oncoradiology, Veszprém, Hungary
| | - Lajos Trón
- University of Debrecen, Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, Nagyerdei krt. 98., Debrecen 4032, Hungary
| | - Dávid Sipos
- Kaposi Somogy County Teaching Hospital Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, Kaposvár, Hungary; University of Pécs Doctoral School of Health Sciences, Pécs, Hungary
| | - Janaki Hadjiev
- Kaposi Somogy County Teaching Hospital Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, Kaposvár, Hungary
| | - Ervin Berényi
- University of Debrecen, Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, Nagyerdei krt. 98., Debrecen 4032, Hungary
| | - Imre Repa
- Kaposi Somogy County Teaching Hospital Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, Kaposvár, Hungary
| | - Miklós Emri
- University of Debrecen, Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, Nagyerdei krt. 98., Debrecen 4032, Hungary
| | - Árpád Kovács
- University of Debrecen, Faculty of Medicine, Department of Oncoradiology, Debrecen, Hungary; Kaposi Somogy County Teaching Hospital Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, Kaposvár, Hungary; University of Pécs Doctoral School of Health Sciences, Pécs, Hungary
| |
Collapse
|
3
|
Prevention of radiotherapy-induced neurocognitive dysfunction in survivors of paediatric brain tumours: the potential role of modern imaging and radiotherapy techniques. Lancet Oncol 2017; 18:e91-e100. [DOI: 10.1016/s1470-2045(17)30030-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 02/06/2023]
|
4
|
Aranyi C, Opposits G, Nagy M, Berényi E, Vér C, Csiba L, Katona P, Spisák T, Emri M. Population-Level Correction of Systematic Motion Artifacts in fMRI in Patients with Ischemic Stroke. J Neuroimaging 2016; 27:397-408. [DOI: 10.1111/jon.12408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/17/2016] [Indexed: 01/22/2023] Open
Affiliation(s)
- Csaba Aranyi
- Department of Medical Imaging; University of Debrecen; Hungary
| | - Gábor Opposits
- Department of Medical Imaging; University of Debrecen; Hungary
| | - Marianna Nagy
- Department of Medical Imaging; University of Debrecen; Hungary
| | - Ervin Berényi
- Department of Medical Imaging; University of Debrecen; Hungary
| | - Csilla Vér
- Department of Neurology; University of Debrecen; Hungary
| | - László Csiba
- Department of Neurology; University of Debrecen; Hungary
| | - Péter Katona
- Department of Diagnostic Radiology; Kenézy Gyula County Hospital; Debrecen Hungary
| | - Tamás Spisák
- Preclinical Imaging and Biomarker Center; Gedeon Richter Plc.; Budapest Hungary
| | - Miklós Emri
- Department of Medical Imaging; University of Debrecen; Hungary
| |
Collapse
|
5
|
Abstract
The use of magnetic resonance imaging (MRI) in radiotherapy (RT) planning is rapidly expanding. We review the wide range of image contrast mechanisms available to MRI and the way they are exploited for RT planning. However a number of challenges are also considered: the requirements that MR images are acquired in the RT treatment position, that they are geometrically accurate, that effects of patient motion during the scan are minimized, that tissue markers are clearly demonstrated, that an estimate of electron density can be obtained. These issues are discussed in detail, prior to the consideration of a number of specific clinical applications. This is followed by a brief discussion on the development of real-time MRI-guided RT.
Collapse
Affiliation(s)
- Maria A Schmidt
- Cancer Research UK Cancer Imaging Centre, Royal Marsden Hospital and the Institute of Cancer Research, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | | |
Collapse
|
6
|
Changes in functional MRI signals after 3D based radiotherapy of glioblastoma multiforme. J Neurooncol 2015; 125:157-66. [DOI: 10.1007/s11060-015-1882-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 08/08/2015] [Indexed: 10/23/2022]
|
7
|
Abstract
Imaging is a key component in the management of brain tumours, with MRI being the preferred modality for most clinical scenarios. However, although conventional MRI provides mainly structural information, such as tumour size and location, it leaves many important clinical questions, such as tumour type, aggressiveness and prognosis, unanswered. An increasing number of studies have shown that additional information can be obtained using functional imaging methods (which probe tissue properties), and that these techniques can give key information of clinical importance. These techniques include diffusion imaging, which can assess tissue structure, and perfusion imaging and magnetic resonance spectroscopy, which measures tissue metabolite profiles. Tumour metabolism can also be investigated using PET, with 18F-deoxyglucose being the most readily available tracer. This Review discusses these methods and the studies that have investigated their clinical use. A strong emphasis is placed on the measurement of quantitative parameters, which is a move away from the qualitative nature of conventional radiological reporting and presents major challenges, particularly for multicentre studies.
Collapse
|
8
|
Kovács A, Tóth L, Glavák C, Liposits G, Hadjiev J, Antal G, Emri M, Vandulek C, Repa I. Integrating functional MRI information into conventional 3D radiotherapy planning of CNS tumors. Is it worth it? J Neurooncol 2011; 105:629-37. [PMID: 21725803 DOI: 10.1007/s11060-011-0633-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 06/17/2011] [Indexed: 10/18/2022]
Abstract
The purpose of our study was to examine the potential benefits of integrating functional MRI (fMRI) information into the 3D-based planning process for central nervous system (CNS) malignancies. Between 01.01.2008 and 01.12.2009, ten patients with astrocytoma (both low and high-grade histological type) were enrolled in this study. Before the planning process, conventional CT planning, postoperative MR, and individual functional MRI examinations were conducted. For the functional MRI examination four types of conventional stimuli were applied: acoustic, visual, somatosensory, and numeric. To examine the potential benefits of using fMRI-based information, three different types of theoretical planning were applied and compared: 3D conformal plan without fMRI information, 3D conformal plan with fMRI information, and IMRT plan with fMRI information. DVH analysis and the NTCP model were used for plan comparison. When comparing planning methods, distance-related subgroups were generated and studied. By using the additional fMRI information, a significantly higher sparing effect can be achieved on these ORs (both with conventional 3D-based planning and IMRT). In cases when the OR-PTV distance is less than 1 cm, IMRT seems to be a significantly better choice than conventional 3D-based techniques. IMRT also has an additional sparing effect on the optic tract and brainstem, especially for locations close to the midline. Our results demonstrated that using fMRI information in conventional 3D-based treatment planning has the potential benefit of significant dose reduction for the critical organs, with no compromise in PTV coverage even when using conventional 3D planning. fMRI can be widely used in low-grade cases (long life expectancy, lower acute and late toxicity) and also in cases with high-grade astrocytomas or distant metastases (higher dose to PTV with better sparing of risk organs). In cases when the OR-PTV distance is less than 1 cm, IMRT should be the choice of treatment for a higher sparing effect on functional active areas. Longer imaging and clinical follow up are needed to confirm the real sparing effect on these functional areas.
Collapse
Affiliation(s)
- Arpád Kovács
- Department of Diagnostic and Oncoradiology, University of Kaposvár, Guba S Street 40, Kaposvár 7400, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Molecular imaging allows for the remote, noninvasive sensing and measurement of cellular and molecular processes in living subjects. Drawing upon a variety of modalities, molecular imaging provides a window into the biology of cancer from the subcellular level to the patient undergoing a new, experimental therapy. As signal transduction cascades and protein interaction networks become clarified, an increasing number of relevant targets for cancer therapy--and imaging--become available. Although conventional imaging is already critical to the management of patients with cancer, molecular imaging will provide even more relevant information, such as early detection of changes with therapy, identification of patient-specific cellular and metabolic abnormalities, and the disposition of therapeutic, gene-tagged cells throughout the body--all of which will have a considerable impact on morbidity and mortality. This overview discusses molecular imaging in oncology, providing examples from a variety of modalities, with an emphasis on emerging techniques for translational imaging.
Collapse
Affiliation(s)
- Luke J Higgins
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | |
Collapse
|