1
|
Wang X, Xue X, Pang M, Yu L, Qian J, Li X, Tian M, Lyu A, Lu C, Liu Y. Epithelial-mesenchymal plasticity in cancer: signaling pathways and therapeutic targets. MedComm (Beijing) 2024; 5:e659. [PMID: 39092293 PMCID: PMC11292400 DOI: 10.1002/mco2.659] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Currently, cancer is still a leading cause of human death globally. Tumor deterioration comprises multiple events including metastasis, therapeutic resistance and immune evasion, all of which are tightly related to the phenotypic plasticity especially epithelial-mesenchymal plasticity (EMP). Tumor cells with EMP are manifest in three states as epithelial-mesenchymal transition (EMT), partial EMT, and mesenchymal-epithelial transition, which orchestrate the phenotypic switch and heterogeneity of tumor cells via transcriptional regulation and a series of signaling pathways, including transforming growth factor-β, Wnt/β-catenin, and Notch. However, due to the complicated nature of EMP, the diverse process of EMP is still not fully understood. In this review, we systematically conclude the biological background, regulating mechanisms of EMP as well as the role of EMP in therapy response. We also summarize a range of small molecule inhibitors, immune-related therapeutic approaches, and combination therapies that have been developed to target EMP for the outstanding role of EMP-driven tumor deterioration. Additionally, we explore the potential technique for EMP-based tumor mechanistic investigation and therapeutic research, which may burst vigorous prospects. Overall, we elucidate the multifaceted aspects of EMP in tumor progression and suggest a promising direction of cancer treatment based on targeting EMP.
Collapse
Affiliation(s)
- Xiangpeng Wang
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Xiaoxia Xue
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Mingshi Pang
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Liuchunyang Yu
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Jinxiu Qian
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Xiaoyu Li
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Meng Tian
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| | - Aiping Lyu
- School of Chinese MedicineHong Kong Baptist UniversityKowloonHong KongChina
| | - Cheng Lu
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijingChina
| | - Yuanyan Liu
- School of Materia MedicaBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
2
|
He Z, Zhong Y, Regmi P, Lv T, Ma W, Wang J, Liu F, Yang S, Zhong Y, Zhou R, Jin Y, Cheng N, Shi Y, Hu H, Li F. Exosomal long non-coding RNA TRPM2-AS promotes angiogenesis in gallbladder cancer through interacting with PABPC1 to activate NOTCH1 signaling pathway. Mol Cancer 2024; 23:65. [PMID: 38532427 PMCID: PMC10967197 DOI: 10.1186/s12943-024-01979-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Abnormal angiogenesis is crucial for gallbladder cancer (GBC) tumor growth and invasion, highlighting the importance of elucidating the mechanisms underlying this process. LncRNA (long non-coding RNA) is widely involved in the malignancy of GBC. However, conclusive evidence confirming the correlation between lncRNAs and angiogenesis in GBC is lacking. METHODS LncRNA sequencing was performed to identify the differentially expressed lncRNAs. RT-qPCR, western blot, FISH, and immunofluorescence were used to measure TRPM2-AS and NOTCH1 signaling pathway expression in vitro. Mouse xenograft and lung metastasis models were used to evaluate the biological function of TRPM2-AS during angiogenesis in vivo. EDU, transwell, and tube formation assays were used to detect the angiogenic ability of HUVECs. RIP, RAP, RNA pull-down, dual-luciferase reporter system, and mass spectrometry were used to confirm the interaction between TRPM2-AS, IGF2BP2, NUMB, and PABPC1. RESULTS TRPM2-AS was upregulated in GBC tissues and was closely related to angiogenesis and poor prognosis in patients with GBC. The high expression level and stability of TRPM2-AS benefited from m6A modification, which is recognized by IGF2BP2. In terms of exerting pro-angiogenic effects, TRPM2-AS loaded with exosomes transported from GBC cells to HUVECs enhanced PABPC1-mediated NUMB expression inhibition, ultimately promoting the activation of the NOTCH1 signaling pathway. PABPC1 inhibited NUMB mRNA expression through interacting with AGO2 and promoted miR-31-5p and miR-146a-5p-mediated the degradation of NUMB mRNA. The NOTCH signaling pathway inhibitor DAPT inhibited GBC tumor angiogenesis, and TRPM2-AS knockdown enhanced this effect. CONCLUSIONS TRPM2-AS is a novel and promising biomarker for GBC angiogenesis that promotes angiogenesis by facilitating the activation of the NOTCH1 signaling pathway. Targeting TRPM2-AS opens further opportunities for future GBC treatments.
Collapse
Affiliation(s)
- Zhiqiang He
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yuhan Zhong
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Parbatraj Regmi
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Tianrun Lv
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Wenjie Ma
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Junke Wang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Fei Liu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Siqi Yang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yanjie Zhong
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Rongxing Zhou
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yanwen Jin
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Nansheng Cheng
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yujun Shi
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haijie Hu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China.
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China.
| | - Fuyu Li
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China.
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China.
| |
Collapse
|
3
|
He Z, Zhong Y, Hu H, Li F. ZFP64 Promotes Gallbladder Cancer Progression through Recruiting HDAC1 to Activate NOTCH1 Signaling Pathway. Cancers (Basel) 2023; 15:4508. [PMID: 37760477 PMCID: PMC10527061 DOI: 10.3390/cancers15184508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The lack of meaningful and effective early-stage markers remains the major challenge in the diagnosis of gallbladder cancer (GBC) and a huge barrier to timely treatment. Zinc finger protein 64 (ZFP64), a member of the zinc finger protein family, is considered to be a promising predictor in multiple tumors, but its potential effect in GBC still remains unclear. Here, we identified that ZFP64 was a vital regulatory protein in GBC. We found that ZFP64 expressed higher in GBC gallbladder carcinoma tissues than in normal tissues and was positively correlated with poor prognosis. Furthermore, ZFP64 was responsible for the migration, invasion, proliferation, anti-apoptosis, and epithelial mesenchymal transition (EMT) of GBC cells in vitro and in vivo. Mechanistically, through Co-IP assay, we confirmed that ZFP64 recruits HDAC1 localized to the promoter region of NUMB for deacetylation and therefore inhibits NUMB expression. The downregulation of NUMB enhanced the activation of the Notch1 signaling pathway, which is indispensable for the GBC-promotion effect of ZFP64 on GBC. In conclusion, ZFP64 regulated GBC progression and metastasis through upregulating the Notch1 signaling pathway, and thus ZFP64 is expected to become a new focus for a GBC prognostic marker and targeted therapy.
Collapse
Affiliation(s)
- Zhiqiang He
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Yuhan Zhong
- Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, National Health Commission (NHC), West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Haijie Hu
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Fuyu Li
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;
| |
Collapse
|
4
|
Doghish AS, Midan HM, Elbadry AMM, Darwish SF, Rizk NI, Ziada BO, Elbokhomy AS, Elrebehy MA, Elballal MS, El-Husseiny HM, Abdel Mageed SS, Abulsoud AI. The potential role of miRNAs in the pathogenesis of gallbladder cancer - A focus on signaling pathways interplay. Pathol Res Pract 2023; 248:154682. [PMID: 37451195 DOI: 10.1016/j.prp.2023.154682] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
microRNAs (also known as miRNAs or miRs) are a class of small non-coding RNAs that play a critical role in post-transcriptional gene regulation as negative gene regulators by binding complementary sequences in the 3'-UTR of target messenger RNAs (mRNAs) leading to translational repression and/or target degradation a wide range of genes and biological processes, including cell proliferation, invasion, migration, and apoptosis. The development and progression of cancer have been linked to the anomalous expression of miRNAs. According to recent studies, miRNAs have been found to regulate the expression of cancer-related genes through multiple signaling pathways in gallbladder cancer (GBC). Besides, miRNAs are implicated in several modulatory signaling pathways of GBC, including the Notch signaling pathway, JAK/STAT signaling pathway, protein kinase B (AKT), and Hedgehog signaling pathway. This review summarizes our current knowledge of the functions of miRNAs in the mechanisms underlying the pathogenic symptoms of GBC and illustrates their potential significance as treatment targets.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Abdullah M M Elbadry
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Samar F Darwish
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Bassant O Ziada
- Research Department, Utopia Pharmaceuticals, Nasr City 11765, Cairo, Egypt
| | - Amir S Elbokhomy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Hussein M El-Husseiny
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt; Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Sherif S Abdel Mageed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
5
|
Baichan P, Naicker P, Augustine TN, Smith M, Candy G, Devar J, Nweke EE. Proteomic analysis identifies dysregulated proteins and associated molecular pathways in a cohort of gallbladder cancer patients of African ancestry. Clin Proteomics 2023; 20:8. [PMID: 36855072 PMCID: PMC9976386 DOI: 10.1186/s12014-023-09399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Gallbladder cancer (GBC) is a lethal cancer with a poor prognosis. The lack of specific and sensitive biomarkers results in delayed diagnosis with most patients presenting at late stages of the disease. Furthermore, there is little known about the molecular mechanisms associated with GBC, especially in patients of African ancestry. This study aimed to determine dysregulated proteins in South African GBC patients to identify potential mechanisms of the disease progression and plausible biomarkers. METHODS Tissues (27 GBC, 13 Gallstone disease, and 5 normal tissues) and blood plasma (54 GBC and 73 Benign biliary pathology) were obtained from consenting patients. Protein extraction was performed on all tissues and liquid chromatography-mass spectrometry was used for proteomic profiling. A project-specific spectral library was built using the Pulsar search algorithm. Principal component and Spearman's rank correlation analyses were performed using PAST (V4.07b). Pathway and Network analyses were conducted using REACTOME (v3.7) and stringAPP (v1.7.0), respectively. RESULTS In the tissue sample group, there were 62 and 194 dysregulated proteins in GBC compared to normal and gallstone groups, respectively. In the plasma group, there were 33 altered proteins in GBC compared to the benign biliary pathology group. We found 9 proteins (APOA1, APOA2, RET4, TTR, HEMO, HBB, HBA, PIGR, and APOE) to be commonly dysregulated in both tissue and plasma. Furthermore, a subset analysis demonstrated that 2 proteins, S100A8 and S100A9, were downregulated in GBC patients with GD history compared to those without. Pathway analysis showed that the dysregulated proteins in GBC patients were enriched in pathways involved in smooth muscle contraction, metabolism, ECM organization, and integrin cell surface interactions. CONCLUSION The identified dysregulated proteins help in understanding GBC molecular mechanisms in our patient group. Furthermore, the alteration of specific proteins in both tissue and plasma samples suggests their potential utility as biomarkers of GBC in this sample cohort.
Collapse
Affiliation(s)
- Pavan Baichan
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road Parktown, Johannesburg, 2193, South Africa
| | - Previn Naicker
- Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| | - Tanya Nadine Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Martin Smith
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road Parktown, Johannesburg, 2193, South Africa
- Hepatopancreatobiliary Unit, Department of Surgery, Chris Hani-Baragwanath Academic Hospital, Soweto, Johannesburg, South Africa
| | - Geoffrey Candy
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road Parktown, Johannesburg, 2193, South Africa
| | - John Devar
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road Parktown, Johannesburg, 2193, South Africa
- Hepatopancreatobiliary Unit, Department of Surgery, Chris Hani-Baragwanath Academic Hospital, Soweto, Johannesburg, South Africa
| | - Ekene Emmanuel Nweke
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road Parktown, Johannesburg, 2193, South Africa.
| |
Collapse
|
6
|
Chang C, Bai W, Li J, Huo S, Wang T, Shao J. Effects of Subchronic Propofol Administration on the Proliferation and Differentiation of Neural Stem Cells in Rat Hippocampus. CURRENT THERAPEUTIC RESEARCH 2023; 98:100691. [PMID: 36798524 PMCID: PMC9925857 DOI: 10.1016/j.curtheres.2023.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
Background Although controversial, experimental data suggest the use of propofol may be associated with neurotoxicity. The mechanisms responsible for propofol neurotoxicity in animals are not yet clear. Objective This study aimed to determine the effects of propofol on the proliferation of neural stem cells in rat hippocampus and the mechanisms underlying these effects. Methods Forty-five adult male Sprague-Dawley rats were randomly divided into 5 groups: Control (N group), intralipid (V group), 30 mg/kg propofol (Prop30 group), 60 mg/kg propofol (Prop60 group), and 120 mg/kg propofol (Prop120 group). The rats in all groups received 5, once daily intraperitoneal injections. For each of the 5 days, the N group received 6 mL/kg normal saline, the V group received 6 mL/kg fat emulsion, the Prop30 group received 30 mg/kg propofol, the Prop60 group received 60 mg/kg propofol, and the Prop120 group received 120 mg/kg propofol. Memory function was scored daily using the Morris water maze test. Immunofluorescence staining was used to histologically monitor the proliferation and differentiation of the rats' hippocampal neural stem cells, and real time quantitative polymerase chain reaction and Western blotting were used to determine the expression of Notch3, Hes1, and Hes5. Results Compared with the N group, the Prop120 group exhibited reduced learning and memory, whereas there were no significant differences for the Prop60 group. The number of β-tubulin III+ cells increased in the Prop60 group, but decreased in the Prop120 group. Compared with the N group, the relative expression of Notch3 and Hes5 increased significantly in the Prop60 group, whereas this expression decreased in the Prop120 group. Conclusions These data demonstrate that repeated, subchronic (5 days) intraperitoneal injections of 60 mg/kg propofol can effectively promote rat hippocampal neural stem cells proliferation and differentiation, and that this is likely mediated by its effects on the Notch3-Hes5 pathway.
Collapse
Affiliation(s)
- Cheng Chang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China,Department of anesthesiology, The first people's hospital of huaihua, huaihua, Hunan Province, China
| | - Wenya Bai
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Junjie Li
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Siying Huo
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Tinghua Wang
- Experimental Animal Center, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jianlin Shao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China,Address correspondence to: Jian-Lin Shao, PhD, Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Rd, Kunming, Yunnan 650032, P.R. China.
| |
Collapse
|
7
|
Murimwa G, Hester C, Mansour JC, Polanco PM, Porembka MR, Wang SC, Zeh HJ, Yopp AC. Comparative Outcomes of Adenosquamous Carcinoma of the Gallbladder: an Analysis of the National Cancer Database. J Gastrointest Surg 2021; 25:1815-1827. [PMID: 32705618 DOI: 10.1007/s11605-020-04729-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/30/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND A paucity of data exists regarding adenosquamous carcinoma of the gallbladder, a histology comprising under 10% of gallbladder cancer diagnoses. The aim of this study is to characterize the clinicopathological features of these tumors utilizing a population-based dataset compared with gallbladder adenocarcinoma. METHODS We identified patients with gallbladder adenosquamous and adenocarcinoma from the National Cancer Database from 2004 to 2015. Patient demographics, tumor characteristics, treatment regimens, and overall survival were analyzed between the groups. RESULTS We identified 13,158 patients: 12,455 (95%) with a diagnosis of gallbladder adenocarcinoma and 703 (5%) with adenosquamous carcinoma. Adenosquamous tumors were larger, poorly differentiated, and presented with Stage III/IV disease (75% vs 69%, p < 0.001). Overall 1-, 3-, and 5-year survival for adenosquamous and adenocarcinoma were 24%, 11%, and 9% vs 37%, 16%, and 11%, respectively (p < 0.001). Following surgical resection, adenosquamous carcinoma had more positive margins (31% vs 25%, p < 0.001), and median overall survival was 10.3 months vs 20.5 months for adenocarcinoma (p < 0.001). Overall survival at 1-, 3-, and 5-years for surgically resected adenosquamous and adenocarcinoma were 43%, 23%, and 18% versus 63%, 35%, and 25%, respectively (p < 0.001). In resected adenosquamous carcinoma, positive lymph nodes and margins were associated with worse survival, while adjuvant chemoradiation (HR 0.457, 95% CI 0.31-0.69, p < 0.001) was associated with improved survival. CONCLUSION Adenosquamous gallbladder cancer presented with larger tumors at advanced clinical stages when compared with adenocarcinoma. Overall survival was worse for adenosquamous tumors both overall, and following curative intent resection. Adjuvant chemoradiation was associated with improved survival in adenosquamous tumors.
Collapse
Affiliation(s)
- Gilbert Murimwa
- Department of Surgery, Division of Surgical Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Caitlin Hester
- Department of Surgery, Division of Surgical Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - John C Mansour
- Department of Surgery, Division of Surgical Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Patricio M Polanco
- Department of Surgery, Division of Surgical Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Matthew R Porembka
- Department of Surgery, Division of Surgical Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Sam C Wang
- Department of Surgery, Division of Surgical Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Herbert J Zeh
- Department of Surgery, Division of Surgical Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Adam C Yopp
- Department of Surgery, Division of Surgical Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA.
| |
Collapse
|
8
|
Xiu M, Wang Y, Li B, Wang X, Xiao F, Chen S, Zhang L, Zhou B, Hua F. The Role of Notch3 Signaling in Cancer Stemness and Chemoresistance: Molecular Mechanisms and Targeting Strategies. Front Mol Biosci 2021; 8:694141. [PMID: 34195229 PMCID: PMC8237348 DOI: 10.3389/fmolb.2021.694141] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Aberrant Notch signaling profoundly affects cancer progression. Especially the Notch3 receptor was found to be dysregulated in cancer, where its expression is correlated with worse clinicopathological features and poor prognosis. The activation of Notch3 signaling is closely related to the activation of cancer stem cells (CSCs), a small subpopulation in cancer that is responsible for cancer progression. In addition, Notch3 signaling also contributes to tumor chemoresistance against several drugs, including doxorubicin, platinum, taxane, epidermal growth factor receptor (EGFR)–tyrosine kinase inhibitors (TKIs) and gemcitabine, through complex mechanisms. In this review, we mainly focus on discussing the molecular mechanisms by which Notch3 modulates cancer stemness and chemoresistance, as well as other cancer behaviors including metastasis and angiogenesis. What’s more, we propose potential treatment strategies to block Notch3 signaling, such as non-coding RNAs, antibodies and antibody-drug conjugates, providing a comprehensive reference for research on precise targeted cancer therapy.
Collapse
Affiliation(s)
- Mengxi Xiu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Yongbo Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Baoli Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xifeng Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fan Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Shoulin Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Bin Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
9
|
García P, Lamarca A, Díaz J, Carrera E, Roa JC, on behalf of the European-Latin American ESCALON Consortium. Current and New Biomarkers for Early Detection, Prognostic Stratification, and Management of Gallbladder Cancer Patients. Cancers (Basel) 2020; 12:E3670. [PMID: 33297469 PMCID: PMC7762341 DOI: 10.3390/cancers12123670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 01/17/2023] Open
Abstract
Gallbladder cancer (GBC) is an aggressive disease that shows evident geographic variation and is characterized by a poor prognosis, mainly due to the late diagnosis and ineffective treatment. Genetic variants associated with GBC susceptibility, including polymorphisms within the toll-like receptors TLR2 and TLR4, the cytochrome P450 1A1 (CYP1A1), and the ATP-binding cassette (ABC) transporter ABCG8 genes, represent promising biomarkers for the stratification of patients at higher risk of GBC; thus, showing potential to prioritize cholecystectomy, particularly considering that early diagnosis is difficult due to the absence of specific signs and symptoms. Similarly, our better understanding of the gallbladder carcinogenic processes has led to identify several cellular and molecular events that may influence patient management, including HER2 aberrations, high tumor mutational burden, microsatellite instability, among others. Despite these reports on interesting and promising markers for risk assessment, diagnosis, and prognosis; there is an unmet need for reliable and validated biomarkers that can improve the management of GBC patients and support clinical decision-making. This review article examines the most potentially significant biomarkers of susceptibility, diagnosis, prognosis, and therapy selection for GBC patients, highlighting the need to find and validate existing and new molecular biomarkers to improve patient outcomes.
Collapse
Affiliation(s)
- Patricia García
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile;
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Division of Cancer Sciences, University of Manchester, Manchester M20 4BX, UK;
| | - Javier Díaz
- Departamento del Aparato Digestivo, Hospital Nacional Edgardo Rebagliati Martins-Essalud, School of Medicine, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru;
| | - Enrique Carrera
- Department of Gastroenterology, Hospital Especialidades Eugenio Espejo, Universidad San Francisco de Quito, Quito 170136, Ecuador;
| | - Juan Carlos Roa
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile;
| | | |
Collapse
|
10
|
Zhao B, Hu S, Xiao Q, Fan S, Yu X, Li C, Dong P, Zheng J. Expression of NOTCH receptors and ligands and prognosis of hepatocellular carcinoma. Biomark Med 2020; 14:1631-1639. [PMID: 33336594 DOI: 10.2217/bmm-2020-0138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aim: To elucidate potential prognostic significance of NOTCH receptor and ligand expression in hepatocellular carcinoma. Materials & methods: NOTCH receptors and ligands were divided into increased and decreased expression groups by X-tile program. The association between NOTCH receptors/ligands and prognosis was analyzed by Kaplan-Meier method and log-rank test. Gene set enrichment analysis was performed to explore NOTCH receptors/ligands-related pathways via gsea-3.0. Results: DLL3 and DLL4 were independent prognostic factors for overall survival. Further studies showed that only DLL3 was significantly associated with tumor, node, metastasis stage. Gene set enrichment analysis analysis demonstrated that retinol metabolism, drug metabolism cytochrome P450 and tryptophan metabolism were significantly enriched in DLL3 expression phenotype. Conclusion: We demonstrate that DLL3 may be a prognostic biomarker in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Binyu Zhao
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Medical College, Hangzhou Normal University, Hangzhou, 311100, China
| | - Shanshan Hu
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qingqing Xiao
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Sinuo Fan
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xizhi Yu
- The Second Clinical College, Wenzhou Medical University, Wenzhou, 325000, China
| | - Chunxue Li
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Peihong Dong
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jianjian Zheng
- Key Laboratory of Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
11
|
Gharaibeh L, Elmadany N, Alwosaibai K, Alshaer W. Notch1 in Cancer Therapy: Possible Clinical Implications and Challenges. Mol Pharmacol 2020; 98:559-576. [PMID: 32913140 DOI: 10.1124/molpharm.120.000006] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
The Notch family consists of four highly conserved transmembrane receptors. The release of the active intracellular domain requires the enzymatic activity of γ-secretase. Notch is involved in embryonic development and in many physiologic processes of normal cells, in which it regulates growth, apoptosis, and differentiation. Notch1, a member of the Notch family, is implicated in many types of cancer, including breast cancer (especially triple-negative breast cancer), leukemias, brain tumors, and many others. Notch1 is tightly connected to many signaling pathways that are therapeutically involved in tumorigenesis. Together, they impact apoptosis, proliferation, chemosensitivity, immune response, and the population of cancer stem cells. Notch1 inhibition can be achieved through various and diverse methods, the most common of which are the γ-secretase inhibitors, which produce a pan-Notch inhibition, or the use of Notch1 short interference RNA or Notch1 monoclonal antibodies, which produce a more specific blockade. Downregulation of Notch1 can be used alone or in combination with chemotherapy, which can achieve a synergistic effect and a decrease in chemoresistance. Targeting Notch1 in cancers that harbor high expression levels of Notch1 offers an addition to therapeutic strategies recruited for managing cancer. Considering available evidence, Notch1 offers a legitimate target that might be incorporated in future strategies for combating cancer. In this review, the possible clinical applications of Notch1 inhibition and the obstacles that hinder its clinical application are discussed. SIGNIFICANCE STATEMENT: Notch1 plays an important role in different types of cancer. Numerous approaches of Notch1 inhibition possess potential benefits in the management of various clinical aspects of cancer. The application of different Notch1 inhibition modalities faces many challenges.
Collapse
Affiliation(s)
- L Gharaibeh
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| | - N Elmadany
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| | - K Alwosaibai
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| | - W Alshaer
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| |
Collapse
|
12
|
Baichan P, Naicker P, Devar JWS, Smith M, Candy GP, Nweke E. Targeting gallbladder cancer: a pathway based perspective. Mol Biol Rep 2020; 47:2361-2369. [PMID: 32020429 DOI: 10.1007/s11033-020-05269-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/20/2020] [Indexed: 12/29/2022]
Abstract
Gallbladder cancer (GBC) has a poor prognosis with a 5-year survival rate suggesting the need for more effective treatment strategies. Studying the cross-talk of several pathways involved in crucial cellular and biological processes such as cell growth, proliferation, migration and apoptosis would prove beneficial in identifying key players of GBC progression and targeting them. This review highlights several pathways known to be dysregulated in GBC onset and progression and describes known and potential targets. Within these pathways, there are proteins involved in the signalling cascade, which may be targeted as potential biomarkers and drug targets. Furthermore, the cross-talk of these pathways is investigated in the context of GBC and the implications thereof. A better understanding of the pathways involved in GBC pathogenesis will aid clinicians in the prognosis, diagnosis and treatment of patients. There are significant clinical implications of GBC pathway-based studies as they permit the understanding of onset and progression of the disease.
Collapse
Affiliation(s)
- P Baichan
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Republic of South Africa.
| | - P Naicker
- Department of Biosciences, Council for Scientific and Industrial Research, Meiring Naude Rd, Brummeria, Pretoria, South Africa
| | - J W S Devar
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Republic of South Africa
| | - M Smith
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Republic of South Africa
| | - G P Candy
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Republic of South Africa
| | - E Nweke
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Republic of South Africa
| |
Collapse
|
13
|
Latchana N, DiVincenzo MJ, Regan K, Abrams Z, Zhang X, Jacob NK, Gru AA, Fadda P, Markowitz J, Howard JH, Carson WE. Alterations in patient plasma microRNA expression profiles following resection of metastatic melanoma. J Surg Oncol 2018; 118:501-509. [PMID: 30132912 PMCID: PMC6160327 DOI: 10.1002/jso.25163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/13/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVES MicroRNAs (miRs) are noncoding RNAs that regulate protein translation and melanoma progression. Changes in plasma miR expression following surgical resection of metastatic melanoma are under-investigated. We hypothesize differences in miR expression exist following complete surgical resection of metastatic melanoma. METHODS Blood collection pre- and post-surgical resection was performed in six individuals with solitary melanoma metastases. miR expression in extracted RNA was quantified using the NanoString nCounter Digital Analyzer. RESULTS Pre- and post-surgical plasma samples contained 216 miRs with expression above baseline. Comparison of postsurgical to preresection samples revealed differential expression of 25 miRs: miR-let-7a, miR-let7g, miR-15a, miR-16, miR-22, miR-30b, miR-126, miR-140, miR-145, miR-148a, miR-150-5p, miR-191, miR-378i, miR-449c, miR-494, miR-513b, miR-548aa, miR-571, miR-587, miR-891b, miR-1260a, miR 1268a, miR-1976, miR-4268, miR-4454 (P < 0.05). Utilizing P < 0.0046 as a cutoff to control for one false positive among the 216 miRs revealed that postsurgical melanoma plasma samples had upregulation of miR-1260a (P = 0.0007) and downregulation of miR-150-5p (P = 0.0026) relative to pre-surgical samples. CONCLUSIONS Differential expression of miR-150-5p and miR-1260a is present in plasma following surgical resection of metastatic melanoma in this small sample (n = 6) of melanoma patients. Therefore, further investigation of these plasma miRs as noninvasive biomarkers for melanoma is warranted.
Collapse
Affiliation(s)
- Nicholas Latchana
- Department of General Surgery, University of Toronto, Toronto, Canada
| | | | - Kelly Regan
- Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Zachary Abrams
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | | | - Alejandro A. Gru
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Paolo Fadda
- Department of Molecular Virology, Immunology and Medical Genetics, The Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
| | - Joseph Markowitz
- Moffitt Cancer Center Department of Cutaneous Oncology, Tampa, FL
| | | | | |
Collapse
|
14
|
Jia W, Jiang X, Liu W, Wang L, Zhu B, Zhu H, Liu X, Zhong M, Xie D, Huang W, Jia W, Li S, Liu X, Zuo X, Cheng D, Dai J, Ren C. Effects of three-dimensional collagen scaffolds on the expression profiles and biological functions of glioma cells. Int J Oncol 2018; 52:1787-1800. [PMID: 29568859 PMCID: PMC5919708 DOI: 10.3892/ijo.2018.4330] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/12/2018] [Indexed: 12/16/2022] Open
Abstract
Three-dimensional (3D) culture has been increasingly used to investigate tumor cell biology for improved simulation of the natural developing environment. However, the way in which 3D culture affects the gene expression and biological functions of glioma cells remains to be fully elucidated. In the present study, 3D culture environments were established using collagen scaffolds with different pore sizes, followed by the comparison of gene expression profiles and associated biological functions of glioma cells, including the U87, U251 and HS683 cell lines, in 3D collagen scaffolds with conventional two-dimensional (2D) cultured cells. Finally, the possible signaling pathways regulating these differences were investigated. It was found that the 3D collagen scaffold culture upregulated the expression of genes associated with stemness, cell cycle, apoptosis, epithelia-mesenchymal transition, migration, invasion and glioma malignancy, and induced the corresponding functional changes. Apoptotic pathways, the Wnt pathway, Sonic Hedgehog pathway and Notch pathway, may be involved in the regulation of these changes. The aperture size of the collagen-scaffold did not appear to affect the gene expression or functions of the glioma cells. The results of the study suggested that the 3D collagen scaffold enhanced the malignancy of glioma cells and may be a promising in vitro platform for investigations of glioma.
Collapse
Affiliation(s)
- Wei Jia
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xingjun Jiang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Weidong Liu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lei Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Bin Zhu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hecheng Zhu
- Changsha Kexin Cancer Hospital, Changsha, Hunan 410205, P.R. China
| | - Xingdong Liu
- Changsha Kexin Cancer Hospital, Changsha, Hunan 410205, P.R. China
| | - Meizuo Zhong
- Changsha Kexin Cancer Hospital, Changsha, Hunan 410205, P.R. China
| | - Dan Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 51006, P.R. China
| | - Wei Huang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wenting Jia
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shasha Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xuxu Liu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiang Zuo
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Damei Cheng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Caiping Ren
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
15
|
Kras G12D upregulates Notch signaling to induce gallbladder tumorigenesis in mice. Oncoscience 2017; 4:131-138. [PMID: 29142904 PMCID: PMC5672897 DOI: 10.18632/oncoscience.368] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/17/2017] [Indexed: 11/25/2022] Open
Abstract
Background Kras mutations and increased Notch activation occur frequently in gallbladder cancer. However, their roles in gallbladder carcinogenesis have not been defined. This study was aimed at determining whether expression of mutant Kras was sufficient to induce gallbladder carcinoma and whether Notch deregulation played a role in this context. Methods We determined Cre recombination activity of Pdx1-Cre in the gallbladder using a reporter strain and examined gallbladder tumor development in the KrasLSL- G12D/+;Pdx1-Cre mice. We analyzed expression of Notch pathway genes in the mouse gallbladder by immunohistochemistry, quantitative RT-PCR, and Western blot analysis. We also determined the effect of Jag1 deletion on Kras-induced gallbladder tumor development. Results Pdx1-Cre exhibits robust recombination activity in the gallbladder epithelium. KrasLSL-G12D/+;Pdx1-Cre mice form early onset adenoma in the gallbladder and adjacent biliary tract with complete penetrance, albeit short of invasive adenocarcinoma. KrasG12D upregulates expressions of Notch2, Notch3, Notch4, Jag1 and downstream target genes Hes1, Hey1 and Hey2, and deletion of Jag1 partially suppresses KrasG12D-induced adenoma development. Conclusions KrasG12D induces gallbladder adenoma and Notch plays a key role in Kras-initiated gallbladder tumorigenesis.
Collapse
|
16
|
Sharma A, Sharma KL, Gupta A, Yadav A, Kumar A. Gallbladder cancer epidemiology, pathogenesis and molecular genetics: Recent update. World J Gastroenterol 2017; 23:3978-3998. [PMID: 28652652 PMCID: PMC5473118 DOI: 10.3748/wjg.v23.i22.3978] [Citation(s) in RCA: 259] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/01/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023] Open
Abstract
Gallbladder cancer is a malignancy of biliary tract which is infrequent in developed countries but common in some specific geographical regions of developing countries. Late diagnosis and deprived prognosis are major problems for treatment of gallbladder carcinoma. The dramatic associations of this orphan cancer with various genetic and environmental factors are responsible for its poorly defined pathogenesis. An understanding to the relationship between epidemiology, molecular genetics and pathogenesis of gallbladder cancer can add new insights to its undetermined pathophysiology. Present review article provides a recent update regarding epidemiology, pathogenesis, and molecular genetics of gallbladder cancer. We systematically reviewed published literature on gallbladder cancer from online search engine PubMed (http://www.ncbi.nlm.nih.gov/pubmed). Various keywords used for retrieval of articles were Gallbladder, cancer Epidemiology, molecular genetics and bullion operators like AND, OR, NOT. Cross references were manually searched from various online search engines (http://www.ncbi.nlm.nih.gov/pubmed,https://scholar.google.co.in/, http://www.medline.com/home.jsp). Most of the articles published from 1982 to 2015 in peer reviewed journals have been included in this review.
Collapse
|