1
|
Guo H, Li Y, Wang S, Yang Y, Xu T, Zhao J, Wang J, Zuo W, Wang P, Zhao G, Wang H, Hou W, Dong H, Cai Y. Dysfunction of astrocytic glycophagy exacerbates reperfusion injury in ischemic stroke. Redox Biol 2024; 74:103234. [PMID: 38861834 PMCID: PMC11215420 DOI: 10.1016/j.redox.2024.103234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
Glycophagy has evolved from an alternative glycogen degradation pathway into a multifaceted pivot to regulate cellular metabolic hemostasis in peripheral tissues. However, the pattern of glycophagy in the brain and its potential therapeutic impact on ischemic stroke remain unknown. Here, we observed that the dysfunction of astrocytic glycophagy was caused by the downregulation of the GABA type A receptor-associated protein like 1 (GABARAPL1) during reperfusion in ischemic stroke patients and mice. PI3K-Akt pathway activation is involved in driving GABARAPL1 downregulation during cerebral reperfusion. Moreover, glycophagy dysfunction-induced glucosamine deficiency suppresses the nuclear translocation of specificity protein 1 and TATA binding protein, the transcription factors for GABARAPL1, by decreasing their O-GlcNAcylation levels, and accordingly feedback inhibits GABARAPL1 in astrocytes during reperfusion. Restoring astrocytic glycophagy by overexpressing GABARAPL1 decreases DNA damage and oxidative injury in astrocytes and improves the survival of surrounding neurons during reperfusion. In addition, a hypocaloric diet in the acute phase after cerebral reperfusion can enhance astrocytic glycophagic flux and accelerate neurological recovery. In summary, glycophagy in the brain links autophagy, metabolism, and epigenetics together, and glycophagy dysfunction exacerbates reperfusion injury after ischemic stroke.
Collapse
Affiliation(s)
- Haiyun Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yumeng Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shiquan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yongheng Yang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tiantian Xu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianshuai Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jin Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenqiang Zuo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pengju Wang
- The State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guangchao Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Yanhui Cai
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China; Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Li X, Yu X, Yu F, Fu C, Zhao W, Liu X, Dai C, Gao H, Cheng M, Li B. D-pinitol alleviates diabetic cardiomyopathy by inhibiting the optineurin-mediated endoplasmic reticulum stress and glycophagy signaling pathway. Phytother Res 2024; 38:1681-1694. [PMID: 38311336 DOI: 10.1002/ptr.8134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024]
Abstract
Diabetic cardiomyopathy (DCM) is an important complication resulting in heart failure and death of diabetic patients. However, there is no effective drug for treatments. This study investigated the effect of D-pinitol (DP) on cardiac injury using diabetic mice and glycosylation injury of cardiomyocytes and its molecular mechanisms. We established the streptozotocin-induced SAMR1 and SAMP8 mice and DP (150 mg/kg/day) intragastrically and advanced glycation end-products (AGEs)-induced H9C2 cells. H9C2 cells were transfected with optineurin (OPTN) siRNA and overexpression plasmids. The metabolic disorder indices, cardiac dysfunction, histopathology, immunofluorescence, western blot, and immunoprecipitation were investigated. Our results showed that DP reduced the blood glucose and AGEs, and increased the expression of heart OPTN in diabetic mice and H9C2 cells, thereby inhibiting the endoplasmic reticulum stress (GRP78, CHOP) and glycophagy (STBD1, GABARAPL1), and alleviating the myocardial apoptosis and fibrosis of DCM. The expression of filamin A as an interaction protein of OPTN downregulated by AGEs decreased OPTN abundance. Moreover, OPTN siRNA increased the expression of GRP78, CHOP, STBD1, and GABARAPL1 and inhibited the expression of GAA via GSK3β phosphorylation and FoxO1. DP may be helpful to treat the onset of DCM. Targeting OPTN with DP could be translated into clinical application in the fighting against DCM.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Yu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Fei Yu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Chunli Fu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Wenqian Zhao
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Xiaosong Liu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Chaochao Dai
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Haiqing Gao
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Mei Cheng
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Baoying Li
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Health Management Center (East Area), Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
3
|
Klip A, De Bock K, Bilan PJ, Richter EA. Transcellular Barriers to Glucose Delivery in the Body. Annu Rev Physiol 2024; 86:149-173. [PMID: 38345907 DOI: 10.1146/annurev-physiol-042022-031657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Glucose is the universal fuel of most mammalian cells, and it is largely replenished through dietary intake. Glucose availability to tissues is paramount for the maintenance of homeostatic energetics and, hence, supply should match demand by the consuming organs. In its journey through the body, glucose encounters cellular barriers for transit at the levels of the absorbing intestinal epithelial wall, the renal epithelium mediating glucose reabsorption, and the tight capillary endothelia (especially in the brain). Glucose transiting through these cellular barriers must escape degradation to ensure optimal glucose delivery to the bloodstream or tissues. The liver, which stores glycogen and generates glucose de novo, must similarly be able to release it intact to the circulation. We present the most up-to-date knowledge on glucose handling by the gut, liver, brain endothelium, and kidney, and discuss underlying molecular mechanisms and open questions. Diseases associated with defects in glucose delivery and homeostasis are also briefly addressed. We propose that the universal problem of sparing glucose from catabolism in favor of translocation across the barriers posed by epithelia and endothelia is resolved through common mechanisms involving glucose transfer to the endoplasmic reticulum, from where glucose exits the cells via unconventional cellular mechanisms.
Collapse
Affiliation(s)
- Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada;
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada;
| | - Erik A Richter
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Oska N, Eltanani S, Shawky M, Naghdi A, Gregory A, Yumnamcha T, Ibrahim AS. Upper glycolytic components contribute differently in controlling retinal vascular endothelial cellular behavior: Implications for endothelial-related retinal diseases. PLoS One 2023; 18:e0294909. [PMID: 38033124 PMCID: PMC10688887 DOI: 10.1371/journal.pone.0294909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Retinal degenerative diseases such as diabetic retinopathy and diabetic macular edema are characterized by impaired retinal endothelial cells (RECs) functionality. While the role of glycolysis in glucose homeostasis is well-established, its contributions to REC barrier assembly and cell spreading remain poorly understood. This study aimed to investigate the importance of upper glycolytic components in regulating the behavior of human RECs (HRECs). METHODS Electric cell-substrate impedance sensing (ECIS) technology was employed to analyze the real-time impact of various upper glycolytic components on maintaining barrier functionality and cell spreading of HRECs by measuring cell resistance and capacitance, respectively. Specific inhibitors were used: WZB117 to inhibit Glut1/3, lonidamine to inhibit hexokinases, PFK158 to inhibit the PFKFB3-PFK axis, and TDZD-8 to inhibit aldolases. Additionally, the viability of HRECs was evaluated using the lactate dehydrogenase (LDH) cytotoxicity assay. RESULTS The most significant reduction in electrical resistance and increase in capacitance of HRECs resulted from the dose-dependent inhibition of PFKFB3/PFK using PFK158, followed by aldolase inhibition using TDZD-8. LDH level analysis at 24- and 48-hours post-treatment with PFK158 (1 μM) or TDZD-8 (1 and 10 μM) showed no significant difference compared to the control, indicating that the disruption of HRECs functionality was not attributed to cell death. Conversely, inhibiting Glut1/3 with WZB117 had minimal impact on HREC behavior, except at higher concentrations (10 μM) and prolonged exposure. Lastly, inhibiting hexokinase with lonidamine did not noticeably alter HREC cell behavior. CONCLUSION This study illustrates the unique impacts of components within upper glycolysis on HREC functionality, emphasizing the crucial role of the PFKFB3/PFK axis in regulating HREC behavior. Understanding the specific contributions of each glycolytic component in preserving normal REC functionality will facilitate the development of targeted interventions for treating endothelial cell dysfunction in retinal disorders while minimizing effects on healthy cells.
Collapse
Affiliation(s)
- Nicole Oska
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, United States of America
| | - Shaimaa Eltanani
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, United States of America
| | - Mohamed Shawky
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, United States of America
- Department of Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Armaan Naghdi
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, United States of America
| | - Andrew Gregory
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, United States of America
| | - Thangal Yumnamcha
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, United States of America
| | - Ahmed S. Ibrahim
- Department of Ophthalmology, Visual, and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, United States of America
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI, United States of America
| |
Collapse
|
5
|
Glycogen-Endoplasmic Reticulum Connection in the Liver. Int J Mol Sci 2023; 24:ijms24021074. [PMID: 36674588 PMCID: PMC9862463 DOI: 10.3390/ijms24021074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/04/2022] [Accepted: 12/27/2022] [Indexed: 01/08/2023] Open
Abstract
Glycogen, the branched polymer of glucose is found mainly in the liver and muscle in mammals. Along with several other proteins, glycogen forms separate cellular organelles, and particles in cells. Glycogen particles in the liver have a special metabolic and also regulatory connection to the intracellular endomembrane system, particularly the endoplasmic reticulum. This connection is part of the organelle homeostasis in hepatocytes and forms a "glycogenoreticular system". The actual size of hepatic glycogen stores and the rate of glycogenolysis determines several essential liver-specific metabolic processes, such as glucose secretion for the maintenance of blood glucose levels or the glucuronidation of certain vital endo-, and xenobiotics, and are also related to liver antioxidant defense. In starvation, and in certain physiological and pathological states, where glycogen stores are depleted, functions of the glycogenoreticular system are altered. The starvation-induced depletion of hepatic glycogen content changes the biotransformation of various endo- and xenobiotics. This can be observed especially in acute DILI (drug-induced liver injury) due to paracetamol overdose, which is the most common cause of acute liver failure in the West.
Collapse
|
6
|
Gilthead Seabream Liver Integrative Proteomics and Metabolomics Analysis Reveals Regulation by Different Prosurvival Pathways in the Metabolic Adaptation to Stress. Int J Mol Sci 2022; 23:ijms232315395. [PMID: 36499720 PMCID: PMC9741202 DOI: 10.3390/ijms232315395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
The study of the molecular mechanisms of stress appraisal on farmed fish is paramount to ensuring a sustainable aquaculture. Stress exposure can either culminate in the organism's adaptation or aggravate into a metabolic shutdown, characterized by irreversible cellular damage and deleterious effects on fish performance, welfare, and survival. Multiomics can improve our understanding of the complex stressed phenotype in fish and the molecular mediators that regulate the underlying processes of the molecular stress response. We profiled the stress proteome and metabolome of Sparus aurata responding to different challenges common to aquaculture production, characterizing the disturbed pathways in the fish liver, i.e., the central organ in mounting the stress response. Label-free shotgun proteomics and untargeted metabolomics analyses identified 1738 proteins and 120 metabolites, separately. Mass spectrometry data have been made fully accessible via ProteomeXchange, with the identifier PXD036392, and via MetaboLights, with the identifier MTBLS5940. Integrative multivariate statistical analysis, performed with data integration analysis for biomarker discovery using latent components (DIABLO), depicted the 10 most-relevant features. Functional analysis of these selected features revealed an intricate network of regulatory components, modulating different signaling pathways related to cellular stress, e.g., the mTORC1 pathway, the unfolded protein response, endocytosis, and autophagy to different extents according to the stress nature. These results shed light on the dynamics and extent of this species' metabolic reprogramming under chronic stress, supporting future studies on stress markers' discovery and fish welfare research.
Collapse
|
7
|
Davidson CD, Tomczak JA, Amiel E, Carr FE. Inhibition of Glycogen Metabolism Induces Reactive Oxygen Species-Dependent Cytotoxicity in Anaplastic Thyroid Cancer in Female Mice. Endocrinology 2022; 163:bqac169. [PMID: 36240295 PMCID: PMC10233255 DOI: 10.1210/endocr/bqac169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/19/2022]
Abstract
Anaplastic thyroid cancer (ATC) is one of the most lethal solid tumors, yet there are no effective, long-lasting treatments for ATC patients. Most tumors, including tumors of the endocrine system, exhibit an increased consumption of glucose to fuel cancer progression, and some cancers meet this high glucose requirement by metabolizing glycogen. Our goal was to determine whether ATC cells metabolize glycogen and if this could be exploited for treatment. We detected glycogen synthase and glycogen phosphorylase (PYG) isoforms in normal thyroid and thyroid cancer cell lines and patient-derived biopsy samples. Inhibition of PYG using CP-91,149 induced apoptosis in ATC cells but not normal thyroid cells. CP-91,149 decreased NADPH levels and induced reactive oxygen species accumulation. CP-91,149 severely blunted ATC tumor growth in vivo. Our work establishes glycogen metabolism as a novel metabolic process in thyroid cells, which presents a unique, oncogenic target that could offer an improved clinical outcome.
Collapse
Affiliation(s)
- Cole D Davidson
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| | - Jennifer A Tomczak
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Eyal Amiel
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT 05405, USA
- University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| | - Frances E Carr
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
- University of Vermont Cancer Center, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
8
|
Yazdani S, Bilan PJ, Jaldin-Fincati JR, Pang J, Ceban F, Saran E, Brumell JH, Freeman SA, Klip A. Dynamic glucose uptake, storage, and release by human microvascular endothelial cells. Mol Biol Cell 2022; 33:ar106. [PMID: 35921166 DOI: 10.1091/mbc.e22-04-0146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Endothelia determine blood-to-tissue solute delivery, yet glucose transit is poorly understood. To illuminate mechanisms, we tracked [3H]-2-deoxyglucose (2-DG) in human adipose-tissue microvascular endothelial cells. 2-DG uptake was largely facilitated by the glucose transporters GLUT1 and GLUT3. Once in the cytosol, >80% of 2-DG became phosphorylated and ∼20% incorporated into glycogen, suggesting that transported glucose is readily accessible to cytosolic enzymes. Interestingly, a fraction of intracellular 2-DG was released over time (15-20% over 30 min) with slower kinetics than for uptake, involving GLUT3. In contrast to intracellular 2-DG, the released 2-DG was largely unphosphorylated. Glucose release involved endoplasmic reticulum-resident translocases/phosphatases and was stimulated by adrenaline, consistent with participation of glycogenolysis and glucose dephosphorylation. Surprisingly, the fluorescent glucose derivative 2-NBD-glucose (2-NBDG) entered cells largely via fluid phase endocytosis and exited by recycling. 2-NBDG uptake was insensitive to GLUT1/GLUT3 inhibition, suggesting poor influx across membranes. 2-NBDG recycling, but not 2-DG efflux, was sensitive to N-ethyl maleimide. In sum, by utilizing radioactive and fluorescent glucose derivatives, we identified two parallel routes of entry: uptake into the cytosol through dedicated glucose transporters and endocytosis. This reveals the complex glucose handling by endothelial cells that may contribute to glucose delivery to tissues.
Collapse
Affiliation(s)
- Samaneh Yazdani
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada, M5G 0A4
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada, M5G 0A4
| | | | - Janice Pang
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada, M5G 0A4
| | - Felicia Ceban
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada, M5G 0A4
| | - Ekambir Saran
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada, M5G 0A4
| | - John H Brumell
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada, M5G 0A4.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, M5S 1A1.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada, M5S 1A1.,SickKids IBD Centre, Hospital for Sick Children, Toronto, ON, Canada, M5G 0A4
| | - Spencer A Freeman
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada, M5G 0A4.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada, M5S 1A1
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada, M5G 0A4.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada, M5S 1A1.,Department of Paediatrics, University of Toronto, Toronto, ON, Canada, M5S 1A1.,Department of Physiology, University of Toronto, Toronto, ON, Canada, M5S 1A1
| |
Collapse
|
9
|
Koutsifeli P, Varma U, Daniels LJ, Annandale M, Li X, Neale JPH, Hayes S, Weeks KL, James S, Delbridge LMD, Mellor KM. Glycogen-autophagy: Molecular machinery and cellular mechanisms of glycophagy. J Biol Chem 2022; 298:102093. [PMID: 35654138 PMCID: PMC9249846 DOI: 10.1016/j.jbc.2022.102093] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an essential cellular process involving degradation of superfluous or defective macromolecules and organelles as a form of homeostatic recycling. Initially proposed to be a “bulk” degradation pathway, a more nuanced appreciation of selective autophagy pathways has developed in the literature in recent years. As a glycogen-selective autophagy process, “glycophagy” is emerging as a key metabolic route of transport and delivery of glycolytic fuel substrate. Study of glycophagy is at an early stage. Enhanced understanding of this major noncanonical pathway of glycogen flux will provide important opportunities for new insights into cellular energy metabolism. In addition, glycogen metabolic mishandling is centrally involved in the pathophysiology of several metabolic diseases in a wide range of tissues, including the liver, skeletal muscle, cardiac muscle, and brain. Thus, advances in this exciting new field are of broad multidisciplinary interest relevant to many cell types and metabolic states. Here, we review the current evidence of glycophagy involvement in homeostatic cellular metabolic processes and of molecular mediators participating in glycophagy flux. We integrate information from a variety of settings including cell lines, primary cell culture systems, ex vivo tissue preparations, genetic disease models, and clinical glycogen disease states.
Collapse
Affiliation(s)
- Parisa Koutsifeli
- Department of Physiology, University of Auckland, Auckland, New Zealand; Department of Anatomy & Physiology, University of Melbourne, Melbourne, Australia
| | - Upasna Varma
- Department of Anatomy & Physiology, University of Melbourne, Melbourne, Australia
| | - Lorna J Daniels
- Department of Physiology, University of Auckland, Auckland, New Zealand; Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Marco Annandale
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Xun Li
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Joshua P H Neale
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Sarah Hayes
- Department of Anatomy & Physiology, University of Melbourne, Melbourne, Australia
| | - Kate L Weeks
- Department of Anatomy & Physiology, University of Melbourne, Melbourne, Australia; Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia; Department of Diabetes, Monash University, Melbourne, Australia
| | - Samuel James
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Lea M D Delbridge
- Department of Physiology, University of Auckland, Auckland, New Zealand; Department of Anatomy & Physiology, University of Melbourne, Melbourne, Australia.
| | - Kimberley M Mellor
- Department of Physiology, University of Auckland, Auckland, New Zealand; Department of Anatomy & Physiology, University of Melbourne, Melbourne, Australia; Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
10
|
Conroy LR, Hawkinson TR, Young LEA, Gentry MS, Sun RC. Emerging roles of N-linked glycosylation in brain physiology and disorders. Trends Endocrinol Metab 2021; 32:980-993. [PMID: 34756776 PMCID: PMC8589112 DOI: 10.1016/j.tem.2021.09.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022]
Abstract
N-linked glycosylation is a complex, co- and post-translational series of events that connects metabolism to signaling in almost all cells. Metabolic assembly of N-linked glycans spans multiple cellular compartments, and early N-linked glycan biosynthesis is a central mediator of protein folding and the unfolded protein response (UPR). In the brain, N-linked glycosylated proteins participate in a myriad of processes, from electrical gradients to neurotransmission. However, it is less clear how perturbations in N-linked glycosylation impact and even potentially drive aspects of neurological disorders. In this review, we discuss our current understanding of the metabolic origins of N-linked glycans in the brain, their role in modulating neuronal function, and how aberrant N-linked glycosylation can drive neurological disorders.
Collapse
Affiliation(s)
- Lindsey R Conroy
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA; Markey Cancer Center, Lexington, KY 40508-0536, USA
| | - Tara R Hawkinson
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA
| | - Ramon C Sun
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY 40508-0536, USA; Markey Cancer Center, Lexington, KY 40508-0536, USA; Sanders Brown Center for Aging, Lexington, KY 40508-0536, USA.
| |
Collapse
|
11
|
Brain glycogen serves as a critical glucosamine cache required for protein glycosylation. Cell Metab 2021; 33:1404-1417.e9. [PMID: 34043942 PMCID: PMC8266748 DOI: 10.1016/j.cmet.2021.05.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/02/2021] [Accepted: 05/03/2021] [Indexed: 02/08/2023]
Abstract
Glycosylation defects are a hallmark of many nervous system diseases. However, the molecular and metabolic basis for this pathology is not fully understood. In this study, we found that N-linked protein glycosylation in the brain is metabolically channeled to glucosamine metabolism through glycogenolysis. We discovered that glucosamine is an abundant constituent of brain glycogen, which functions as a glucosamine reservoir for multiple glycoconjugates. We demonstrated the enzymatic incorporation of glucosamine into glycogen by glycogen synthase, and the release by glycogen phosphorylase by biochemical and structural methodologies, in primary astrocytes, and in vivo by isotopic tracing and mass spectrometry. Using two mouse models of glycogen storage diseases, we showed that disruption of brain glycogen metabolism causes global decreases in free pools of UDP-N-acetylglucosamine and N-linked protein glycosylation. These findings revealed fundamental biological roles of brain glycogen in protein glycosylation with direct relevance to multiple human diseases of the central nervous system.
Collapse
|
12
|
Elsayed HRH, El Nashar EM, Abd-Elmonem MM. Is the hepatocyte ultrastructural zonal heterogeneity changed by overnight (16 h) fasting? Morphometric study. Ultrastruct Pathol 2019; 43:290-300. [PMID: 31791174 DOI: 10.1080/01913123.2019.1696906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background and objectives: Hepatocyte ultra-structure is influenced by feeding status, circadian rhythm, and zone location. The goal of the present study was to study the effect of overnight fasting on the hepatocyte ultrastructure and the zonal heterogeneity and to discuss the functional correlation.Methods: A total of 14 male albino rats were divided into two groups: negative control group fed ad libitum and overnight fasting rats for 16 hours. The different subcellular structures of both centrilobular and periportal hepatocytes in both control and fasted groups were compared by transmission electron microscopy. Morphometric analysis of the electron micrographs was also done using imageJ software.Results: The lysosomes surface density, mitochondrial volume and surface densities were significantly higher in periportal hepatocytes however surface density of smooth endoplasmic reticulum (SER) and peroxisomes were significantly higher in centrilobular hepatocytes of the control group. Fasting caused a significant decrease in the surface density of rough endoplasmic reticulum and glycogen volume density but with significant increase in SER surface density with more mitochondrial fusion and stronger mitochondrial ER contacts, isolation membranes, and autophagosomes. The zonal differences were maintained after fasting. The organelles appeared normal with no signs of degeneration.Conclusion: The organelles appeared normal with no signs of degeneration and the zonal differences were maintained after fasting. The change in hepatocyte ultrastructure after fasting may be related to autophagy.
Collapse
Affiliation(s)
| | - Eman Mohammad El Nashar
- College of Medicine, Anatomy, King Khalid University, Abha, Saudi Arabia.,Faculty of Medicine, Histology and cell biology, Benha University, Benha, Egypt
| | | |
Collapse
|
13
|
Watch What You (Self-) Eat: Autophagic Mechanisms that Modulate Metabolism. Cell Metab 2019; 29:803-826. [PMID: 30943392 PMCID: PMC6450419 DOI: 10.1016/j.cmet.2019.03.003] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/07/2019] [Accepted: 03/04/2019] [Indexed: 02/07/2023]
Abstract
Autophagy is an evolutionarily conserved lysosome- or vacuole-dependent catabolic pathway in eukaryotes. Autophagy functions basally for cellular quality control and is induced to act as an alternative source of basic metabolites during nutrient deprivation. These functions of autophagy are intimately connected to the regulation of metabolism, and the metabolic status of the cell in turn controls the nature and extent of autophagic induction. Here, we highlight the co-regulation of autophagy and metabolism with a special focus on selective autophagy that, along with bulk autophagy, plays a central role in regulating and rewiring metabolic circuits. We outline the metabolic signals that activate these pathways, the mechanisms involved, and the downstream effects and implications while recognizing yet unanswered questions. We also discuss the role of autophagy in the development and maintenance of adipose tissue, an emerging player in systemic metabolic homeostasis, and describe what is currently known about the complex relationship between autophagy and cancer.
Collapse
|