1
|
Gehling GM, Alfaqih M, Pruinelli L, Starkweather A, Dungan JR. A systematic review of candidate genes and their relevant pathways for metastasis among adults diagnosed with breast cancer. Breast Cancer Res 2024; 26:165. [PMID: 39593069 PMCID: PMC11590482 DOI: 10.1186/s13058-024-01914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Presently incurable, metastatic breast cancer is estimated to occur in as many as 30% of those diagnosed with early-stage breast cancer. Timely and accurate identification of those at risk for developing metastasis using validated biomarkers has the potential to have profound impact on overall survival rates. Our primary goal was to conduct a systematic review and synthesize the existing body of scientific knowledge on the candidate genes and their respective single nucleotide polymorphisms associated with metastasis-related outcomes among patients diagnosed with breast cancer. This knowledge is critical to inform future hypothesis-driven and validation research aimed at enhancing clinical decision-making for breast cancer patients. METHODS Using PRISMA guidelines, literature searches were conducted on September 13th, 2023, using PubMed and Embase databases. The systematic review protocol was registered with INPLASY (DOI: https://doi.org/10.37766/inplasy2024.8.0014 ). Covidence software was used to facilitate the screening and article extraction processes. Peer-reviewed articles were selected if authors reported on single nucleotide polymorphisms directly associated with metastasis among adults diagnosed with breast cancer. FINDINGS We identified 451 articles after 44 duplicates were removed resulting in 407 articles to be screened for study inclusion. Three reviewers completed the article screening process which resulted in 86 articles meeting the study inclusion criteria. Sampling varied across studies with the majority utilizing a case-control design (n = 75, 87.2%), with sample sizes ranging from 23 to 1,017 participants having mean age 50.65 ± 4.50 (min-max: 20-75). The synthesis of this internationally generated evidence revealed that the scientific area on the underlying biological contributions to breast cancer metastasis remains predominantly exploratory in nature (n = 74, 86%). Of the 12 studies with reported power analyses, only 9 explicitly stated the power values which ranged from 47.88 to 99%. DISCUSSION Understanding the underlying biological mechanisms contributing to metastasis is a critical component for precision oncological therapeutics and treatment approaches. Current evidence investigating the contribution of SNPs to the development of metastasis is characterized by underpowered candidate gene studies. To inform individualized precision health practices and improve breast cancer survival outcomes, future hypothesis-driven research is needed to replicate these associations in larger, more diverse datasets.
Collapse
Affiliation(s)
- Gina M Gehling
- College of Nursing, University of Florida, 1225 Center Dr, PO BOX 100197, Gainesville, FL, 32610-1097, USA
| | - Miad Alfaqih
- College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lisiane Pruinelli
- College of Nursing, University of Florida, 1225 Center Dr, PO BOX 100197, Gainesville, FL, 32610-1097, USA
| | - Angela Starkweather
- College of Nursing, University of Florida, 1225 Center Dr, PO BOX 100197, Gainesville, FL, 32610-1097, USA
| | - Jennifer R Dungan
- College of Nursing, University of Florida, 1225 Center Dr, PO BOX 100197, Gainesville, FL, 32610-1097, USA.
| |
Collapse
|
2
|
Sghaier I, Sheridan JM, Daldoul A, El-Ghali RM, Al-Awadi AM, Habel AF, Aimagambetova G, Almawi WY. Association of IL-1β gene polymorphisms rs1143627, rs1799916, and rs16944 with altered risk of triple-negative breast cancer. Cytokine 2024; 180:156659. [PMID: 38781872 DOI: 10.1016/j.cyto.2024.156659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Breast cancer (BC) is the most recognized malignancy in females globally and is heterogeneous in its clinical manifestation, among which the triple-negative (TNBC) subtype is the most aggressive. This study examines the associations between IL-1β polymorphisms and BC and TNBC susceptibility. METHODS Genotyping ofIL-1βrs1143627, rs1799916, and rs16944 polymorphisms was done in 488 women with BC (130 TNBC, 358 non-TNBC) and 476 cancer-free control women using real-time PCR genotyping. RESULTS The minor allele and genotype frequencies of rs1799916, rs1143627, and rs16944 significantly differed among BC cases and controls and remained after correcting key covariates. On the other hand, minor allele and genotype frequencies of only rs16944 significantly differed between TNBC and non-TNBC cases. Spearman correlation analyses demonstrated that all three variants correlated positively with menopausal status and Her2 status but negatively with menarche, breastfeeding, and cancer type. In addition, rs1143627 and rs16944 correlated positively with HR and ER, while rs1799916 correlated positively with Ki67 status. The three variants correlated negatively with menarche, breastfeeding, and cancer type in non-TNBC cases but positively with histological grading in non-TNBC and Her2 in TNBC cases. A positive correlation was noted between rs1143627 and rs1799916 and age (<40 years) and between rs1799916 and rs16944 with menopausal status. We confirmed that GCG haplotype imparted BC susceptibility, while TCA and TTG haplotypes were protective of BC. Among TNBC cases, only GCG and TCA haplotypes remained protective of TNBC after adjustment. CONCLUSIONS Our study highlights the association between IL-1βgenetic polymorphisms and BC and TNBC susceptibility, suggesting these variants' diagnostic/prognostic capacity in BC patients.
Collapse
Affiliation(s)
- Ikram Sghaier
- Faculty of Sciences, El-Manar University, Tunis, Tunisia
| | - Jordan M Sheridan
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Amira Daldoul
- Department of Medical Oncol., Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | - Rabeb M El-Ghali
- Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | | | - Azza F Habel
- Faculty of Sciences, El-Manar University, Tunis, Tunisia
| | | | - Wassim Y Almawi
- Faculty of Sciences, El-Manar University, Tunis, Tunisia; Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada.
| |
Collapse
|
3
|
Tawil S, Khaddage-Soboh N. Cancer research in Lebanon: Scope of the most recent publications of an academic institution (Review). Oncol Lett 2024; 28:350. [PMID: 38872861 PMCID: PMC11170263 DOI: 10.3892/ol.2024.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/09/2023] [Indexed: 06/15/2024] Open
Abstract
Cancer may be considered one of the most interesting areas of study, and although oncology research has grown markedly over the last decade, there is as yet no known cure for cancer. The objective of the present review is to examine various approaches to cancer research from a single institution, summarize their key conclusions and offer recommendations for future evaluations. The review examined 72 cancer-associated studies that were published within six years from 2017 to 2022. Published works in the subject fields of 'cancer' or 'oncology' and 'research' that were indexed in Scopus and Web of Science were retrieved and sorted according to article title, author names, author count, citation count and key words. After screening, a total of 28 in vitro/animal studies and 46 patient-associated published studies were obtained. A large proportion of these studies comprised literature reviews (20/72), while 20 studies were observational in nature. The 72 publications included 23 in which various types of cancer were examined, while the remaining studies focused on specific types of cancer, including lung, breast, colon and brain cancer. These studies aimed to investigate the incidence, prevalence, treatment and prevention mechanisms associated with cancer. Despite the existence of extensive cancer research, scientists seldom contemplate an ultimate cure for cancer. However, it is crucial to continuously pursue research on cancer prevention and treatment in order to enhance the effectiveness and minimize potential side effects of cancer therapy.
Collapse
Affiliation(s)
- Samah Tawil
- School of Medicine, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Nada Khaddage-Soboh
- Adnan Kassar School of Business, Lebanese American University, Beirut 1102 2801, Lebanon
| |
Collapse
|
4
|
Huang Y, Dai D, Zhu L, Qi X. Novel associations between MTDH gene polymorphisms and invasive ductal breast cancer: a case-control study. Discov Oncol 2024; 15:273. [PMID: 38977630 PMCID: PMC11231109 DOI: 10.1007/s12672-024-01086-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
OBJECTIVE To reveal the contributing effects of MTDH gene SNPs in the risk of invasive ductal breast cancer (IDC). PATIENTS AND METHODS A case-control study was conducted, recruiting a total of 300 cases of IDC and 565 cancer-free controls from East China. Genotyping of three single-nucleotide polymorphisms (SNPs) in the MTDH gene was performed. Genomic DNA was extracted from peripheral blood samples of patients. The three SNPs (rs1311 T > C, rs16896059 G > A, rs2449512 A > G) in the MTDH gene were selected for detection using a TaqMan real-time polymerase chain reaction assay. The association between MTDH and the risk of IDC was analyzed employing an epidemiology case-control study and a multinomial logistic regression model. RESULTS Among the three evaluated SNPs, rs1311 T > C, rs16896059 G > A, and rs2449512 A > G demonstrated a significant association with an increased risk of IDC. Furthermore, stratified analysis revealed that individuals carrying the rs1311 CC genotype, rs16896059 GA/AA genotypes, and rs2449512 GG genotype were more susceptible to developing IDC in subgroups of patients younger than 53 years, without family history of IDC, pre-menopause status, clinical stage 2, high grade, with no distant metastasis or invasion, Her2-positive type, ER positive, PR positive, and Ki67 cells less than 10%. However, carriers of the rs16896059 GA/AA genotypes and rs2449512 GG genotype had an elevate the risk of IDC in patients with tumor size larger than 2 cm, post-menopause status, clinical stage 3, with invasion, lymph node infiltration, ER negative, PR negative, Her2 negative, and Ki67 cells exceeding 10%. Compared to the reference haplotype TGA, haplotypes TAA, TAG, and TGG were significantly associated with an increased IDC risk. CONCLUSION In this study, we demonstrated a significant association between MTDH gene polymorphisms and an increased risk of IDC. Moreover, our findings suggested that MTDH gene polymorphisms could serve as a potential biomarker for IDC subtyping and therapeutic selection.
Collapse
Affiliation(s)
- Yan Huang
- Department of Pathology, The First People's Hospital of Linping District, #369 Nanyuan Street Yingbin Road, Linping District, Hangzhou, Zhejiang, China.
| | - Dan Dai
- Department of Pathology, The First People's Hospital of Linping District, #369 Nanyuan Street Yingbin Road, Linping District, Hangzhou, Zhejiang, China
| | - Li Zhu
- Department of Pathology, The First People's Hospital of Linping District, #369 Nanyuan Street Yingbin Road, Linping District, Hangzhou, Zhejiang, China
| | - Xianzhong Qi
- Department of Pathology, The First People's Hospital of Linping District, #369 Nanyuan Street Yingbin Road, Linping District, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Lin SH, Chien CH, Chang KP, Lu MF, Chen YT, Chu YW. SaBrcada: Survival Intervals Prediction for Breast Cancer Patients by Dimension Raising and Age Stratification. Cancers (Basel) 2023; 15:3690. [PMID: 37509351 PMCID: PMC10378351 DOI: 10.3390/cancers15143690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Breast cancer is the second leading cause of cancer death among women. The accurate prediction of survival intervals will help physicians make informed decisions about treatment strategies or the use of palliative care. (2) Methods: Gene expression is predictive and correlates to patient prognosis. To establish a reliable prediction tool, we collected a total of 1187 RNA-seq data points from breast cancer patients (median age 58 years) in Fragments Per Kilobase Million (FPKM) format from the TCGA database. Among them, we selected 144 patients with date of death information to establish the SaBrcada-AD dataset. We first normalized the SaBrcada-AD dataset to TPM to build the survival prediction model SaBrcada. After normalization and dimension raising, we used the differential gene expression data to test eight different deep learning architectures. Considering the effect of age on prognosis, we also performed a stratified random sampling test on all ages between the lower and upper quartiles of patient age, 48 and 69 years; (3) Results: Stratifying by age 61, the performance of SaBrcada built by GoogLeNet was improved to a highest accuracy of 0.798. We also built a free website tool to provide five predicted survival periods: within six months, six months to one year, one to three years, three to five years, or over five years, for clinician reference. (4) Conclusions: We built the prediction model, SaBrcada, and the website tool of the same name for breast cancer survival analysis. Through these models and tools, clinicians will be provided with survival interval information as a basis for formulating precision medicine.
Collapse
Affiliation(s)
- Shih-Huan Lin
- Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ching-Hsuan Chien
- Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Kai-Po Chang
- Department of Pathology, China Medical University Hospital, Taichung 404327, Taiwan
| | - Min-Fang Lu
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yu-Ting Chen
- Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 40227, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yen-Wei Chu
- Ph.D. Program in Medical Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung 40227, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan
- Smart Sustainable New Agriculture Research Center (SMARTer), Taichung 40227, Taiwan
| |
Collapse
|
6
|
Al Sharhan NA, Messaoudi SA, Babu SR, Chaudhary AB, Alsharm AA, Alrefaei AF, Kadasah S, Abu-Elmagd M, Assidi M, Buhmeida A, Carracedo Á, Almawi WY. Utility of Circulating Cell-Free DNA in Assessing Microsatellite Instability and Loss of Heterozygosity in Breast Cancer Using Human Identification Approach. Genes (Basel) 2022; 13:590. [PMID: 35456396 PMCID: PMC9027523 DOI: 10.3390/genes13040590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
The diagnostic and prognostic utility of circulating cell-free DNA (cfDNA) in breast cancer (BC) patients was recently reported. Here, we investigated the use of cfDNA to examine microsatellite instability (MSI) and loss of heterozygosity (LOH) for early BC diagnosis. cfDNA and genomic DNA from 41 female BC patients and 40 healthy controls were quantified using NanoDrop spectrophotometry and real-time PCR. The stability of genomic and cfDNA was assessed using a high-resolution AmpFlSTR MiniFiler human identification kit. Significant increases in cfDNA plasma concentrations were observed in BC patients compared to controls. The genotype distribution of the eight autosomal short tandem repeat (STR) loci D7S820, D13S317, D21S11, D2S1338, D18S51, D16S539, FGA, and CSF1PO were in Hardy-Weinberg equilibrium. Significant differences in the allele frequencies of D7S820 allele-8, D21S11 allele-29, allele-30.2, allele-32.2, and CSF1PO allele-11 were seen between BC patients and controls. LOH and MSI were detected in 36.6% of the cfDNA of patients compared to genomic DNA. This study highlights the utility of plasma-derived cfDNA for earlier, less invasive, and cost-effective cancer diagnosis and molecular stratification. It also highlights the potential value of cfDNA in molecular profiling and biomarkers discovery in precision and forensic medicine.
Collapse
Affiliation(s)
- Norah A. Al Sharhan
- Department of Biopharmaceutical, Laboratories and Research Sector, Saudi Food and Drug Authority, Riyadh 3292, Saudi Arabia;
| | - Safia A. Messaoudi
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh 14812, Saudi Arabia; (S.A.M.); (S.R.B.); (A.B.C.)
| | - Saranya R. Babu
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh 14812, Saudi Arabia; (S.A.M.); (S.R.B.); (A.B.C.)
| | - AbdulRauf B. Chaudhary
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh 14812, Saudi Arabia; (S.A.M.); (S.R.B.); (A.B.C.)
- Surgery Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Abdullah A. Alsharm
- Medical Oncology Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia;
| | | | - Sultan Kadasah
- Department of Biology, Faculty of Sciences, University of Bisha, Bisha 61922, Saudi Arabia;
| | - Muhammad Abu-Elmagd
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.-E.); (M.A.); (A.B.)
- Medical Laboratory Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mourad Assidi
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.-E.); (M.A.); (A.B.)
- Medical Laboratory Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdelbaset Buhmeida
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.A.-E.); (M.A.); (A.B.)
| | - Ángel Carracedo
- Grupo de Medicina Xenómica, Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), CIBERER, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Wassim Y. Almawi
- Faculté des Sciences de Tunis, Université de Tunis—El Manar, Tunis 1068, Tunisia
| |
Collapse
|
7
|
Impacts of LOC105371267 Variants on Breast Cancer Susceptibility in Northern Chinese Han Females: A Population-Based Case-Control Study. JOURNAL OF ONCOLOGY 2021; 2021:4990695. [PMID: 34475952 PMCID: PMC8407995 DOI: 10.1155/2021/4990695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/18/2021] [Indexed: 11/21/2022]
Abstract
Background LOC105371267, also known as PR-lncRNA1, was reported to be a p53-regulated long noncoding RNA (lncRNA), which played an essential role in the pathogenesis of breast cancer (BC). We aimed to observe the potential association between LOC105371267 polymorphisms and BC risk in Northern Chinese Han females. Methods Totally, 555 healthy individuals and 561 patients with BC were recruited. Five candidate SNPs (rs6499221, rs3931698, rs8044565, rs3852740, and rs111577197) of LOC105371267 were genotyped with the Agena MassARRAY system. Odds ratio (OR) and 95% confidence intervals (CIs) were applied to evaluate the relationship of LOC105371267 genetic polymorphisms with BC susceptibility. Additionally, stratification analysis based on clinical features and haplotype analysis were also conducted. Finally, multifactor dimensionality reduction (MDR) analysis was performed to assess the SNP-SNP interaction among LOC105371267 variants, and false-positive report probability (FPRP) analysis was used to validate the result of this study. Results In this study, rs3931698 was a protective factor of BC in total (GG homozygote: OR = 0.30, 95% CI: 0.11–0.82, p=0.018; recessive model: OR = 0.30, 95% CI: 0.11–0.84, p=0.021). In stratification analysis based on the average age of 52 years and clinical characteristics (PR status, III-IV TNM stage), rs3931698 was also demonstrated to be associated with BC susceptibility. In addition, rs6499221 and rs3852740 were also associated with BC susceptibility among patients at age <52 years and patients with BC in a positive status. Thus, the haplotype analysis had a negative result for the incidence of BC (p > 0.05), and haplotype consisting of rs8044565 and rs111577197 was nonsignificantly associated with the BC risk. Finally, MDR and FPRP analyses also validated the result of this study. Conclusion Polymorphisms rs3931698, rs6499221, and rs3852740 of LOC105371267 were found to be associated with the risk of BC in total, and stratification analysis in the Northern Chinese Han females suggested that LOC105371267 variants might be helpful to predict BC progression.
Collapse
|
8
|
Hadj-Ahmed M, Ghali RM, Bouaziz H, Habel A, Stayoussef M, Ayedi M, Hachiche M, Rahal K, Yacoubi-Loueslati B, Almawi WY. Transforming growth factor beta 1 polymorphisms and haplotypes associated with breast cancer susceptibility: A case-control study in Tunisian women. Tumour Biol 2019; 41:1010428319869096. [PMID: 31405342 DOI: 10.1177/1010428319869096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Variable association of transforming growth factor beta 1 (TGFβ1) in breast cancer (BC) pathogenesis was documented, and the contribution of specific TGFB1 polymorphisms to the progression of BC and associated features remains poorly understood. We investigated the contribution of TGFB1 rs1800469, rs1800470, rs1800471, and rs1800472 variants and 4-locus TGFB1 haplotypes on BC susceptibility, and pathological presentation of BC subtypes. Study subjects comprised 430 female BC cases, and 498 cancer-free control women. BC-associated pathological parameters were also evaluated for correlation with TGFB1 variants. Results obtained showed that the minor allele frequency (MAF) of rs1800471 (+74G>C) was higher seen in BC cases than in control subjects, and was associated with increased risk of BC. Significant differences in rs1800471 and rs1800469 (-509C>T) genotype distribution were noted between BC cases and controls, which persisted after controlling for key covariates. TGFB1 rs1800472 was positively, while rs1800470 was negatively associated with triple negativity, while rs1800470 positively correlated with menarche, but negatively with tumor size and molecular type, and rs1800469 correlated positively with menstrual irregularity, distant metastasis, nodal status, and hormonotherapy. Heterogeneity in LD pattern was noted between the tested TGFB1 variants. Four-locus (rs1800472-rs1800471-rs1800470-rs1800469) Haploview analysis identified haplotype TGCT to be negatively associated, and haplotypes CGTT and CCCC to be positively associated with BC. This association of CGTT and CCCC, but not TGCT, with BC remained significant after controlling for key covariates. In conclusion, TGFB1 alleles and specific genotypes, and 4-locus TGFB1 haplotypes influence BC susceptibility, suggesting dual association imparted by specific SNP, consistent with dual role for TGFB1 in BC pathogenesis.
Collapse
Affiliation(s)
- Mariem Hadj-Ahmed
- 1 Laboratory of Mycology, Pathologies and Biomarkers, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Rabeb M Ghali
- 2 Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Hanen Bouaziz
- 3 Department of Carcinological Surgery, Salah Azaïz Institute, Tunis, Tunisia
| | - Azza Habel
- 1 Laboratory of Mycology, Pathologies and Biomarkers, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mouna Stayoussef
- 1 Laboratory of Mycology, Pathologies and Biomarkers, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Mouna Ayedi
- 4 Department of Medical Oncology, Salah Azaïz Institute, Tunis, Tunisia
| | - Monia Hachiche
- 2 Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Khaled Rahal
- 2 Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| | - Besma Yacoubi-Loueslati
- 1 Laboratory of Mycology, Pathologies and Biomarkers, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Wassim Y Almawi
- 1 Laboratory of Mycology, Pathologies and Biomarkers, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia.,5 Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|