1
|
Malzoni CMDA, Oliveira JA, Soares LFF, Chimirri MC, Almeida DADF, Pigossi SC, Marcantonio E. Three-dimensional printed bioresorbable scaffold for maxillofacial bone reconstruction: A Scoping Review. Braz Dent J 2024; 35:e246112. [PMID: 39476112 PMCID: PMC11506235 DOI: 10.1590/0103-6440202406112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/15/2024] [Indexed: 11/03/2024] Open
Abstract
This scoping review aimed to provide an overview of current advancements in virtual planning and custom-made 3D-printed bioresorbable scaffolds, and to evaluate their clinical outcomes in maxillofacial reconstructive surgeries. Electronic searches of PubMed, EMBASE, Web of Science, Scopus, and Cochrane Library databases were conducted for publications up to June 2024. Included in the review were reports evaluating patients who underwent maxillofacial bone defect reconstruction using virtual planning and custom-made 3D-printed bioresorbable scaffolds. Data on postoperative complications, new bone formation, scaffold resorption, dental implant success/survival, and patient satisfaction were collected. The electronic search found 5799 results (3438 unique citations). A total of 54 studies were evaluated for full-text reading, of which 41 were excluded based on the inclusion criteria. Thirteen studies (6 case reports, 5 case series, one prospective clinical study and one randomized clinical trial) were included. These studies assessed the effectiveness of 3D-printed scaffolds in reconstructing maxillofacial defects, bone augmentation for dental implant placement, and regeneration of periosseous defects. Most of the 3D-printed scaffolds were biocompatible and did not cause local or systemic adverse events. However, some postoperative complications were reported, including graft exposure, wound dehiscence, and local infection. Overall, the 3D-printed scaffolds demonstrated favorable dimensional compatibility with deformities, provided durable support, promoted bone formation, achieved adequate bone union with host bone tissues, and supported dental implant placement without additional guided bone regeneration. In conclusion, custom-made 3D-printed bioresorbable scaffolds, guided by virtual planning, present a promising option for maxillofacial reconstruction due to their accuracy, osteoconductivity, and biocompatible properties.
Collapse
Affiliation(s)
- Carolina Mendonça de Almeida Malzoni
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP - São Paulo State University(FOAr/UNESP), Araraquara, São Paulo, Brazil
| | - Jovânia Alves Oliveira
- Department of Periodontology and Implantodontology, School of Dentistry, Federal University of Uberlândia - UFU, School of Dentistry, Uberlândia, MG, Brazil
| | - Lélio Fernando Fereira Soares
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP - São Paulo State University(FOAr/UNESP), Araraquara, São Paulo, Brazil
| | - Marcella Cunha Chimirri
- Department of Periodontology and Implantodontology, School of Dentistry, Federal University of Uberlândia - UFU, School of Dentistry, Uberlândia, MG, Brazil
| | | | - Suzane Cristina Pigossi
- Department of Periodontology and Implantodontology, School of Dentistry, Federal University of Uberlândia - UFU, School of Dentistry, Uberlândia, MG, Brazil
| | - Elcio Marcantonio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, UNESP - São Paulo State University(FOAr/UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
2
|
Javkhlan Z, Hsu SH, Chen RS, Chen MH. 3D-printed polycaprolactone scaffolds coated with beta tricalcium phosphate for bone regeneration. J Formos Med Assoc 2024; 123:71-77. [PMID: 37709573 DOI: 10.1016/j.jfma.2023.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND/PURPOSE 3D-printing technology is an important tool for the bone tissue engineering (BTE). The aim of this study was to investigate the interaction of polycaprolactone (PCL) scaffolds and modified mesh PCL coated with beta TCP (PCL/β-TCP) scaffolds with MG-63. METHODS This study used the fused deposition modeling (FDM) technique with the 3D printing technique to fabricate the thermoplastic polymer and composite scaffolds. Scaffold structure and coating quality were observed under a scanning electron microscope (SEM). MG-63 cells were injected and attached to the mesh-manufactured PCL scaffolds. The biocompatibility of mesh structured PCL and PCL/β-TCP scaffolds could be examined by measuring the viability of MG-63 cells of MTT assay. Bone cell differentiation was evaluated ALP activity by mineralization assay. RESULTS The results showed that both mesh PCL scaffolds and PCL/β-TCP scaffolds were non-toxic to the cells. The ALP activities of cells in PCL/β-TCP scaffolds groups were significant differences and better than PCL groups in all groups at all experimental dates. The mineralization process was time-dependent, and significantly higher mineralization of osteosarcoma cells was observed on PCL/β-TCP scaffolds at experimental dates. CONCLUSION We concluded that both meshes structured PCL and PCL/β-TCP scaffolds could promote the MG-63 cell growth, and PCL/β-TCP was better than the PCL scaffolds for the outcome of MG63 cell differentiation and mineralization.
Collapse
Affiliation(s)
- Zolzaya Javkhlan
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Sheng-Hao Hsu
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Rung-Shu Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Min-Huey Chen
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Clinical Application of 3D-Printed Patient-Specific Polycaprolactone/Beta Tricalcium Phosphate Scaffold for Complex Zygomatico-Maxillary Defects. Polymers (Basel) 2022; 14:polym14040740. [PMID: 35215652 PMCID: PMC8875444 DOI: 10.3390/polym14040740] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Background: In the present study, we evaluated the efficacy of a 3D-printed, patient-specific polycaprolactone/beta tricalcium phosphate (PCL/β-TCP) scaffold in the treatment of complex zygomatico-maxillary defects. (2) Methods: We evaluated eight patients who underwent immediate or delayed maxillary reconstruction with patient-specific PCL implants between December 2019 and June 2021. The efficacy of these techniques was assessed using the volume and density analysis of computed tomography data obtained before surgery and six months after surgery. (3) Results: Patients underwent maxillary reconstruction with the 3D-printed PCL/β-TCP scaffold based on various reconstructive techniques, including bone graft, fasciocutaneous free flaps, and fat graft. In the volume analysis, satisfactory volume conformity was achieved between the preoperative simulation and actual implant volume with a mean volume conformity of 79.71%, ranging from 70.89% to 86.31%. The ratio of de novo bone formation to total implant volume (bone volume fraction) was satisfactory with a mean bone fraction volume of 23.34%, ranging from 7.81% to 66.21%. Mean tissue density in the region of interest was 188.84 HU, ranging from 151.48 HU to 291.74 HU. (4) Conclusions: The combined use of the PCL/β-TCP scaffold with virtual surgical simulation and 3D printing techniques may replace traditional non-absorbable implants in the future owing to its accuracy and biocompatible properties.
Collapse
|
4
|
Kim HY, Kim BH, Kim MS. Amine Plasma-Polymerization of 3D Polycaprolactone/β-Tricalcium Phosphate Scaffold to Improving Osteogenic Differentiation In Vitro. MATERIALS 2022; 15:ma15010366. [PMID: 35009509 PMCID: PMC8745968 DOI: 10.3390/ma15010366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/20/2021] [Accepted: 01/02/2022] [Indexed: 01/19/2023]
Abstract
This study aims to investigate the surface characterization and pre-osteoblast biological behaviors on the three-dimensional (3D) poly(ε-caprolactone)/β-tricalcium phosphate (β-TCP) scaffold modified by amine plasma-polymerization. The 3D PCL scaffolds were fabricated using fused deposition modeling (FDM) 3D printing. To improve the pre-osteoblast bioactivity, the 3D PCL scaffold was modified by adding β-TCP nanoparticles, and then scaffold surfaces were modified by amine plasma-polymerization using monomer allylamine (AA) and 1,2-diaminocyclohexane (DACH). After the plasma-polymerization of PCL/β-TCP, surface characterizations such as contact angle, AFM, XRD, and FTIR were evaluated. In addition, mechanical strength was measured by UTM. The pre-osteoblast bioactivities were evaluated by focal adhesion and cell proliferation. Osteogenic differentiation was investigated by ALP activity, Alizarin red staining, and Western blot. Plasma-polymerization induced the increase in hydrophilicity of the surface of the 3D PCL/β-TCP scaffold due to the deposition of amine polymeric thin film on the scaffold surface. Focal adhesion and proliferation of pre-osteoblast improved, and osteogenic differentiation was increased. These results indicated that 3D PCL/β-TCP scaffolds treated with DACH plasma-polymerization showed the highest bioactivity compared to the other samples. We suggest that 3D PCL/β-TCP scaffolds treated with DACH and AA plasma-polymerization can be used as a promising candidate for osteoblast differentiation of pre-osteoblast.
Collapse
Affiliation(s)
- Hee-Yeon Kim
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea;
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Korea
| | - Byung-Hoon Kim
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Korea
- Correspondence: (B.-H.K.); (M.-S.K.); Tel.: +82-62-230-6447 (B.-H.K.); +82-62-227-1640 (M.-S.K.)
| | - Myung-Sun Kim
- Department of Orthopaedic Surgery, College of Medicine, Chonnam National University, Gwangju 61469, Korea
- Correspondence: (B.-H.K.); (M.-S.K.); Tel.: +82-62-230-6447 (B.-H.K.); +82-62-227-1640 (M.-S.K.)
| |
Collapse
|
5
|
López-González I, Zamora-Ledezma C, Sanchez-Lorencio MI, Tristante Barrenechea E, Gabaldón-Hernández JA, Meseguer-Olmo L. Modifications in Gene Expression in the Process of Osteoblastic Differentiation of Multipotent Bone Marrow-Derived Human Mesenchymal Stem Cells Induced by a Novel Osteoinductive Porous Medical-Grade 3D-Printed Poly(ε-caprolactone)/β-tricalcium Phosphate Composite. Int J Mol Sci 2021; 22:11216. [PMID: 34681873 PMCID: PMC8537621 DOI: 10.3390/ijms222011216] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023] Open
Abstract
In this work, we evaluated the influence of a novel hybrid 3D-printed porous composite scaffold based on poly(ε-caprolactone) (PCL) and β-tricalcium phosphate (β-TCP) microparticles in the process of adhesion, proliferation, and osteoblastic differentiation of multipotent adult human bone marrow mesenchymal stem cells (ah-BM-MSCs) cultured under basal and osteogenic conditions. The in vitro biological response of ah-BM-MSCs seeded on the scaffolds was evaluated in terms of cytotoxicity, adhesion, and proliferation (AlamarBlue Assay®) after 1, 3, 7, and 14 days of culture. The osteogenic differentiation was assessed by alkaline phosphatase (ALP) activity, mineralization (Alizarin Red Solution, ARS), expression of surface markers (CD73, CD90, and CD105), and reverse transcription-quantitative polymerase chain reaction (qRT-PCR) after 7 and 14 days of culture. The scaffolds tested were found to be bioactive and biocompatible, as demonstrated by their effects on cytotoxicity (viability) and extracellular matrix production. The mineralization and ALP assays revealed that osteogenic differentiation increased in the presence of PCL/β-TCP scaffolds. The latter was also confirmed by the gene expression levels of the proteins involved in the ossification process. Our results suggest that similar bio-inspired hybrid composite materials would be excellent candidates for osteoinductive and osteogenic medical-grade scaffolds to support cell proliferation and differentiation for tissue engineering, which warrants future in vivo research.
Collapse
Affiliation(s)
- Ivan López-González
- Tissue Regeneration and Repair Group, Orthobiology, Biomaterials and Tissue Engineering, Campus de los Jerónimos 135, UCAM-Universidad Católica de Murcia, Guadalupe, 30107 Murcia, Spain;
| | - Camilo Zamora-Ledezma
- Tissue Regeneration and Repair Group, Orthobiology, Biomaterials and Tissue Engineering, Campus de los Jerónimos 135, UCAM-Universidad Católica de Murcia, Guadalupe, 30107 Murcia, Spain;
| | - María Isabel Sanchez-Lorencio
- Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital “Virgen de la Arrixaca”, University of Murcia, El Palmar, 30120 Murcia, Spain;
| | | | - José Antonio Gabaldón-Hernández
- Molecular Recognition and Encapsulation Research Group (REM), Health Sciences Department, Campus de los Jerónimos 135, UCAM-Universidad Católica de Murcia, Guadalupe, 30107 Murcia, Spain;
| | - Luis Meseguer-Olmo
- Tissue Regeneration and Repair Group, Orthobiology, Biomaterials and Tissue Engineering, Campus de los Jerónimos 135, UCAM-Universidad Católica de Murcia, Guadalupe, 30107 Murcia, Spain;
| |
Collapse
|
6
|
Guo Z, Poot AA, Grijpma DW. Advanced polymer-based composites and structures for biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Namkaew J, Laowpanitchakorn P, Sawaddee N, Jirajessada S, Honsawek S, Yodmuang S. Carboxymethyl Cellulose Entrapped in a Poly(vinyl) Alcohol Network: Plant-Based Scaffolds for Cartilage Tissue Engineering. Molecules 2021; 26:578. [PMID: 33499342 PMCID: PMC7865723 DOI: 10.3390/molecules26030578] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 01/01/2023] Open
Abstract
Cartilage has a limited inherent healing capacity after injury, due to a lack of direct blood supply and low cell density. Tissue engineering in conjunction with biomaterials holds promise for generating cartilage substitutes that withstand stress in joints. A major challenge of tissue substitution is creating a functional framework to support cartilage tissue formation. Polyvinyl alcohol (PVA) was crosslinked with glutaraldehyde (GA), by varying the mole ratios of GA/PVA in the presence of different amounts of plant-derived carboxymethyl cellulose (CMC). Porous scaffolds were created by the freeze-drying technique. The goal of this study was to investigate how CMC incorporation and crosslinking density might affect scaffold pore formation, swelling behaviors, mechanical properties, and potential use for engineered cartilage. The peak at 1599 cm-1 of the C=O group in ATR-FTIR indicates the incorporation of CMC into the scaffold. The glass transition temperature (Tg) and Young's modulus were lower in the PVA/CMC scaffold, as compared to the PVA control scaffold. The addition of CMC modulates the pore architecture and increases the swelling ratio of scaffolds. The toxicity of the scaffolds and cell attachment were tested. The results suggest that PVA/CMC scaffolding material can be tailored in terms of its physical and swelling properties to potentially support cartilage formation.
Collapse
Affiliation(s)
- Jirapat Namkaew
- Excellence Center for Advanced Therapy Medicinal Products, King Chulalongkorn Memorial Hospital, Pathumwan, Bangkok 10330, Thailand; (J.N.); (N.S.)
| | - Panitporn Laowpanitchakorn
- Biomaterial Engineering for Medical and Health Research Unit, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand;
| | - Nuttapong Sawaddee
- Excellence Center for Advanced Therapy Medicinal Products, King Chulalongkorn Memorial Hospital, Pathumwan, Bangkok 10330, Thailand; (J.N.); (N.S.)
| | - Sirinee Jirajessada
- Biology Program, Faculty of Science, Buriram Rajabhat University, Muang, Buriram 31000, Thailand;
| | - Sittisak Honsawek
- Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand;
| | - Supansa Yodmuang
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Controlling the Release Profile Through Phase Control of Calcium Phosphate-Alginate Core-shell Nanoparticles in Gene Delivery. Macromol Res 2019. [DOI: 10.1007/s13233-019-7106-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Characterization and Optimization of the Seeding Process of Adipose Stem Cells on the Polycaprolactone Scaffolds. Stem Cells Int 2019; 2019:1201927. [PMID: 30915123 PMCID: PMC6402208 DOI: 10.1155/2019/1201927] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/24/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
Abstract
The purpose of the current study was to evaluate the usefulness of adipose-derived stem cells (ASCs) for bone injury therapy. Lipoaspirates were collected from the abdomen regions of 17 healthy female donors (mean age 49 ± 6 years) using Coleman technique or Body-jet liposuction. In the present study, the primary objective was the in vitro characteristics of human ASCs. The secondary objective was the optimization of the cell seeding process on 3D-printed scaffolds using polycaprolactone (PCL) or polycaprolactone covered with tricalcium phosphate (PCL + 5% TCP). Biological evaluation of human ASC showed high efficiency of isolation obtaining a satisfying amount of homogeneous cell populations. Results suggest that ASCs can be cultured in vitro for a long time without impairing their proliferative capacity. Growth kinetics shows that the highest number of cells can be achieved in passage 5 and after the 16th passage; there is a significant decrease of cell numbers and their proliferative potential. The percentage of colony forming units from the adipose stem cells is 8% ± 0.63% (p < 0.05). It was observed that the accumulation of calcium phosphate in the cells in vitro, marked with Alizarin Red S, was increased along with the next passage. Analysis of key parameters critically related to the cell seeding process shows that volume of cell suspension and propagation time greatly improve the efficiency of seeding both in PCL and PCL + 5% TCP scaffolds. The cell seeding efficiency did differ significantly between scaffold materials and cell seeding methods (p < 0.001). Increased seeding efficiency was observed when using the saturation of cell suspension into scaffolds with additional incubation. Alkaline phosphatase level production in PCL + 5% TCP scaffold was better than in PCL-only scaffold. The study results can be used for the optimization of the seeding process and quantification methods determining the successful implementation of the preclinical model study in the future tissue engineering strategies.
Collapse
|
10
|
Kurzyk A, Dębski T, Święszkowski W, Pojda Z. Comparison of adipose stem cells sources from various locations of rat body for their application for seeding on polymer scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:376-397. [DOI: 10.1080/09205063.2019.1570433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Agata Kurzyk
- Department of Regenerative Medicine, Maria Sklodowska Curie Institute – Oncology Center, Warsaw, Poland
| | - Tomasz Dębski
- Department of Regenerative Medicine, Maria Sklodowska Curie Institute – Oncology Center, Warsaw, Poland
| | - Wojciech Święszkowski
- Materials Design Division, Faculty of Material Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Zygmunt Pojda
- Department of Regenerative Medicine, Maria Sklodowska Curie Institute – Oncology Center, Warsaw, Poland
| |
Collapse
|
11
|
Alizadeh-Osgouei M, Li Y, Wen C. A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioact Mater 2018; 4:22-36. [PMID: 30533554 PMCID: PMC6258879 DOI: 10.1016/j.bioactmat.2018.11.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
The application of various materials in biomedical procedures has recently experienced rapid growth. One area that is currently receiving significant attention from the scientific community is the treatment of a number of different types of bone-related diseases and disorders by using biodegradable polymer-ceramic composites. Biomaterials, the most common materials used to repair or replace damaged parts of the human body, can be categorized into three major groups: metals, ceramics, and polymers. Composites can be manufactured by combining two or more materials to achieve enhanced biocompatibility and biomechanical properties for specific applications. Biomaterials must display suitable properties for their applications, about strength, durability, and biological influence. Metals and their alloys such as titanium, stainless steel, and cobalt-based alloys have been widely investigated for implant-device applications because of their excellent mechanical properties. However, these materials may also manifest biological issues such as toxicity, poor tissue adhesion and stress shielding effect due to their high elastic modulus. To mitigate these issues, hydroxyapatite (HA) coatings have been used on metals because their chemical composition is similar to that of bone and teeth. Recently, a wide range of synthetic polymers such as poly (l-lactic acid) and poly (l-lactide-co-glycolide) have been studied for different biomedical applications, owing to their promising biocompatibility and biodegradability. This article gives an overview of synthetic polymer-ceramic composites with a particular emphasis on calcium phosphate group and their potential applications in tissue engineering. It is hoped that synthetic polymer-ceramic composites such as PLLA/HA and PCL/HA will provide advantages such as eliminating the stress shielding effect and the consequent need for revision surgery.
Collapse
Affiliation(s)
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
12
|
Bruyas A, Lou F, Stahl AM, Gardner M, Maloney W, Goodman S, Yang YP. Systematic characterization of 3D-printed PCL/β-TCP scaffolds for biomedical devices and bone tissue engineering: influence of composition and porosity. JOURNAL OF MATERIALS RESEARCH 2018; 33:1948-1959. [PMID: 30364693 PMCID: PMC6197810 DOI: 10.1557/jmr.2018.112] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This work aims at providing guidance through systematic experimental characterization, for the design of 3D printed scaffolds for potential orthopaedic applications, focusing on fused deposition modeling (FDM) with a composite of clinically available polycaprolactone (PCL) and β-tricalcium phosphate (β-TCP). First, we studied the effect of the chemical composition (0% to 60% β-TCP/PCL) on the scaffold's properties. We showed that surface roughness and contact angle were respectively proportional and inversely proportional to the amount of β-TCP, and that degradation rate increased with the amount of ceramic. Biologically, the addition of β-TCP enhanced proliferation and osteogenic differentiation of C3H10. Secondly, we systematically investigated the effect of the composition and the porosity on the 3D printed scaffold mechanical properties. Both an increasing amount of β-TCP and a decreasing porosity augmented the apparent Young's modulus of the 3D printed scaffolds. Third, as a proof-of-concept, a novel multi-material biomimetic implant was designed and fabricated for potential disk replacement.
Collapse
Affiliation(s)
- Arnaud Bruyas
- Department of Orthopaedic Surgery, Stanford University, 300 Pasteur Drive, 94305, Stanford CA
| | - Frank Lou
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, 94305, Stanford CA
| | - Alexander M Stahl
- Department of Chemistry, Orthopaedic Surgery, Stanford University, 300 Pasteur Drive, 94305, Stanford CA
| | - Michael Gardner
- Department of Orthopaedic Surgery, Stanford University, 300 Pasteur Drive, 94305, Stanford CA
| | - William Maloney
- Department of Orthopaedic Surgery, Stanford University, 300 Pasteur Drive, 94305, Stanford CA
| | - Stuart Goodman
- Department of Orthopaedic Surgery, Stanford University, 300 Pasteur Drive, 94305, Stanford CA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, Bioengineering, Material Science and Engineering, Stanford University, 300 Pasteur Drive, 94305, Stanford CA
| |
Collapse
|
13
|
Three-Dimensional Graphene-RGD Peptide Nanoisland Composites That Enhance the Osteogenesis of Human Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci 2018; 19:ijms19030669. [PMID: 29495519 PMCID: PMC5877530 DOI: 10.3390/ijms19030669] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/03/2018] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Graphene derivatives have immense potential in stem cell research. Here, we report a three-dimensional graphene/arginine-glycine-aspartic acid (RGD) peptide nanoisland composite effective in guiding the osteogenesis of human adipose-derived mesenchymal stem cells (ADSCs). Amine-modified silica nanoparticles (SiNPs) were uniformly coated onto an indium tin oxide electrode (ITO), followed by graphene oxide (GO) encapsulation and electrochemical deposition of gold nanoparticles. A RGD–MAP–C peptide, with a triple-branched repeating RGD sequence and a terminal cysteine, was self-assembled onto the gold nanoparticles, generating the final three-dimensional graphene–RGD peptide nanoisland composite. We generated substrates with various gold nanoparticle–RGD peptide cluster densities, and found that the platform with the maximal number of clusters was most suitable for ADSC adhesion and spreading. Remarkably, the same platform was also highly efficient at guiding ADSC osteogenesis compared with other substrates, based on gene expression (alkaline phosphatase (ALP), runt-related transcription factor 2), enzyme activity (ALP), and calcium deposition. ADSCs induced to differentiate into osteoblasts showed higher calcium accumulations after 14–21 days than when grown on typical GO-SiNP complexes, suggesting that the platform can accelerate ADSC osteoblastic differentiation. The results demonstrate that a three-dimensional graphene–RGD peptide nanoisland composite can efficiently derive osteoblasts from mesenchymal stem cells.
Collapse
|
14
|
Rumiński S, Ostrowska B, Jaroszewicz J, Skirecki T, Włodarski K, Święszkowski W, Lewandowska-Szumieł M. Three-dimensional printed polycaprolactone-based scaffolds provide an advantageous environment for osteogenic differentiation of human adipose-derived stem cells. J Tissue Eng Regen Med 2017; 12:e473-e485. [PMID: 27599449 DOI: 10.1002/term.2310] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 08/18/2016] [Accepted: 08/26/2016] [Indexed: 01/26/2023]
Abstract
The capacity of bone grafts to repair critical size defects can be greatly enhanced by the delivery of mesenchymal stem cells (MSCs). Adipose tissue is considered the most effective source of MSCs (ADSCs); however, the efficiency of bone regeneration using undifferentiated ADSCs is low. Therefore, this study proposes scaffolds based on polycaprolactone (PCL), which is widely considered a suitable MSC delivery system, were used as a three-dimensional (3D) culture environment promoting osteogenic differentiation of ADSCs. PCL scaffolds enriched with 5% tricalcium phosphate (TCP) were used. Human ADSCs were cultured in osteogenic medium both on the scaffolds and in 2D culture. Cell viability and osteogenic differentiation were tested at various time points for 42 days. The expression of RUNX2, collagen I, alkaline phosphatase, osteonectin and osteocalcin, measured by real-time polymerase chain reaction was significantly upregulated in 3D culture. Production of osteocalcin, a specific marker of terminally differentiated osteoblasts, was significantly higher in 3D cultures than in 2D cultures, as confirmed by western blot and immunostaining, and accompanied by earlier and enhanced mineralization. Subcutaneous implantation into immunodeficient mice was used for in vivo observations. Immunohistological and micro-computed tomography analysis revealed ADSC survival and activity toward extracellular production after 4 and 12 weeks, although heterotopic osteogenesis was not confirmed - probably resulting from insufficient availability of Ca/P ions. Additionally, TCP did not contribute to the upregulation of differentiation on the scaffolds in culture, and we postulate that the 3D architecture is a critical factor and provides a useful environment for prior-to-implantation osteogenic differentiation of ADSCs. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sławomir Rumiński
- Department of Histology and Embryology, Centre for Biostructure Research, Medical University of Warsaw, Poland.,Centre for Preclinical Research and Technology, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Poland
| | - Barbara Ostrowska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Poland
| | - Jakub Jaroszewicz
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Poland
| | - Tomasz Skirecki
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, Warsaw, Poland.,Department of Anesthesiology and Intensive Care Medicine, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Krzysztof Włodarski
- Department of Histology and Embryology, Centre for Biostructure Research, Medical University of Warsaw, Poland
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Poland
| | - Małgorzata Lewandowska-Szumieł
- Department of Histology and Embryology, Centre for Biostructure Research, Medical University of Warsaw, Poland.,Centre for Preclinical Research and Technology, Poland
| |
Collapse
|
15
|
Jeong JO, Jeong SI, Park JS, Gwon HJ, Ahn SJ, Shin H, Lee JY, Lim YM. Development and characterization of heparin-immobilized polycaprolactone nanofibrous scaffolds for tissue engineering using gamma-irradiation. RSC Adv 2017. [DOI: 10.1039/c6ra20082f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Polycaprolactone (PCL) has been considered a useful material for orthopedic devices and osseous implants because of its biocompatibility and bone-forming activity.
Collapse
Affiliation(s)
- Jin-Oh Jeong
- Research Division for Industry & Environment
- Advanced Radiation Technology Institute
- Korea Atomic Energy Research Institute (KAERI)
- Jeongeup
- Republic of Korea
| | - Sung In Jeong
- Research Division for Industry & Environment
- Advanced Radiation Technology Institute
- Korea Atomic Energy Research Institute (KAERI)
- Jeongeup
- Republic of Korea
| | - Jong-Seok Park
- Research Division for Industry & Environment
- Advanced Radiation Technology Institute
- Korea Atomic Energy Research Institute (KAERI)
- Jeongeup
- Republic of Korea
| | - Hui-Jeong Gwon
- Research Division for Industry & Environment
- Advanced Radiation Technology Institute
- Korea Atomic Energy Research Institute (KAERI)
- Jeongeup
- Republic of Korea
| | - Sung-Jun Ahn
- Research Division for Industry & Environment
- Advanced Radiation Technology Institute
- Korea Atomic Energy Research Institute (KAERI)
- Jeongeup
- Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering
- Division of Applied Chemical and Bio Engineering
- Hanyang University
- Seoul 133-791
- Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju 61005
- Republic of Korea
| | - Youn-Mook Lim
- Research Division for Industry & Environment
- Advanced Radiation Technology Institute
- Korea Atomic Energy Research Institute (KAERI)
- Jeongeup
- Republic of Korea
| |
Collapse
|
16
|
Dziadek M, Stodolak-Zych E, Cholewa-Kowalska K. Biodegradable ceramic-polymer composites for biomedical applications: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:1175-1191. [PMID: 27987674 DOI: 10.1016/j.msec.2016.10.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/18/2016] [Accepted: 10/13/2016] [Indexed: 01/11/2023]
Abstract
The present work focuses on the state-of-the-art of biodegradable ceramic-polymer composites with particular emphasis on influence of various types of ceramic fillers on properties of the composites. First, the general needs to create composite materials for medical applications are briefly introduced. Second, various types of polymeric materials used as matrices of ceramic-containing composites and their properties are reviewed. Third, silica nanocomposites and their material as well as biological characteristics are presented. Fourth, different types of glass fillers including silicate, borate and phosphate glasses and their effect on a number of properties of the composites are described. Fifth, wollastonite as a composite modifier and its effect on composite characteristics are discussed. Sixth, composites containing calcium phosphate ceramics, namely hydroxyapatite, tricalcium phosphate and biphasic calcium phosphate are presented. Finally, general possibilities for control of properties of composite materials are highlighted.
Collapse
Affiliation(s)
- Michal Dziadek
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow, Poland.
| | - Ewa Stodolak-Zych
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, 30 Mickiewicza Ave., 30-059 Krakow, Poland.
| | - Katarzyna Cholewa-Kowalska
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow, Poland.
| |
Collapse
|
17
|
Savkovic V, Flämig F, Schneider M, Sülflow K, Loth T, Lohrenz A, Hacker MC, Schulz-Siegmund M, Simon JC. Polycaprolactone fiber meshes provide a 3D environment suitable for cultivation and differentiation of melanocytes from the outer root sheath of hair follicle. J Biomed Mater Res A 2015; 104:26-36. [DOI: 10.1002/jbm.a.35536] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/12/2015] [Accepted: 06/25/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Vuk Savkovic
- Translational Centre for Regenerative Medicine, Leipzig University; Leipzig Germany
| | - Franziska Flämig
- Department of Pharmaceutical Technology; Faculty of Biology, Pharmacy, and Psychology, Leipzig University; Leipzig Germany
| | - Marie Schneider
- Translational Centre for Regenerative Medicine, Leipzig University; Leipzig Germany
| | - Katharina Sülflow
- Translational Centre for Regenerative Medicine, Leipzig University; Leipzig Germany
| | - Tina Loth
- Department of Pharmaceutical Technology; Faculty of Biology, Pharmacy, and Psychology, Leipzig University; Leipzig Germany
| | - Andrea Lohrenz
- Translational Centre for Regenerative Medicine, Leipzig University; Leipzig Germany
| | - Michael Christian Hacker
- Department of Pharmaceutical Technology; Faculty of Biology, Pharmacy, and Psychology, Leipzig University; Leipzig Germany
| | - Michaela Schulz-Siegmund
- Department of Pharmaceutical Technology; Faculty of Biology, Pharmacy, and Psychology, Leipzig University; Leipzig Germany
| | - Jan-Christoph Simon
- Clinic and Policlinic for Dermatology, Venereology, and Allergology, Leipzig University Clinic; Leipzig Germany
| |
Collapse
|
18
|
Barati D, Walters JD, Shariati SRP, Moeinzadeh S, Jabbari E. Effect of organic acids on calcium phosphate nucleation and osteogenic differentiation of human mesenchymal stem cells on peptide functionalized nanofibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:5130-5140. [PMID: 25879768 DOI: 10.1021/acs.langmuir.5b00615] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Carboxylate-rich organic acids play an important role in controlling the growth of apatite crystals and the extent of mineralization in the natural bone. The objective of this work was to investigate the effect of organic acids on calcium phosphate (CaP) nucleation on nanofiber microsheets functionalized with a glutamic acid peptide and osteogenic differentiation of human mesenchymal stem cells (hMSCs) seeded on the CaP-nucleated microsheets. High molecular weight poly(dl-lactide) (DL-PLA) was mixed with low molecular weight L-PLA conjugated with Glu-Glu-Gly-Gly-Cys peptide, and the mixture was electrospun to generate aligned nanofiber microsheets. The nanofiber microsheets were incubated in a modified simulated body fluid (mSBF) supplemented with different organic acids for nucleation and growth of CaP crystals on the nanofibers. Organic acids included citric acid (CA), hydroxycitric acid (HCA), tartaric acid (TART), malic acid (MA), ascorbic acid (AsA), and salicylic acid (SalA). HCA microsheets had the highest CaP content at 240 ± 10% followed by TART and CA with 225 ± 8% and 225 ± 10%, respectively. The Ca/P ratio and percent crystallinity of the nucleated CaP in TART microsheets was closest to that of stoichiometric hydroxyapatite. The extent of CaP nucleation and growth on the nanofiber microsheets depended on the acidic strength and number of hydrogen-bonding hydroxyl groups of the organic acids. Compressive modulus and degradation of the CaP nucleated microsheets were related to percent crystallinity and CaP content. Osteogenic differentiation of hMSCs seeded on the microsheets and cultured in osteogenic medium increased only for those microsheets nucleated with CaP by incubation in CA or AsA-supplemented mSBF. Further, only CA microsheets stimulated bone nodule formation by the seeded hMSCs.
Collapse
Affiliation(s)
- Danial Barati
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Joshua D Walters
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Seyed Ramin Pajoum Shariati
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Seyedsina Moeinzadeh
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Esmaiel Jabbari
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
19
|
Hybrid Fabrication of a 3D Printed Geometry Embedded with PCL Nanofibers for Tissue Engineering Applications. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.proeng.2015.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|