1
|
Takasu S, Parida IS, Kojima Y, Kimura T, Nakagawa K. Evaluation and development of a novel pre-treatment method for mulberry leaves to enhance their bioactivity via enzymatic degradation of GAL-DNJ to DNJ. Food Funct 2021; 12:12250-12255. [PMID: 34755739 DOI: 10.1039/d1fo02307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mulberry leaves are rich in 1-deoxynojirimycin (DNJ) and 2-O-α-D-galactopyranosyl-deoxynojirimycin (GAL-DNJ). Compared to DNJ, the bioactive potency of GAL-DNJ is low. We proposed that the conversion of GAL-DNJ into DNJ may improve its bioavailability. We evaluated this hypothesis and constructed a novel enzymatic-based method to induce the hydrolysis of GAL-DNJ to DNJ in order to improve the therapeutic potency of mulberry leaves.
Collapse
Affiliation(s)
- Soo Takasu
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan. .,Laboratory of Pharmaceutical Analytical Chemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Isabella Supardi Parida
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan.
| | | | - Toshiyuki Kimura
- Advanced Analysis Center, National Agriculture and Food Research Organization, Ibaraki 305-8642, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan.
| |
Collapse
|
2
|
Parida IS, Takasu S, Nakagawa K. A comprehensive review on the production, pharmacokinetics and health benefits of mulberry leaf iminosugars: Main focus on 1-deoxynojirimycin, d-fagomine, and 2-O-ɑ-d-galactopyranosyl-DNJ. Crit Rev Food Sci Nutr 2021:1-29. [PMID: 34658276 DOI: 10.1080/10408398.2021.1989660] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mulberry leaves are rich in biologically active compounds, including phenolics, polysaccharides, and alkaloids. Mulberry leaf iminosugars (MLIs; a type of polyhydroxylated alkaloids), in particular, have been gaining increasing attention due to their health-promoting effects, including anti-diabetic, anti-obesity, anti-hyperglycemic, anti-hypercholesterolemic, anti-inflammatory, and gut microbiota-modulatory activities. Knowledge regarding the in vivo bioavailability and bioactivity of MLIs are crucial to understand their role and function and human health. Therefore, this review is aimed to comprehensively summarize the existing studies on the oral pharmacokinetics and the physiological significance of selected MLIs (i.e.,1-deoxynojirimycin, d-fagomine, and 2-O-ɑ-d-galactopyranosyl-DNJ). Evidence have suggested that MLIs possess relatively good uptake and safety profiles, which support their prospective use for oral intake; the therapeutic potential of these compounds against metabolic and chronic disorders and the underlying mechanisms behind these effects have also been studied in in vitro and in vivo models. Also discussed are the biosynthetic pathways of MLIs in plants, as well as the agronomic and processing factors that affect their concentration in mulberry leaves-derived products.
Collapse
Affiliation(s)
| | - Soo Takasu
- Laboratory of Pharmaceutical Analytical Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Chuah HQ, Tang PL, Ang NJ, Tan HY. Submerged fermentation improves bioactivity of mulberry fruits and leaves. CHINESE HERBAL MEDICINES 2021; 13:565-572. [PMID: 36119358 PMCID: PMC9476717 DOI: 10.1016/j.chmed.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Objective Mulberry (Morus spp.) fruits and leaves have been proven to possess nutraceutical properties. Due to its fast and easy growing characteristics, mulberry fruits (MF) and leaves (ML) potentially emerge as a great source of functional foods. This study aims to enhance bioactivities (antioxidant, anti-inflammation, and hypoglycemic activity) of MF and ML via submerged fermentation using bacteria (Lactobacillus plantarum TAR 4), yeast (Baker’s yeast and red yeast) and fungi (Tempeh and Tapai starter). Methods In this study, 25% (mass to volume ratio) of MF and ML were fermented (48 h) with 1% (mass to volume ratio) of different microbial cultures, respectively. Effects of different fermentations on MF and ML were determined based on the changes of total phenolics (TPC), flavonoids (TFC), anthocyanins, total sugar, DPPH activity, ferric reducing antioxidant power (FRAP), albumin denaturation inhibition activity (ADI), anti-lipoxygenase activity and α-amylase inhibition activity (AI). Results Generally, ML had higher AI than MF. However, MF exhibited higher DPPH, FRAP and anti-lipoxygenase activity than ML. After all forms of fermentation, DPPH and AI activity of MF and ML were increased significantly (P < 0.05). However, the effects of fermentation on TPC, FRAP, ADI and anti-lipoxygenase activity of MF were in contrast with ML. TPC, FRAP and anti-lipoxygenase activity of ML were enhanced, but reduced in MF after fermentation. Although the effects exerted by different microorganisms in MF and ML fermentation were different, the bioactivities of MF and ML were generally improved after fermentation. Fermentation by Tempeh starter enhanced TPC (by 2-fold), FRAP (by 2.3-fold), AI (at 10% increment) and anti-lipoxygenase activity (by 5-fold) of ML, whereas Tapai fermentation effectively enhanced the DPPH (at 17% increment) and ADI (by 2-fold) activity of MF. Conclusion Findings of this study provide an insight into the future process design of MF and ML processing into novel functional foods.
Collapse
|
4
|
Liu J, Wan J, Du W, Wang D, Wen C, Wei Y, Ouyang Z. In Vivo Functional Verification of Four Related Genes Involved in the 1-Deoxynojirimycin Biosynthetic Pathway in Mulberry Leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10989-10998. [PMID: 34516110 DOI: 10.1021/acs.jafc.1c03932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The alkaloid 1-deoxynojirimycin (DNJ) is one of the major bioactive compounds in mulberry leaves (Morus alba L.). Previously, we discovered four key genes involved in the pathway from lysine to piperidine in the biosynthesis of DNJ in mulberry leaves, MaLDC (MG727866), MaCAO (MH205733), MaSDR1 (MT989445), and MaSDR2 (MT989446), which encoded lysine decarboxylase, copper amine oxidase, and short-chain dehydrogenase/reductase 1 and 2, respectively. However, the in vivo functions of these four genes have not been verified yet. Here, these four genes were successfully cloned and used for the establishment of C58C1 Agrobacterium rhizogenes mediated overexpression genetic transformation systems and GV3101 Agrobacterium-mediated virus-induced gene silencing transformation systems in order to verify the influence of these four genes on the biosynthetic content of DNJ in mulberry leaves. The results showed that the content of DNJ increased after the four genes were overexpressed. When these four genes were silenced, the gene expression was blocked, which affected the biosynthesis of DNJ, and the DNJ content decreased. The above results indicated that these four genes participated in DNJ biosynthesis. This study provided a foundation for further elucidating the regulatory mechanisms of DNJ biosynthesis in mulberry leaves.
Collapse
Affiliation(s)
- Jia Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jingqiong Wan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Wenmin Du
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Chongwei Wen
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zhen Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
5
|
Liu J, Wan J, Wang D, Wen C, Wei Y, Ouyang Z. Comparative Transcriptome Analysis of Key Reductase Genes Involved in the 1-Deoxynojirimycin Biosynthetic Pathway in Mulberry Leaves and Cloning, Prokaryotic Expression, and Functional Analysis of MaSDR1 and MaSDR2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12345-12357. [PMID: 33085468 DOI: 10.1021/acs.jafc.0c04832] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The alkaloid 1-deoxynojirimycin (DNJ) is the main bioactive ingredient in the hypoglycemic action of mulberry leaves (Morus alba L.). Our previous research clarified the upstream pathway from lysine to Δ1-piperideine in the biosynthesis of DNJ in mulberry leaves, but the pathway and related reductase genes from Δ1-piperideine to piperidine are still unclear. Here, a comparative transcriptome was used to analyze the transcriptome data of two samples (July and November) of mulberry leaves with significant differences in the content of DNJ and screen-related reductase genes. Results showed that expression levels of MaSDR1 and MaSDR2 were significantly and positively correlated with the content of DNJ (P < 0.05) in different seasons. MaSDR1 (GenBank accession no. MT989445) and MaSDR2 (GenBank accession no. MT989446) were successfully cloned and used for prokaryotic expression and functional analysis in vitro. MaSDR1 and MaSDR2 could catalyze the reaction of Δ1-piperideine with the coenzyme NADPH to generate piperidine. The kinetic parameters of MaSDR1 and MaSDR2 indicated that MaSDR2 had a higher binding ability to Δ1-piperideine than MaSDR1. This study provided insights into the biosynthesis of DNJ in mulberry leaves.
Collapse
Affiliation(s)
- Jia Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jingqiong Wan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Dujun Wang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China
| | - Chongwei Wen
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zhen Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
6
|
Jiang J, Yang B, Ross RP, Stanton C, Zhao J, Zhang H, Chen W. Comparative Genomics of Pediococcus pentosaceus Isolated From Different Niches Reveals Genetic Diversity in Carbohydrate Metabolism and Immune System. Front Microbiol 2020; 11:253. [PMID: 32174896 PMCID: PMC7055311 DOI: 10.3389/fmicb.2020.00253] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Pediococcus pentosaceus isolated from fermented food and the gastrointestinal tracts of humans and animals have been widely identified, and some strains have been reported to reduce inflammation, encephalopathy, obesity and fatty liver in animals. In this study, the genomes of 65 P. pentosaceus strains isolated from human and animal feces and different fermented food were sequenced and comparative genomics analysis was performed on all strains along with nine sequenced representative strains to preliminarily reveal the lifestyle of P. pentosaceus, and investigate the genomic diversity within this species. The results reveal that P. pentosaceus is not host-specific, and shares core genes encoding proteins related to translation, ribosomal structure and biogenesis and signal transduction mechanisms, while its genetic diversity relates mainly to carbohydrate metabolism, and horizontally transferred DNA, especially prophages and bacteriocins encoded on plasmids. Additionally, this is the first report of a type IIA CRISPR/Cas system in P. pentosaceus. This work provides expanded resources of P. pentosaceus genomes, and offers a framework for understanding the biotechnological potential of this species.
Collapse
Affiliation(s)
- Jie Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, China
| | - R Paul Ross
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, China.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, China.,Moorepark Teagasc Food Research Centre, Cork, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
7
|
Li D, Chen G, Ma B, Zhong C, He N. Metabolic Profiling and Transcriptome Analysis of Mulberry Leaves Provide Insights into Flavonoid Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1494-1504. [PMID: 31917553 DOI: 10.1021/acs.jafc.9b06931] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flavonoids are widely distributed in mulberry leaves and have been recognized for their beneficial physiological effects on the human health. Here, we analyzed variations in 44 flavonoid compounds among 91 mulberry resources. Metabolic profiling revealed that O-rhamnosylated flavonols and malonylated flavonol glycosides, including rutin and quercetin 3-O-(6″-O-malonylglucoside) (Q3MG), were absent from Morus notabilis and multiple mulberry (Morus alba L.) resources. Transcriptome and phylogenetic analyses of flavonoid-related UDP-glycosyltransferases (UGTs) suggested that the flavonol 3-O-glucoside-O-rhamnosyltransferase (FGRT) KT324624 is a key enzyme involved in rutin synthesis. A recombinant FGRT protein was able to convert kaempferol/quercetin 3-O-glucoside to kaempferol 3-O-rutinoside (K3G6″Rha) and rutin. The recombinant FGRT was able to use 3-O-glucosylated flavonols but not flavonoid aglycones or 7-O-glycosylated flavonoids as substrates. The enzyme preferentially used UDP-rhamnose as the sugar donor, indicating that it was a flavonol 3-O-glucoside: 6″-O-rhamnosyltransferase. This study provided insights into the biosynthesis of rutin in mulberry.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing 400715 , China
| | - Guo Chen
- State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing 400715 , China
| | - Bi Ma
- State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing 400715 , China
| | - Chengzhang Zhong
- State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing 400715 , China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology , Southwest University , Chongqing 400715 , China
| |
Collapse
|
8
|
Hong KQ, Fu XM, Yin H, Li ST, Chen T, Wang ZW. Advances in the Extraction, Purification and Detection of the Natural Product 1-Deoxynojirimycin. Crit Rev Anal Chem 2020; 51:246-257. [PMID: 31914794 DOI: 10.1080/10408347.2019.1711012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1-Deoxynojirimycin (1-DNJ), a polyhydroxylated alkaloid, is a highly selective and potent glycosidase inhibitor that has garnered great interest as a tool to study cellular recognition and as a potential therapeutic agent. The development of analytical methods for the quantification polyhydroxylated alkaloids in natural products requires a multifaceted approach. Many publications over the past five decades have described analytical methods for this compound. However, recently more advanced techniques have come to prominence for sample extraction, purification, detection, and identification. This review provides an updated, extensive overview of the available methods for the extraction, purification, identification or detection of 1-DNJ. The review highlights different strategies for the design of 1-DNJ detection methods, which we analyzed in light of recent detection data. Finally, we conclude with perspectives on possible strategies for increasing the efficiency of identification and quantification of 1-DNJ in the future.
Collapse
Affiliation(s)
- Kun-Qiang Hong
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiao-Meng Fu
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Hao Yin
- Institute of Sericultural Sciences of Sichuan Province, Nanchong, China
| | - Shu-Ting Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Tao Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhi-Wen Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
9
|
Li D, Ma B, Xu X, Chen G, Li T, He N. MMHub, a database for the mulberry metabolome. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:5798906. [PMID: 32159764 PMCID: PMC7065671 DOI: 10.1093/database/baaa011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Mulberry is an important economic crop plant and traditional medicine. It contains a huge array of bioactive metabolites such as flavonoids, amino acids, alkaloids and vitamins. Consequently, mulberry has received increasing attention in recent years. MMHub (version 1.0) is the first open public repository of mass spectra of small chemical compounds (<1000 Da) in mulberry leaves. The database contains 936 electrospray ionization tandem mass spectrometry (ESI-MS2) data and lists the specific distribution of compounds in 91 mulberry resources with two biological duplicates. ESI-MS2 data were obtained under non-standardized and independent experimental conditions. In total, 124 metabolites were identified or tentatively annotated and details of 90 metabolites with associated chemical structures have been deposited in the database. Supporting information such as PubChem compound information, molecular formula and metabolite classification are also provided in the MS2 spectral tag library. The MMHub provides important and comprehensive metabolome data for scientists working with mulberry. This information will be useful for the screening of quality resources and specific metabolites of mulberry. Database URL: https://biodb.swu.edu.cn/mmdb/
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Bi Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Xiaofei Xu
- College of Computer and Information Science, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Guo Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, No. 2, Tiansheng Road, Beibei, Chongqing 400715, China
| |
Collapse
|
10
|
Hu TG, Wen P, Liu J, Long XS, Liao ST, Wu H, Zou YX. Combination of mulberry leaf and oat bran possessed greater hypoglycemic effect on diabetic mice than mulberry leaf or oat bran alone. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
11
|
Hu TG, Wen P, Shen WZ, Liu F, Li Q, Li EN, Liao ST, Wu H, Zou YX. Effect of 1-Deoxynojirimycin Isolated from Mulberry Leaves on Glucose Metabolism and Gut Microbiota in a Streptozotocin-Induced Diabetic Mouse Model. JOURNAL OF NATURAL PRODUCTS 2019; 82:2189-2200. [PMID: 31393724 DOI: 10.1021/acs.jnatprod.9b00205] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
1-Deoxynojirimycin (DNJ) exerts hypoglycemic effects. However, the traditional method for DNJ extraction is inefficient, and the hypoglycemic mechanism of DNJ remains unclear. In this study, the mixed fermentation by Lactobacillus fermentum and Saccharomyces cerevisiae was used to enhance DNJ extraction efficiency. It was found that this strategy was more efficient than the traditional method as the yield improved from the original 3.24 mg/g to 5.97 mg/g. The purified DNJ significantly decreased serum glucose (P < 0.01) and insulin levels (P < 0.05), improved serum lipid levels (P < 0.05), and reversed insulin resistance (P < 0.05) in diabetic mice. These changes were caused by up-regulating the protein expression of insulin receptor and glycolysis enzymes (GK, PK, and PFK) (P < 0.05) and down-regulating the protein expression of insulin receptor substrate-1 and gluconeogenesis enzymes (PCB, PEPCK, FBPase, and G-6-Pase) (P < 0.05), thus alleviating glucose tolerance. Additionally, DNJ treatment relieved gut dysbiosis in diabetic mice by promoting the growth of Lactobacillus, Lachnospiraceae NK4A136 group, Oscillibacter, norank Lachnospiraceae, Alistipes, and Bifidobacterium (P < 0.05) and suppressing the growth of Ruminococcaceae UCG-014, Weissella, Ruminococcus, Prevotellaceae Ga6A1 group, Anaerostipes, Klebsiella, Prevotellaceae UCG-001, and Bacteroidales S24-7 group (P < 0.05).
Collapse
Affiliation(s)
- Teng-Gen Hu
- School of Food Science and Engineering , South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640 , China
- Sericultural and Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing , Guangzhou 510610 , China
| | - Peng Wen
- School of Food Science and Engineering , South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640 , China
| | - Wei-Zhi Shen
- Sericultural and Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing , Guangzhou 510610 , China
| | - Fan Liu
- Sericultural and Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing , Guangzhou 510610 , China
| | - Qian Li
- Sericultural and Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing , Guangzhou 510610 , China
| | - Er-Na Li
- Sericultural and Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing , Guangzhou 510610 , China
| | - Sen-Tai Liao
- Sericultural and Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing , Guangzhou 510610 , China
| | - Hong Wu
- School of Food Science and Engineering , South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640 , China
| | - Yu-Xiao Zou
- Sericultural and Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing , Guangzhou 510610 , China
| |
Collapse
|
12
|
Thakur K, Zhang YY, Mocan A, Zhang F, Zhang JG, Wei ZJ. 1-Deoxynojirimycin, its potential for management of non-communicable metabolic diseases. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Abstract
Mulberry (Morus alba L.) has been used in East Asia (Korea, China, and Japan) as a medicine because of its various pharmacological effects including the excellent antioxidant properties of its fruit. This study analyzed extracts from 12 varieties of Korean mulberry fruit for flavonoids using ultrahigh-performance liquid chromatography coupled with diode array detection and quadrupole time-of-flight mass spectrometry (UPLC-DAD-QTOF/MS). Six quercetin derivatives were identified by mass spectrometry (MS) based on the [quercetin + H]+ ion (m/z 303), while four kaempferol derivatives were identified based on the [kaempferol + H]+ ion (m/z 287). Two new compounds (morkotin A and morkotin C, quercetin derivatives) were identified for the first time in mulberry fruit. The total flavonoid contents of the mulberry fruits ranged from 35.0 ± 2.3 mg/100 g DW in the Baek Ok Wang variety (white mulberry) to 119.9 ± 7.0 mg/100 g DW in the Dae Shim variety. This study has, for the first time, evaluated the flavonoid chromatographic profiles of 12 varieties of Korean mulberry fruits in a following quali-quantitative approach, which will contribute to improved utilization of these fruits as health foods.
Collapse
|
14
|
Yan PC, Wen CW, Zhang SZ, Zhang ZD, Xu JP, Deng MJ. A toxicological, metabonomic and transcriptional analysis to investigate the property of mulberry 1-deoxynojirimycin against the growth of Samia cynthia ricini. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 152:45-54. [PMID: 30497710 DOI: 10.1016/j.pestbp.2018.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/04/2018] [Accepted: 08/17/2018] [Indexed: 06/09/2023]
Abstract
1-Deoxynojirimycin (DNJ) is a natural d-glucose analogue from mulberry with promising physiological activity in vivo. Up to the present, the antidiabetic effects of DNJ on lowering blood sugar and accelerating lipid metabolism in mammals were broadly reported, but the specific character of DNJ against insects was vastly ignored. In this study, a toxicological test of DNJ againgst eri-silkworm, Samia cynthia ricini was carried out to investigate the potential of DNJ in insect management. Further, a method of nuclear magnetic resonance (NMR) metabonomics and real-time qPCR (RT-qPCR) were performed to analyze the alteration in midgut of eri-silkworm caused by DNJ. The result of toxicology showed that 5% and 10% DNJ could significantly inhibit the development of third-instar larvae on day 1-5, and mass deaths happened in DNJ groups on day 3-5. The quantitative analysis of 1H NMR in fifth-instar larvae showed that trehalose level increased in midgut of 0, 6 and 12 h DNJ groups, while the concentrations of glucose, lactate, alanine, pyruvate, α-ketoglutarate and fumarate were reduced in varying degrees. Meanwhile, principal component analysis (PCA) indicated that there were significant differences in the metabolic profiles among 12 h DNJ groups and the control group. In addition, RT-qPCR results displayed that four genes coding α-glucosidase, trehalase (THL) and lactate dehydrogenase (LDH) were lowered in expression of 12 h DNJ groups. Simultaneously, THL activity was significantly lowerd in 12 h DNJ groups. These mutually corroborated results indicated that the backbone pathways of energy metabolism, including hydrolysis of trehalose and glycogens, glycolysis and tricarboxylic acid (TCA) cycle were significantly inhibited by DNJ. Thus, the specific mechanism of DNJ efficiently suppressing the growth and energy metabolism of eri-silkworm was explored in this study, providing the potential of DNJ as to the production of botanical insecticide.
Collapse
Affiliation(s)
- Peng-Cheng Yan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chao-Wei Wen
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Zhi-da Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, Hefei, China.
| | - Ming-Jie Deng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
15
|
Qualitative and quantitative analysis of flavonoids from 12 species of Korean mulberry leaves. Journal of Food Science and Technology 2018; 55:1789-1796. [PMID: 29666531 PMCID: PMC5897299 DOI: 10.1007/s13197-018-3093-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 02/21/2018] [Accepted: 02/26/2018] [Indexed: 12/02/2022]
Abstract
The total flavonoids in leaves of 12 varieties of Korean mulberry (Morus alba L.) were determined. Seventeen flavonoids were isolated and analyzed using ultra-performance liquid chromatography coupled with diode array detection and quadrupole time-of-flight mass spectrometry (UPLC–DAD–QTOF/MS). To determine the flavonoid contents, HPLC analysis was performed on these 17 flavonoids. The total flavonoid contents of the 12 varieties of mulberry leaves ranged from 748.5 to 1297.9 mg, with the highest obtained from the Cheong Su variety (1297.9 ± 112.0 mg). Among the 17 flavonoids analyzed, quercetin 3-O-rutinoside (rutin) and quercetin 3-O-glucoside (isoquercitrin) had highest contents in the Cheong Su variety. Furthermore, the Dae Dang Sang variety gave the highest quercetin 3-O-rutinoside (rutin) content among the mulberry leaves investigated, at 425.5 ± 45.9 mg. Major flavonols from Dae Dang Sang were detected by UPLC–DAD–QTOF/MS. A total of 17 flavonoid compound peaks were identified in the analysis time range of 5–40 min, all of which were kaempferol and quercetin glycosides. Seven of the 17 compounds identified in mulberry leaves were unknown.
Collapse
|
16
|
Gao K, Zheng C, Wang T, Zhao H, Wang J, Wang Z, Zhai X, Jia Z, Chen J, Zhou Y, Wang W. 1-Deoxynojirimycin: Occurrence, Extraction, Chemistry, Oral Pharmacokinetics, Biological Activities and In Silico Target Fishing. Molecules 2016; 21:1600. [PMID: 27886092 PMCID: PMC6273535 DOI: 10.3390/molecules21111600] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 11/25/2022] Open
Abstract
1-Deoxynojirimycin (DNJ, C₆H13NO₄, 163.17 g/mol), an alkaloid azasugar or iminosugar, is a biologically active natural compound that exists in mulberry leaves and Commelina communis (dayflower) as well as from several bacterial strains such as Bacillus and Streptomyces species. Deoxynojirimycin possesses antihyperglycemic, anti-obesity, and antiviral features. Therefore, the aim of this detailed review article is to summarize the existing knowledge on occurrence, extraction, purification, determination, chemistry, and bioactivities of DNJ, so that researchers may use it to explore future perspectives of research on DNJ. Moreover, possible molecular targets of DNJ will also be investigated using suitable in silico approach.
Collapse
Affiliation(s)
- Kuo Gao
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Chenglong Zheng
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
- Beijing Gulou Hospital of Traditional Chinese Medicine, 13 DouFuChi Hutong, Dongcheng District, Beijing 100009, China.
| | - Tong Wang
- Beijing Gulou Hospital of Traditional Chinese Medicine, 13 DouFuChi Hutong, Dongcheng District, Beijing 100009, China.
| | - Huihui Zhao
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Juan Wang
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Zhiyong Wang
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Xing Zhai
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Zijun Jia
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Jianxin Chen
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| | - Yingwu Zhou
- Beijing Gulou Hospital of Traditional Chinese Medicine, 13 DouFuChi Hutong, Dongcheng District, Beijing 100009, China.
| | - Wei Wang
- Beijing University of Chinese Medicine, Bei San Huan East Road, Beijing 100029, China.
| |
Collapse
|