1
|
Gao W, Jing Z, Meng Y, Liu Q, Wang H, Wei D. Inside-Out Rational Design of Ornithine Cyclodeaminase RlOCD from Rhizobium leguminosarum by a Multiregion Synergy Strategy for Efficient Synthesis of l-Pipecolic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25782-25790. [PMID: 39387484 DOI: 10.1021/acs.jafc.4c06331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Lysine cyclodeaminase (LCD)-mediated synthesis of l-pipecolic acid (l-PA) from l-lysine (l-Lys) is a promising approach. However, only one LCD has been reported, and its inadequate activity limits industrial applications. To address this problem, a substrate analogue-guided enzyme mining strategy was employed. A novel ornithine cyclodeaminase (OCD) from Rhizobium leguminosarum (RlOCD) was identified in combination with directed macrogenomic approaches. RlOCD displayed a conversion rate of 28% at a substrate loading as high as 1000 mM. A multiregion synergy strategy consisting of pocket reshaping, dynamical cross-correlation matrix-guided coevolutionary design, and surface modification was used to design RlOCD from the inside-out. A quadruple mutant (V93C/L119C/I170T/R90L) designated Mu4 with significantly increased activity was obtained, which showed a 28.46-fold increase in the catalytic efficiency. The conversion of Mu4 was 91% within 10 h at 1000 mM (146.19 g L-1) loading. The space-time yield of 282.1 g L-1 d-1 is the highest level ever reported. Molecular dynamics simulations and interaction analyses revealed that efficient pocket expansion and unique conformational rearrangements increased the affinity for the substrate, resulting in a more catalytically active conformation. This study expands the toolbox for the production of l-PA and demonstrates the effectiveness and potential of Mu4 for its production.
Collapse
Affiliation(s)
- Weijie Gao
- State Key Laboratory of Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zijian Jing
- State Key Laboratory of Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yifang Meng
- State Key Laboratory of Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Qinghai Liu
- State Key Laboratory of Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
2
|
Wang J, Wang Y, Wu Q, Zhang Y. Multidimensional engineering of Escherichia coli for efficient biosynthesis of cis-3-hydroxypipecolic acid. BIORESOURCE TECHNOLOGY 2023; 382:129173. [PMID: 37187331 DOI: 10.1016/j.biortech.2023.129173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
Cis-3-hydroxypipecolic acid (cis-3-HyPip) is the crucial part of many alkaloids and drugs. However, its bio-based industrial production remains challenging. Here, lysine cyclodeaminase from Streptomyces malaysiensis (SmLCD) and pipecolic acid hydroxylase from Streptomyces sp. L-49973 (StGetF) were screened to achieve the conversion of L-lysine to cis-3-HyPip. Considering the high-cost of cofactors, NAD(P)H oxidase from Lactobacillus sanfranciscensis (LsNox) was further overexpressed in chassis strain Escherichia coli W3110 ΔsucCD (α-ketoglutarate-producing strain) to construct the NAD+ regeneration system, thus realizing the bioconversion of cis-3-HyPip from low-cost substrate L-lysine without NAD+ and α-ketoglutarate addition. To further accelerate the transmission efficiency of cis-3-HyPip biosynthetic pathway, multiple-enzyme expression optimization and transporter dynamic regulation via promoter engineering were conducted. Through fermentation optimization, the final engineered strain HP-13 generated 78.4 g/L cis-3-HyPip with 78.9% conversion in a 5-L fermenter, representing the highest production level achieved so far. These strategies described herein show promising potentials for large-scale production of cis-3-HyPip.
Collapse
Affiliation(s)
- Jiaping Wang
- Hangzhou Wahaha Group Co. Ltd., Hangzhou 310018, China; Hangzhou Wahaha Technology Co. Ltd., Hangzhou 310018, China; Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
| | - Yaqiong Wang
- Hangzhou Wahaha Group Co. Ltd., Hangzhou 310018, China; Hangzhou Wahaha Technology Co. Ltd., Hangzhou 310018, China; Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
| | - Qin Wu
- Hangzhou Wahaha Group Co. Ltd., Hangzhou 310018, China; Hangzhou Wahaha Technology Co. Ltd., Hangzhou 310018, China; Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
| | - Yimin Zhang
- Hangzhou Wahaha Group Co. Ltd., Hangzhou 310018, China; Hangzhou Wahaha Technology Co. Ltd., Hangzhou 310018, China; Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China.
| |
Collapse
|
3
|
Interconnected Set of Enzymes Provide Lysine Biosynthetic Intermediates and Ornithine Derivatives as Key Precursors for the Biosynthesis of Bioactive Secondary Metabolites. Antibiotics (Basel) 2023; 12:antibiotics12010159. [PMID: 36671360 PMCID: PMC9854754 DOI: 10.3390/antibiotics12010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Bacteria, filamentous fungi, and plants synthesize thousands of secondary metabolites with important biological and pharmacological activities. The biosynthesis of these metabolites is performed by networks of complex enzymes such as non-ribosomal peptide synthetases, polyketide synthases, and terpenoid biosynthetic enzymes. The efficient production of these metabolites is dependent upon the supply of precursors that arise from primary metabolism. In the last decades, an impressive array of biosynthetic enzymes that provide specific precursors and intermediates leading to secondary metabolites biosynthesis has been reported. Suitable knowledge of the elaborated pathways that synthesize these precursors or intermediates is essential for advancing chemical biology and the production of natural or semisynthetic biological products. Two of the more prolific routes that provide key precursors in the biosynthesis of antitumor, immunosuppressant, antifungal, or antibacterial compounds are the lysine and ornithine pathways, which are involved in the biosynthesis of β-lactams and other non-ribosomal peptides, and bacterial and fungal siderophores. Detailed analysis of the molecular genetics and biochemistry of the enzyme system shows that they are formed by closely related components. Particularly the focus of this study is on molecular genetics and the enzymatic steps that lead to the formation of intermediates of the lysine pathway, such as α-aminoadipic acid, saccharopine, pipecolic acid, and related compounds, and of ornithine-derived molecules, such as N5-Acetyl-N5-Hydroxyornithine and N5-anhydromevalonyl-N5-hydroxyornithine, which are precursors of siderophores. We provide evidence that shows interesting functional relationships between the genes encoding the enzymes that synthesize these products. This information will contribute to a better understanding of the possibilities of advancing the industrial applications of synthetic biology.
Collapse
|
4
|
Schulz S, Schall C, Stehle T, Breitmeyer C, Krysenko S, Mitulski A, Wohlleben W. Optimization of the precursor supply for an enhanced FK506 production in Streptomyces tsukubaensis. Front Bioeng Biotechnol 2022; 10:1067467. [DOI: 10.3389/fbioe.2022.1067467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
Tacrolimus (FK506) is a macrolide widely used as immunosuppressant to prevent transplant rejection. Synthetic production of FK506 is not efficient and costly, whereas the biosynthesis of FK506 is complex and the level produced by the wild type strain, Streptomyces tsukubaensis, is very low. We therefore engineered FK506 biosynthesis and the supply of the precursor L-lysine to generate strains with improved FK506 yield. To increase FK506 production, first the intracellular supply of the essential precursor lysine was improved in the native host S. tsukubaensis NRRL 18488 by engineering the lysine biosynthetic pathway. Therefore, a feedback deregulated aspartate kinase AskSt* of S. tsukubaensis was generated by site directed mutagenesis. Whereas overexpression of AskSt* resulted only in a 17% increase in FK506 yield, heterologous overexpression of a feedback deregulated AskCg* from Corynebacterium glutamicum was proven to be more efficient. Combined overexpression of AskCg* and DapASt, showed a strong enhancement of the intracellular lysine pool following increase in the yield by approximately 73% compared to the wild type. Lysine is coverted into the FK506 building block pipecolate by the lysine cyclodeaminase FkbL. Construction of a ∆fkbL mutant led to a complete abolishment of the FK506 production, confirming the indispensability of this enzyme for FK506 production. Chemical complementation of the ∆fkbL mutant by feeding pipecolic acid and genetic complementation with fkbL as well as with other lysine cyclodeaminase genes (pipAf, pipASt, originating from Actinoplanes friuliensis and Streptomyces pristinaespiralis, respectively) completely restored FK506 production. Subsequently, FK506 production was enchanced by heterologous overexpression of PipAf and PipASp in S. tsukubaensis. This resulted in a yield increase by 65% compared to the WT in the presence of PipAf from A. friuliensis. For further rational yield improvement, the crystal structure of PipAf from A. friuliensis was determined at 1.3 Å resolution with the cofactor NADH bound and at 1.4 Å with its substrate lysine. Based on the structure the Ile91 residue was replaced by Val91 in PipAf, which resulted in an overall increase of FK506 production by approx. 100% compared to the WT.
Collapse
|
5
|
Wohlgemuth R. Selective Biocatalytic Defunctionalization of Raw Materials. CHEMSUSCHEM 2022; 15:e202200402. [PMID: 35388636 DOI: 10.1002/cssc.202200402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Biobased raw materials, such as carbohydrates, amino acids, nucleotides, or lipids contain valuable functional groups with oxygen and nitrogen atoms. An abundance of many functional groups of the same type, such as primary or secondary hydroxy groups in carbohydrates, however, limits the synthetic usefulness if similar reactivities cannot be differentiated. Therefore, selective defunctionalization of highly functionalized biobased starting materials to differentially functionalized compounds can provide a sustainable access to chiral synthons, even in case of products with fewer functional groups. Selective defunctionalization reactions, without affecting other functional groups of the same type, are of fundamental interest for biocatalytic reactions. Controlled biocatalytic defunctionalizations of biobased raw materials are attractive for obtaining valuable platform chemicals and building blocks. The biocatalytic removal of functional groups, an important feature of natural metabolic pathways, can also be utilized in a systemic strategy for sustainable metabolite synthesis.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology Łódź, 90-537, Lodz, Poland
- Swiss Coordination Committee Biotechnology (SKB), 8002, Zurich, Switzerland
| |
Collapse
|
6
|
M VNUM, Faidh MA, Chadha A. The ornithine cyclodeaminase/µ-crystallin superfamily of proteins: A novel family of oxidoreductases for the biocatalytic synthesis of chiral amines. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
7
|
Argüello‐Velasco RO, Sánchez‐Muñoz GK, Viveros‐Ceballos JL, Ordóñez M, Kafarski P. A Straightforward Synthesis of Six‐Membered‐Ring Heterocyclic α‐Aminophosphonic Acids from
N
‐Acyliminium Ions. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rubén Oswaldo Argüello‐Velasco
- Centro de Investigaciones Químicas‐IICBAUniversidad Autónoma del Estado de Morelos Avenue Universidad 1001 62209 Cuernavaca Morelos Mexico
| | - Grecia Katherine Sánchez‐Muñoz
- Centro de Investigaciones Químicas‐IICBAUniversidad Autónoma del Estado de Morelos Avenue Universidad 1001 62209 Cuernavaca Morelos Mexico
| | - José Luis Viveros‐Ceballos
- Centro de Investigaciones Químicas‐IICBAUniversidad Autónoma del Estado de Morelos Avenue Universidad 1001 62209 Cuernavaca Morelos Mexico
| | - Mario Ordóñez
- Centro de Investigaciones Químicas‐IICBAUniversidad Autónoma del Estado de Morelos Avenue Universidad 1001 62209 Cuernavaca Morelos Mexico
| | - Pawel Kafarski
- Department of Bioorganic ChemistryWroclaw University of Science and Technology Wybrzeże Wyspiańskiego 27 50‐370 Wrocław Poland
| |
Collapse
|
8
|
Expanding lysine industry: industrial biomanufacturing of lysine and its derivatives. ACTA ACUST UNITED AC 2018; 45:719-734. [DOI: 10.1007/s10295-018-2030-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/22/2018] [Indexed: 12/12/2022]
Abstract
Abstract
l-Lysine is widely used as a nutrition supplement in feed, food, and beverage industries as well as a chemical intermediate. At present, great efforts are made to further decrease the cost of lysine to make it more competitive in the markets. Furthermore, lysine also shows potential as a feedstock to produce other high-value chemicals for active pharmaceutical ingredients, drugs, or materials. In this review, the current biomanufacturing of lysine is first presented. Second, the production of novel derivatives from lysine is discussed. Some chemicals like l-pipecolic acid, cadaverine, and 5-aminovalerate already have been obtained at a lab scale. Others like 6-aminocaproic acid, valerolactam, and caprolactam could be produced through a biological and chemical coupling pathway or be synthesized by a hypothetical pathway. This review demonstrates an active and expansive lysine industry, and these green biomanufacturing strategies could also be applied to enhance the competitiveness of other amino acid industry.
Collapse
|
9
|
Studies on the constituents of Helleborus purpurascens: analysis and biological activity of the aqueous and organic extracts. Amino Acids 2017; 50:163-188. [PMID: 29027024 DOI: 10.1007/s00726-017-2502-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/03/2017] [Indexed: 01/24/2023]
Abstract
In Southeast Europe, the ethnomedicinal use of Helleborus species has a very long tradition. Cardiac steroids (Hellebrin), cysteine-rich proteins (Hellethionins) and several steroidal saponins have been identified in these plants. Aim of the present work was to investigate the amino acid composition of native extracts from the root and rootstock of Helleborus purpurascens. The amino acids have been identified by the GC-MS technique on the previously derivatised (Phenomenex Faast Kit) extract samples by comparison with the mass spectra and retention-time of the standards. A remarkable finding was a relatively intensive peak attributed to the non-proteinogenic Pipecolic acid (Pic). A cyclisation of the derivatised glutamine was observed during the GC measurement and a mechanistic pathway is described. Samples of the extract and of some isolated fractions have also been tested on; altogether 12 cancer cell lines aimed to identify further potentially cytostatic components which should be less toxic than Hellebrin. The finding of one Hellebrin-free fraction (IC50 = 0.007 mg/L) with higher cytotoxicity than Hellebrin (IC50 = 0.008 mg/L) is remarkable.
Collapse
|