1
|
Bioconversion of Glycerol to 1,3-Propanediol Using Klebsiella pneumoniae L17 with the Microbially Influenced Corrosion of Zero-Valent Iron. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The bacterial redox state is essential for controlling the titer and yield of the final metabolites in most bioconversion processes. Glycerol conversion to 1,3-propanediol (PDO) requires a large amount of reducing equivalent and the expression of reductive pathways. Zero-valent iron (ZVI) was used in the glycerol bioconversion of Klebsiella pneumoniae L17. The level of 1,3-PDO production increased with the oxidation of ZVI (31.8 ± 1.2 vs. 25.7 ± 0.5, ZVI vs. no ZVI) while the cellular NADH/NAD+ level increased (0.6 vs. 0.3, ZVI vs. no ZVI). X-ray diffraction showed that the iron oxide (Fe2O3) was formed during glycerol fermentation. L17 obtained electrons from ZVI and dissolved the iron continuously to form cracks on the surface, suggesting microbially influenced corrosion (MIC) was involved on the surface of ZVI. The ZVI-implemented fermentation shifted bioconversion to a more glycerol-reductive pathway. The qPCR-presented glycerol dehydratase (DhaB) with ZVI implementation was strongly expressed compared to the control. These results suggest that ZVI can contribute to the biotransformation of PDO by inducing intracellular metabolic shifts. This study could also suggest a novel microbial fermentation strategy with the application of MIC.
Collapse
|
2
|
Baek J, Kim C, Eun Song Y, Kong DS, Mutyala S, Seol EH, Kim JR. Bioelectrochemical metabolic regulation of a heterologously expressed glycerol reductive pathway in E. coli BL21(DE3). Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Virdis B, Hoelzle R, Marchetti A, Boto ST, Rosenbaum MA, Blasco-Gómez R, Puig S, Freguia S, Villano M. Electro-fermentation: Sustainable bioproductions steered by electricity. Biotechnol Adv 2022; 59:107950. [PMID: 35364226 DOI: 10.1016/j.biotechadv.2022.107950] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/22/2022] [Accepted: 03/24/2022] [Indexed: 01/06/2023]
Abstract
The market of biobased products obtainable via fermentation processes is steadily increasing over the past few years, driven by the need to create a decarbonized economy. To date, industrial fermentation (IF) employs either pure or mixed microbial cultures (MMC) whereby the type of the microbial catalysts and the used feedstock affect metabolic pathways and, in turn, the type of product(s) generated. In many cases, especially when dealing with MMC, the economic viability of IF is hindered by factors such as the low attained product titer and selectivity, which ultimately challenge the downstream recovery and purification steps. In this context, electro-fermentation (EF) represents an innovative approach, based on the use of a polarized electrode interface to trigger changes in the rate, yield, titer or product distribution deriving from traditional fermentation processes. In principle, the electrode in EF can act as an electron acceptor (i.e., anodic electro-fermentation, AEF) or donor (i.e., cathodic electro-fermentation, CEF), or simply as a mean to control the oxidation-reduction potential of the fermentation broth. However, the molecular and biochemical basis underlying the EF process are still largely unknown. This review paper provides a comprehensive overview of recent literature studies including both AEF and CEF examples with either pure or mixed microbial cultures. A critical analysis of biochemical, microbiological, and engineering aspects which presently hamper the transition of the EF technology from the laboratory to the market is also presented.
Collapse
Affiliation(s)
- Bernardino Virdis
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert Hoelzle
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Angela Marchetti
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Santiago T Boto
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), 07745 Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University (FSU), 07743 Jena, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), 07745 Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University (FSU), 07743 Jena, Germany
| | - Ramiro Blasco-Gómez
- LEQUIA, Institute of the Environment, University of Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Sebastià Puig
- LEQUIA, Institute of the Environment, University of Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Marianna Villano
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
4
|
Kong DS, Kim C, Song YE, Baek J, Im HS, Kim JR. Zero-valent iron driven bioconversion of glycerol to 1,3-propanediol using Klebsiella pneumoniae L17. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
5
|
Mutyala S, Kim C, Song YE, Khandelwal H, Baek J, Seol E, Oh YK, Kim JR. Enabling anoxic acetate assimilation by electrode-driven respiration in the obligate aerobe, Pseudomonas putida. Bioelectrochemistry 2020; 138:107690. [PMID: 33190096 DOI: 10.1016/j.bioelechem.2020.107690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
This study examined the obligate aerobe, Pseudomonas putida, using acetate as the sole carbon and energy source, and respiration via an anode as the terminal electron acceptor under anoxic conditions. P. putida showed significantly different acetate assimilation in a closed-circuit microbial fuel cell (CC-MFC) compared to an open circuit MFC (OC-MFC). More than 72% (2.6 mmol) of acetate was consumed during 84 hrs in the CC-MFC in contrast to the no acetate consumption observed in the OC-MFC. The CC-MFC produced 150 μA (87 C) from acetate metabolization. Electrode-based respiration reduced the NADH/NAD+ ratio anaerobically, which is similar to the aerobic condition. The CC-MFC showed significantly higher acetyl-CoA synthetase activity than the OC-MFC (0.028 vs. 0.001 μmol/min/mg), which was comparable to the aerobic condition (circa 60%). Overall, electrode-based respiration enables P. putida to metabolize acetate under anoxic conditions and provide a platform to regulate the bacterial redox balance without oxygen.
Collapse
Affiliation(s)
- Sakuntala Mutyala
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Changman Kim
- Advanced Biofuel and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA 94608, USA
| | - Young Eun Song
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Himanshu Khandelwal
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Jiyun Baek
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Eunhee Seol
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - You-Kwan Oh
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea.
| |
Collapse
|
6
|
Pb(II) Bio-Removal, Viability, and Population Distribution of an Industrial Microbial Consortium: The Effect of Pb(II) and Nutrient Concentrations. SUSTAINABILITY 2020. [DOI: 10.3390/su12062511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study presents the effect of aqueous Pb(II) and nutrient concentrations on the Pb(II)-removal, biomass viability, active species identities, and population distribution of an industrial Pb(II) resistant microbial consortium. The studied consortium has previously shown to be highly effective at precipitating Pb(II) from solution. At all conditions tested (80 and 500 ppm Pb(II), and varying nutrients conditions) it was found that circa 50% of Pb(II) was removed within the first 3 h, with the absence of any visual changes, followed by a slower rate of Pb(II) removal accompanied by the formation of a dark precipitate. The Pb(II) removal was found to be independent of microbial growth, while growth was observed dependent on the concentration of Pb(II), nutrients, and nitrates in the system. SEM analysis indicated viable bacilli embedded in precipitate. These findings indicate that precipitation occurs on the surface of the biomass as opposed to an internal excretion mechanism. BLAST (Basic Local Alignment Search Tool) results indicated Klebsiella pneumoniae as the active species responsible for Pb(II) bioprecipitation for both the 80 and 500 ppm isolated colonies, while a diverse population distribution of organisms was observed for the streak plate analyses. A quicker microbial generation rate was observed than what was expected for Klebsiella pneumoniae, indicating that the overall consortial population contributed to the growth rates observed. This study provided insights into the factors affecting Pb(II) bio-removal and bioprecipitation by the investigated industrially obtained consortium, thereby providing invaluable knowledge required for industrial application.
Collapse
|
7
|
Kim C, Lee JH, Baek J, Kong DS, Na JG, Lee J, Sundstrom E, Park S, Kim JR. Small Current but Highly Productive Synthesis of 1,3-Propanediol from Glycerol by an Electrode-Driven Metabolic Shift in Klebsiella pneumoniae L17. CHEMSUSCHEM 2020; 13:564-573. [PMID: 31808287 DOI: 10.1002/cssc.201902928] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Electrofermentation actively regulates the bacterial redox state, which is essential for bioconversion and has been highlighted as an effective method for further improvements of the productivity of either reduced or oxidized platform chemicals. 1,3-Propanediol (1,3-PDO) is an industrial value-added chemical that can be produced from glycerol fermentation. The bioconversion of 1,3-PDO from glycerol requires additional reducing energy under anoxic conditions. The cathode-based conversion of glycerol to 1,3-PDO with various electron shuttles (2-hydroxy-1,4-naphthoquinone, neutral red, and hydroquinone) using Klebsiella pneumoniae L17 was investigated. The externally poised potential of -0.9 V vs. Ag/AgCl to the cathode increased 1,3-PDO (35.5±3.1 mm) production if 100 μm neutral red was used compared with non-bioelectrochemical system fermentation (23.7±2.4 mm). Stoichiometric metabolic flux and transcriptional analysis indicated a shift in the carbon flux toward the glycerol reductive pathway. The homologous overexpression of glycerol dehydratase (DhaB) and 1,3-PDO oxidoreductase (DhaT) enzymes synergistically enhanced 1,3-PDO conversion (39.3±0.8 mm) under cathode-driven fermentation. Interestingly, a small current uptake (0.23 mmol of electrons) caused significant metabolic flux changes with a concomitant increase in 1,3-PDO production. This suggests that both an increase in 1,3-PDO production and regulation of the cellular metabolic pathway are feasible by electrode-driven control in cathodic electrofermentation.
Collapse
Affiliation(s)
- Changman Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, 609-735, Republic of Korea
- Present Address: Advanced Biofuel and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Jae Hyeon Lee
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, 609-735, Republic of Korea
| | - Jiyun Baek
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, 609-735, Republic of Korea
| | - Da Seul Kong
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, 609-735, Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04107, Republic of Korea
| | - Jinwon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul, 04107, Republic of Korea
| | - Eric Sundstrom
- Advanced Biofuel and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Sunghoon Park
- School of Energy and Chemical Engineering, UNIST, Ulsan, 689-798, Republic of Korea
| | - Jung Rae Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, 609-735, Republic of Korea
| |
Collapse
|
8
|
Isolation of Novel CO Converting Microorganism Using Zero Valent Iron for a Bioelectrochemical System (BES). BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0373-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Recent Advances in the Metabolic Engineering of Klebsiella pneumoniae: A Potential Platform Microorganism for Biorefineries. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0346-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Kim MY, Kim C, Ainala SK, Bae H, Jeon BH, Park S, Kim JR. Metabolic shift of Klebsiella pneumoniae L17 by electrode-based electron transfer using glycerol in a microbial fuel cell. Bioelectrochemistry 2019; 125:1-7. [DOI: 10.1016/j.bioelechem.2018.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 10/28/2022]
|
11
|
Separation of Acetate Produced from C1 Gas Fermentation Using an Electrodialysis-Based Bioelectrochemical System. ENERGIES 2018. [DOI: 10.3390/en11102770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The conversion of C1 gas feedstock, such as carbon monoxide (CO), to useful platform chemicals has attracted considerable interest in industrial biotechnology. One conversion method is electrode-based electron transfer to microorganisms using bioelectrochemical systems (BESs). In this BES system, acetate is the predominant component of various volatile fatty acids (VFAs). To appropriately separate and concentrate the acetate produced, a BES-type electrodialysis cell with an anion exchange membrane was constructed and evaluated under various operational conditions, such as applied external current, acetate concentration, and pH. A high acetate flux of 23.9 mmol/m2∙h was observed under a −15 mA current in an electrodialysis-based bioelectrochemical system. In addition, the initial acetate concentration affected the separation efficiency and transportation rate. The maximum flux appeared at 48.6 mmol/m2∙h when the acetate concentration was 100 mM, whereas the effects of the initial pH of the anolyte were negligible. The acetate flux was 14.9 mmol/m2∙h when actual fermentation broth from BES-based CO fermentation was used as a catholyte. A comparison of the synthetic broth with the actual fermentation broth suggests that unknown substances and metabolites produced from the previous bioconversion process interfere with electrodialysis. These results provide information on the optimal conditions for the separation of VFAs produced by C1 gas fermentation through electrodialysis and a combination of a BES and electrodialysis.
Collapse
|
12
|
Oh YK, Hwang KR, Kim C, Kim JR, Lee JS. Recent developments and key barriers to advanced biofuels: A short review. BIORESOURCE TECHNOLOGY 2018. [PMID: 29523378 DOI: 10.1016/j.biortech.2018.02.089] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Biofuels are regarded as one of the most viable options for reduction of CO2 emissions in the transport sector. However, conventional plant-based biofuels (e.g., biodiesel, bioethanol)'s share of total transportation-fuel consumption in 2016 was very low, about 4%, due to several major limitations including shortage of raw materials, low CO2 mitigation effect, blending wall, and poor cost competitiveness. Advanced biofuels such as drop-in, microalgal, and electro biofuels, especially from inedible biomass, are considered to be a promising solution to the problem of how to cope with the growing biofuel demand. In this paper, recent developments in oxy-free hydrocarbon conversion via catalytic deoxygenation reactions, the selection of and lipid-content enhancement of oleaginous microalgae, electrochemical biofuel conversion, and the diversification of valuable products from biomass and intermediates are reviewed. The challenges and prospects for future development of eco-friendly and economically advanced biofuel production processes also are outlined herein.
Collapse
Affiliation(s)
- You-Kwan Oh
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Kyung-Ran Hwang
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Changman Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jin-Suk Lee
- Gwangju Bioenergy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea.
| |
Collapse
|
13
|
Im CH, Kim C, Song YE, Oh SE, Jeon BH, Kim JR. Electrochemically enhanced microbial CO conversion to volatile fatty acids using neutral red as an electron mediator. CHEMOSPHERE 2018; 191:166-173. [PMID: 29032261 DOI: 10.1016/j.chemosphere.2017.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/30/2017] [Accepted: 10/01/2017] [Indexed: 06/07/2023]
Abstract
Conversion of C1 gas feedstock, including carbon monoxide (CO), into useful platform chemicals has attracted considerable interest in industrial biotechnology. Nevertheless, the low conversion yield and/or growth rate of CO-utilizing microbes make it difficult to develop a C1 gas biorefinery process. The Wood-Ljungdahl pathway which utilize CO is a pathway suffered from insufficient electron supply, in which the conversion can be increased further when an additional electron source like carbohydrate or hydrogen is provided. In this study, electrode-based electron transference using a bioelectrochemical system (BES) was examined to compensate for the insufficient reducing equivalent and increase the production of volatile fatty acids. The BES including neutral red (BES-NR), which facilitated electron transfer between bacteria and electrode, was compared with BES without neutral red and open circuit control. The coulombic efficiency based on the current input to the system and the electrons recovered into VFAs, was significantly higher in BES-NR than the control. These results suggest that the carbon electrode provides a platform to regulate the redox balance for improving the bioconversion of CO, and amending the conventional C1 gas fermentation.
Collapse
Affiliation(s)
- Chae Ho Im
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Changman Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Young Eun Song
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sang-Eun Oh
- Department of Biological Environment, Kangwon National University, 192-1, Hyoja 2-dong, Chuncheon, Kangwon-do 200-701, Republic of Korea
| | - Byong-Hun Jeon
- Department of Natural Resources and Environmental Engineering, Hanyang University, Seoul 133- 791, Republic of Korea.
| | - Jung Rae Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
14
|
Sankaranarayanan M, Seol E, Kim Y, Chauhan AS, Park S. Measurement of crude-cell-extract glycerol dehydratase activity in recombinant Escherichia coli using coupled-enzyme reactions. J Ind Microbiol Biotechnol 2017; 44:477-488. [PMID: 28093656 DOI: 10.1007/s10295-017-1902-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/04/2017] [Indexed: 11/25/2022]
Abstract
Glycerol dehydratase (GDHt), which converts glycerol to 3-hydroxypropionaldehyde, is essential to the production of 1,3-propanediol (1,3-PDO) or 3-hydroxypropionic acid (3-HP). A reliable GDHt activity assay in crude-cell extract was developed. In the assay, GDHt converted 1,2-propanediol (1,2-PDO) to propionaldehyde, which was further converted to 1-propionic acid by aldehyde dehydrogenase (KGSADH) or to 1-propanol by yeast-alcohol dehydrogenase (yADH), while the NADH concentration change was monitored spectrophotometrically. Cells should be disintegrated by Bead Beater/French Press, not by chemical methods (BugBuster®/B-PER™), because the reagents significantly inactivated GDHt and coupling enzymes. Furthermore, in the assay mixture, a much higher activity of KGSADH (>200-fold) or yADH (>400-fold) than that of GDHt should have been maintained. Under optimal conditions, both KGSADH and yADH showed practically the same activity. The coupled-enzyme assay method established here should prove to be applicable to recombinant strains developed for the production of 3-HP and/or 1,3-PDO from glycerol.
Collapse
Affiliation(s)
- Mugesh Sankaranarayanan
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Eunhee Seol
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Yeonhee Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Ashish Singh Chauhan
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Sunghoon Park
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
15
|
Kim C, Kim MY, Michie I, Jeon BH, Premier GC, Park S, Kim JR. Anodic electro-fermentation of 3-hydroxypropionic acid from glycerol by recombinant Klebsiella pneumoniae L17 in a bioelectrochemical system. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:199. [PMID: 28824709 PMCID: PMC5561608 DOI: 10.1186/s13068-017-0886-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 08/10/2017] [Indexed: 05/17/2023]
Abstract
BACKGROUND 3-Hydroxypropionic acid (3-HP) is an important platform chemical which can be produced biologically from glycerol. Klebsiella pneumoniae is an ideal biocatalyst for 3-HP because it can grow well on glycerol and naturally synthesize the essential coenzyme B12. On the other hand, if higher yields and titers of 3-HP are to be achieved, the sustained regeneration of NAD+ under anaerobic conditions, where coenzyme B12 is synthesized sustainably, is required. RESULTS In this study, recombinant K. pneumoniae L17 overexpressing aldehyde dehydrogenase (AldH) was developed and cultured in a bioelectrochemical system (BES) with the application of an electrical potential to the anode using a chronoamperometric method (+0.5 V vs. Ag/AgCl). The BES operation resulted in 1.7-fold enhancement of 3-HP production compared to the control without the applied potential. The intracellular NADH/NAD+ ratio was significantly lower when the L17 cells were grown under an electric potential. The interaction between the electrode and overexpressed AldH was enhanced by electron shuttling mediated by HNQ (2-hydroxy-1,4-naphthoquinone). CONCLUSIONS Enhanced 3-HP production by the BES was achieved using recombinant K. pneumoniae L17. The quinone-based electron transference between the electrode and L17 was investigated by respiratory uncoupler experiments. This study provides a novel strategy to control the intracellular redox states to enhance the yield and titer of 3-HP production as well as other bioconversion processes.
Collapse
Affiliation(s)
- Changman Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, 609-735 Republic of Korea
| | - Mi Yeon Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, 609-735 Republic of Korea
| | - Iain Michie
- Sustainable Environment Research Centre (SERC), Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, Mid-Glamorgan CF37 1DL UK
| | - Byong-Hun Jeon
- Department of Natural Resources and Environmental Engineering, Hanyang University, Seoul, 133-791 Republic of Korea
| | - Giuliano C. Premier
- Sustainable Environment Research Centre (SERC), Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, Mid-Glamorgan CF37 1DL UK
| | - Sunghoon Park
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, 609-735 Republic of Korea
| | - Jung Rae Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan, 609-735 Republic of Korea
| |
Collapse
|